Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 31(9): 1218-1230, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34261854

RESUMO

Cold-adapted plant growth-promoting bacteria (PGPB) with multiple functions are an important resource for microbial fertilizers with low-temperature application. In this study, culturable cold-adapted PGPB strains with nitrogen fixation and phosphorus solubilization abilities were isolated. They were screened from root and rhizosphere of four dominant grass species in nondegraded alpine grasslands of the Qilian Mountains, China. Their other growth-promoting characteristics, including secretion of indole-3-acetic acid (IAA), production of siderophores and ACC deaminase, and antifungal activity, were further studied by qualitative and quantitative methods. In addition, whether the PGPB strains could still exert plant growth-promoting activity at 4°C was verified. The results showed that 67 isolates could maintain one or more growth-promoting traits at 4°C, and these isolates were defined as cold-adapted PGPB. They were divided into 8 genera by 16S rRNA gene sequencing and phylogenetic analysis, of which Pseudomonas (64.2%) and Serratia (13.4%) were the common dominant genera, and a few specific genera varied among the plant species. A test-tube culture showed that inoculation of Elymus nutans seedlings with cold-adapted PGPB possessing different functional characteristics had a significant growth-promoting effect under controlled low-temperature conditions, including the development of the roots and aboveground parts. Pearson correlation analysis revealed that different growth-promoting characteristics made different contributions to the development of the roots and aboveground parts. These cold-adapted PGPB can be used as excellent strain resources suitable for the near-natural restoration of degraded alpine grasslands or agriculture stock production in cold areas.

2.
Biol Res ; 54(1): 19, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238380

RESUMO

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.


Assuntos
Silício , Estresse Fisiológico , Agricultura , Plantas , Solo
3.
J Mater Chem B ; 9(10): 2505-2514, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33657198

RESUMO

Cannabidiol (CBD) has been shown to slow cancer cell growth and is toxic to human glioblastoma cell lines. Thus, CBD could be an effective therapeutic for glioblastoma. In the present study, we explored the anticancer effect of cannabidiol loaded magnesium-gallate (CBD/Mg-GA) metal-organic framework (MOF) using the rat glioma brain cancer (C6) cell line. Bioactive and microporous magnesium gallate MOF was employed for simultaneous delivery of two potential anticancer agents (gallic acid and CBD) to the cancer cells. Gallic acid (GA), a polyphenolic compound, is part of the MOF framework, while CBD is loaded within the framework. Slow degradation of CBD/Mg-GA MOF in physiological fluids leads to sustained release of GA and CBD. CBD's anti-cancer actions target mitochondria, inducing their dysfunction and generation of harmful reactive oxygen species (ROS). Anticancer effects of CBD/Mg-GA include a significant increase in ROS production and a reduction in anti-inflammatory responses as reflected by a significant decrease in TNF-α expression levels. Molecular mechanisms that underlie these effects include the modulation of NF-κB expression, triggering the apoptotic cascades of glioma cells. CBD/Mg-GA MOF has potential anti-cancer, anti-inflammatory and anti-oxidant properties. Thus, the present study demonstrates that CBD/Mg-GA MOF may be a promising therapeutic for glioblastoma.


Assuntos
Canabidiol/química , Canabidiol/farmacologia , Portadores de Fármacos/química , Ácido Gálico/química , Glioblastoma/tratamento farmacológico , Magnésio/química , Estruturas Metalorgânicas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Canabidiol/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Hazard Mater ; 415: 125559, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743378

RESUMO

This study aimed to investigate the effect of swine manure composting with microbial inoculation (MI) and without MI (CK) on heavy metal (Cr, Cd, and Pb) fractions, humic substance (HS), and metabolism pathway. The results showed that MI could passivate the heavy metal Cr and reduce the proportion of exchangeable (EXC) fraction of Cd, but it does not affect the EXC fraction of Pb. Compared to CK, HS, humic acid (HA), and fulvic acid (FA) were significantly increased with MI at the maturity stage. The propagation of Proteobacteria (day 4) and Firmicutes (days 12 and 24) was strengthened with MI. Canonical correlation analysis found that HA and Firmicutes were positively correlated with heavy metal (Cr, Cd, and Pb) residual (RES) fraction, and FA was positively correlated with Proteobacteria. Moreover, MI can significantly increase amino acid metabolism and carbohydrate metabolism by day 4, enhance the metabolism of enzyme families and glycan biosynthesis by day 12, and improve membrane transport. Overall, MI could facilitates the increase in HA and FA content and transfer of heavy metal (Cr, Cd, and Pb) fractions, it particularly helps increase the RES fraction.


Assuntos
Compostagem , Metais Pesados , Animais , Substâncias Húmicas/análise , Esterco , Metais Pesados/análise , Solo , Suínos
5.
Sci Rep ; 11(1): 5525, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750876

RESUMO

As the polyploidy progenitor of modern sugarcane, Saccharum spontaneum is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported on the mechanism of drought tolerance in S. spontaneum. Herein, the physiological changes of S. spontaneum GXS87-16 at three water-deficit levels (mild, moderate, and severe) and after re-watering during the elongation stage were investigated. RNA sequencing was utilized for global transcriptome profiling of GXS87-16 under severe drought and re-watered conditions. There were significant alterations in the physiological parameters of GXS87-16 in response to drought stress and then recovered differently after re-watering. A total of 1569 differentially expressed genes (DEGs) associated with water stress and re-watering were identified. Notably, the majority of the DEGs were induced by stress. GO functional annotations and KEGG pathway analysis assigned the DEGs to 47 GO categories and 93 pathway categories. The pathway categories were involved in various processes, such as RNA transport, mRNA surveillance, plant hormone signal transduction, and plant-pathogen interaction. The reliability of the RNA-seq results was confirmed by qRT-PCR. This study shed light on the regulatory processes of drought tolerance in S. spontaneum and identifies useful genes for genetic improvement of drought tolerance in sugarcane.

6.
Am J Prev Med ; 60(4): 569-578, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583676

RESUMO

INTRODUCTION: Health literacy is a critical determinant of health. However, the association between health literacy and outcomes among Chinese residents has not been studied using nationally representative data. This study examines the association between health literacy and self-rated health among Chinese residents based on the 2017 China Health Literacy Survey. METHODS: The 2017 China Health Literacy Survey was conducted among non-institutionalized residents aged 15-69 years from 31 provinces in China. Self-rated health was measured using a single question with a 1-5 scale. Health literacy was assessed using the Chinese Health Literacy Scale. Multilevel linear regression models examined the association between health literacy and self-rated health. Data were collected in 2017 and analyzed between 2018 and 2019. RESULTS: The final sample size was 85,384. The overall weighted mean of the self-rated health score was 4.02 (95% CI=4.00, 4.03). After adjusting for individual-, county-, and province-level covariates, Chinese residents with higher levels of health literacy were more likely to have better self-rated health (ß=0.0007, SE=0.0002, p<0.001). Of 6 dimensions of health literacy, 4 (i.e., infectious diseases literacy, chronic diseases literacy, medical care literacy, and health information literacy) were associated with self-rated health. Additionally, self-rated health was associated with gender, age, education, occupation, annual household income, and chronic conditions. CONCLUSIONS: Using nationally representative data collected in 2017, this study found that self-rated health is associated with health literacy among Chinese residents aged 15-69 years. The promotion of health literacy should be an important component of health education, patient management, and health promotion.


Assuntos
Letramento em Saúde , China , Escolaridade , Educação em Saúde , Nível de Saúde , Humanos , Inquéritos e Questionários
7.
Proc Natl Acad Sci U S A ; 117(44): 27204-27210, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077582

RESUMO

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field-assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.

8.
Front Microbiol ; 11: 1814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849421

RESUMO

Several factors influenced the sugarcane production, and among them, higher use of nitrogen and depletion of soil nutrient constitutes a significant concern in China. Sugarcane-legume intercropping may help to regulate the microbial structure and functions. In the present study, sugarcane rhizosphere soils of three cropping systems: Sugarcane only (S-only), sugarcane with peanut (S + P), and sugarcane + soybean (S + S) were sampled in tillering, elongation, and maturation stages from two different experimental fields. High-throughput sequencing technologies applied to assess the effects of different cropping systems on the structure of nitrogenase (nifH) gene communities. A total of 3818 OTUs (operational taxonomic units) were acquired from all soil samples. Intercropping systems noticeably increased the relative abundance of Proteobacteria in the tillering stage. The increased microbial diversity in the rhizosphere was mainly due to soil organic carbon and total soil N. In contrast, intercropping has no significant negative impact on microbial abundance, but sugarcane growth stages influence it significantly, and two bacteria (Bradyrhizobium and Pseudacidovorax) showed significant shift during plant growth. The results provide insight into the microbial structure of Proteobacteria in the sugarcane legume-intercropping field, and how microbial community behaves in different growth stages. It can boost the microbial activity of the soil, and that could be a new strategy to stimulate soil fertility without causing any negative impact on crop production.

9.
Nano Lett ; 20(5): 3828-3835, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32267711

RESUMO

To exploit the high-temperature superinsulation potential of anisotropic thermal management materials, the incorporation of ceramic aerogel into the aligned structural networks is indispensable. However, the long-standing obstacle to exploring ultralight superinsulation ceramic aerogels is the inaccessibility of its mechanical elasticity, stability, and anisotropic thermal insulation. In this study, we report a recoverable, flexible ceramic fiber-aerogel composite with anisotropic lamellar structure, where the interfacial cross-linking between ceramic fiber and aerogel is important in its superinsulation performance. The resulting ultralight aerogel composite exhibits a density of 0.05 g/cm3, large strain recovery (over 50%), and low thermal conductivity (0.0224 W m-1 K-1), while its hydrophobicity is achieved by in situ trichlorosilane coating with the water contact angle of 135°. The hygroscopic tests of such aerogel composites demonstrate a reversible thermal insulation. The mechanical elasticity and stability of the anisotropic composites, with its soundproof performance, shed light on the low-cost superelastic aerogel manufacturing with scalability for energy saving building applications.

10.
PLoS One ; 15(4): e0231206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267863

RESUMO

The diazotrophic Burkholderia anthina MYSP113 is a vital plant growth-promoting bacteria and sugarcane root association. The present study based on a detailed analysis of sugarcane root transcriptome by using the HiSeq-Illumina platform in response to the strain MYSP113. The bacterium was initially isolated from the rhizosphere of sugarcane. To better understand biological, cellular, and molecular mechanisms, a de novo transcriptomic assembly of sugarcane root was performed. HiSeq-Illumina platformwas employed for the sequencing of an overall of 16 libraries at a 2×100 bp configuration. Differentially expressed genes (DEGs) analysis identified altered gene expression in 370 genes (total of 199 up-regulated genes and 171 down-regulated genes). Deciphering the huge datasets, concerning the functioning and production of biological systems, a high throughput genome sequencing analysis was attempted with Gene ontology functional analyses and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The report revealed a total of 148930 unigenes. 70414 (47.28%) of them were annotated successfully to Gene Ontology (GO) terms. 774 at 45 days, 4985 of 30 days and 15 days of 6846 terms were significantly regulated. GO analysis revealed that many genes involved in the metabolic, oxidation-reduction process and biological regulatory processes in response to strain MYSP113 and significantly enriched as compare to the control. Moreover, KEGG enriched results show that differentially expressed genes were classified into different pathway categories involved in various processes, such as nitrogen metabolism, plant hormone signal transduction, etc. The sample correlation analyses could help examine the similarity at the gene expression level. The reliability of the observed differential gene expression patterns was validated with quantitative real-time PCR (qRT-PCR). Additionally, plant enzymes activities such as peroxidase and superoxide dismutase were significantly increased in plant roots after the inoculation of strain MYSP113. The results of the research may help in understanding the plant growth-promoting rhizobacteria and plant interaction.


Assuntos
Burkholderia/fisiologia , Raízes de Plantas/genética , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Transcriptoma , Antioxidantes/análise , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas/genética , Raízes de Plantas/microbiologia , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
11.
JMIR Res Protoc ; 9(4): e15933, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271155

RESUMO

BACKGROUND: Salt intake in China is over twice the maximum recommendation of the World Health Organization. Unlike most developed countries where salt intake is mainly derived from prepackaged foods, around 80% of the salt consumed in China is added during cooking. OBJECTIVE: Action on Salt China (ASC), initiated in 2017, aims to develop, implement, and evaluate a comprehensive and tailored salt reduction program for national scaling-up. METHODS: ASC consists of six programs working in synergy to increase salt awareness and to reduce the amount of salt used during cooking at home and in restaurants, as well as in processed foods. Since September 2018, two health campaigns on health education and processed foods have respectively started, in parallel with four open-label cluster randomized controlled trials (RCTs) in six provinces across China: (1) app-based intervention study (AIS), in which a mobile app is used to achieve and sustain salt reduction in school children and their families; (2) home cook-based intervention study (HIS), in which family cooks receive support in using less salt; (3) restaurant-based intervention study (RIS) targeting restaurant consumers, cooks, and managers; and (4) comprehensive intervention study (CIS), which is a real-world implementation and evaluation of all available interventions in the three other RCTs. To explore the barriers, facilitators, and effectiveness of delivering a comprehensive salt reduction intervention, these RCTs will last for 1 year (stage 1), followed by nationwide implementation (stage 2). In AIS, HIS, and CIS, the primary outcome of salt reduction will be evaluated by 24-hour urinary sodium excretion in 6030 participants, including 5436 adults and 594 school children around 8-9 years old. In RIS, the salt content of meals will be measured by laboratory food analysis of the 5 best-selling dishes from 192 restaurants. Secondary outcomes will include process evaluation; changes in knowledge, attitude, and practice on salt intake; and economic evaluation. RESULTS: All RCTs have been approved by Queen Mary Research Ethics Committee and the Institutional Review Boards of leading institutes in China. The research started in June 2017 and is expected to be completed around March 2021. The baseline investigations of the four RCTs were completed in May 2019. CONCLUSIONS: The ASC project is progressing smoothly. The intervention packages and tailored components will be promoted for salt reduction in China, and could be adopted by other countries. TRIAL REGISTRATION: Chinese Clinical Trial Registry. AIS: ChiCTR1800017553; https://tinyurl.com/vdr8rpr. HIS: ChiCTR1800016804; https://tinyurl.com/w8c7x3w. RIS: ChiCTR1800019694; https://tinyurl.com/uqkjgfw. CIS: ChiCTR1800018119; https://tinyurl.com/s3ajldw. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/15933.

12.
Bioresour Technol ; 306: 123167, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32192957

RESUMO

This study evaluated enzyme activity, available nitrogen, and bacterial succession during pig manure composting with and without microbial inoculation (ABB and CK, respectively). ABB reached the thermophilic stage 2 days than CK. Cellulose, urease, phosphatase, and sucrase activities were higher in ABB than in CK on days 12-24 of composting, but catalase activity was lesser in ABB than in CK throughout composting. NH4+-N and NO3--N were significantly increased in ABB at the maturity stage. 16S rRNA sequencing revealed Nocardiopsaceae, Bacillaceae, Streptosporangiaceaec, Flavobacteriaceae, and Caldicoprobacteraceae as the dominant bacteria at the family level. Metabolism function analysis revealed that human diseases were reduced and carbohydrate metabolism was increased in ABB. Correlation analysis revealed that urease, sucrose, and phosphatase were significantly correlated with bacteria at the species level, whereas NH4+-N and NO3--N were not significantly correlated. These results indicated that microbial inoculation accelerated the composting process and significantly regulated microbial functions.

13.
Nano Lett ; 20(2): 1110-1116, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31891269

RESUMO

Light-weight ceramic aerogels hold promise for superinsulation. However, its mechanical instability and complex manufacturing hampered its technical applications. In this study, we demonstrate lightweight pore-gradient ceramic aerogel-like foam monoliths (PGAFoams) through one-pot and in situ bubble supported pore gradient formation. The mechanically strong PGAFoams exhibit a low thermal conductivity of 0.036 W m-1 K-1 and a compressive strength of 89.85 MPa. The pore gradient and integral ceramic monolith nature provides such hydrophobic PGAFoams with thermal management, robust soundproof, and fire-resistance performance. Highly machinable PGAFoams can be adapted into a variety of shapes and dimensions to accommodate complex geometry applications. The scalable manufacturing of lightweight PGAFoams opens up building insulation with remarkable thermal management, high mechanical strength, low mass density, superior soundproofing, and fire-retardant performances.

14.
Nanotechnology ; 31(10): 105703, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31751954

RESUMO

Alumina (Al2O3) is one of the most widely used ceramic materials for innumerable applications, due to its unique combination of attractive physical and mechanical properties. These intrinsic properties are dictated by the numerous phases that Al2O3 forms and its related phase transformations. Transition metal (TM) cation dopants (iron (Fe), cobalt (Co), nickel (Ni) and manganese (Mn)), even in sparse amounts, have been shown to significantly affect the phase transformation and microstructural evolution of Al2O3. Small concentrations of TM cation dopants have successfully been incorporated to synthesize magnetically active Al2O3, while reducing the θ to α phase transformation temperature by 150 °C, and maintaining the outstanding mechanical properties. In addition, first-principle calculations based on density-functional theory with hybrid functional (HSE06) and the PBE+U methods have provided a mechanistic understanding of the formation energy and magnetism of the TM-doped α and θ phases of Al2O3. The results reveal a potential route for phase transition regulation and external magnetic field-induced texturing of Al2O3 ceramics.

15.
J Hazard Mater ; 389: 121834, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843407

RESUMO

Environmental problems caused by the large-scale use of chemical pesticides are becoming more and more serious, and the removal of chemical pesticides from the ecological environment by microbial degradation has attracted wide attention. In this study, using enrichment screening with seven chemical pesticides as the sole carbon source, a mixed microbial culture (PCS-1) was obtained from the continuous cropping of strawberry fields. The microbial community composition, degradation ability, and detoxification effect of PCS-1 was determined for the seven pesticides. Inoculation with PCS-1 showed significant degradation of and tolerance to the seven pesticides. Microbial community composition analysis indicated that Pseudomonas, Enterobacter, Aspergillus, and Rhodotorula were the dominant genera for the degradation of the seven pesticides by PCS-1. The concentration of the seven pesticides was 10 mg L-1 in hydroponic and soil culture experiments. The fresh weight, plant height, and root length of PCS-1-inoculated alfalfa (Medicago sativa) significantly increased compared with those of non-PCS-1-inoculated M. sativa. PCS-1 not only effectively degraded the residual content of the seven pesticides in water and soil but also reduced the pesticide residues in the roots, stems, and leaves of M. sativa. This study shows that PCS-1 may be important in environmental remediation involving the seven pesticides.


Assuntos
Poluentes Ambientais/análise , Medicago sativa/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Praguicidas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Biodegradação Ambiental , Enterobacter/efeitos dos fármacos , Enterobacter/crescimento & desenvolvimento , Poluentes Ambientais/toxicidade , Medicago sativa/crescimento & desenvolvimento , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Praguicidas/toxicidade , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Rhodotorula/efeitos dos fármacos , Rhodotorula/crescimento & desenvolvimento , Poluentes do Solo/toxicidade
16.
Adv Funct Mater ; : 2008054, 2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33613147

RESUMO

SARS-CoV-2 and other respiratory viruses spread via aerosols generated by infected people. Face masks can limit transmission. However, widespread use of disposable masks consumes tremendous resources and generates waste. Here, a novel material for treating blown polypropylene filtration media used in medical-grade masks to impart antimicrobial activity is reported. To produce thin copper@ZIF-8 core-shell nanowires (Cu@ZIF-8 NWs), Cu NWs are stabilized using a pluronic F-127 block copolymer, followed by growth of ZIF-8 to obtain uniform core-shell structures. The Cu@ZIF-8 NWs are applied to filtration media by dip coating. Aerosol filtration efficiency decreases upon exposure to ethanol (solvent for dip-coating), but increases with addition of Cu@ZIF-8 NWs. Cu@ZIF-8 NWs shows enhanced antibacterial activity, compared to Cu NWs or ZIF-8 alone, against Streptococcus mutans and Escherichia coli. Antiviral activity against SARS-CoV-2 is assayed using virus-infected Vero E6 cells, demonstrating 55% inhibition of virus replication after 48 h by 1 µg of Cu@ZIF-8 NWs per well. Cu@ZIF-8 NWs' cytotoxicity is tested against four cell lines, and their effect on inflammatory response in A549 cells is examined, demonstrating good biocompatibility. This low-cost, scalable synthesis and straightforward deposition of Cu@ZIF-8 NWs onto filter media has great potential to reduce disease transmission, resource consumption, and environmental impact of waste.

17.
Chem Commun (Camb) ; 55(84): 12643-12646, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31580340

RESUMO

The charge transfer and spin coupling effects are explored at the interface of two-dimensional (2D) superconducting FeSe nanosheets and molecular photochromic potassium-7,7,8,8-tetracyanoquinodimethane (KTCNQ). Light-induced conductivity in 2D FeSe nanosheets is enhanced by the electron doping from KTCNQ by the destabilized spin-Peierls phase through their interface. Furthermore, the spin coupling at the interface of FeSe and KTCNQ shifts the dimerization transition temperature of KTCNQ. Our results suggest 2D exfoliated FeSe nanosheets as a versatile strongly correlated platform for the study of interfacial electron doping and spin coupling.

18.
Adv Mater ; 31(40): e1902279, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31414515

RESUMO

Surfactant-stripped micelles are formed from a commercially available cyanine fluoroalkylphosphate (CyFaP) salt dye and used for high contrast photoacoustic imaging (PAI) in the second near-infrared window (NIR-II). The co-loading of Coenzyme Q10 into surfactant-stripped CyFaP (ss-CyFaP) micelles improves yield, storage stability, and results in a peak absorption wavelength in the NIR-II window close to the 1064 nm output of Nd-YAG lasers used for PAI. Aqueous ss-CyFaP dispersions exhibit intense NIR-II optical absorption, calculated to be greater than 500 at 1064 nm. ss-CyFaP is detected through 12 cm of chicken breast tissue with PAI. In preclinical animal models, ss-CyFaP is visualized in draining lymph nodes of rats through 3.1 cm of overlaid chicken breast tissue. Following intravenous administration, ss-CyFaP accumulates in neoplastic tissues of mice and rats bearing orthotopic mammary tumors without observation of acute toxic side effects. ss-CyFaP is imaged through whole compressed human breasts in three female volunteers at depths of 2.6-5.1 cm. Taken together, these data show that ss-CyFaP is an accessible contrast agent for deep tissue PAI in the NIR-II window.


Assuntos
Mama/citologia , Mama/diagnóstico por imagem , Raios Infravermelhos , Micelas , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Tensoativos/química , Absorção Fisico-Química , Animais , Humanos , Camundongos , Fosfatos/química , Ratos , Ubiquinona/análogos & derivados , Ubiquinona/química
19.
Bioresour Technol ; 289: 121653, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271913

RESUMO

This study determined the physicochemical changes and bacterial community succession in the pig manure composting process with microbial inoculant. Microbial inoculant could prolong the thermophilic stage by 2 days and increased the germination index (GI). Analysis with 16S rDNA showed that the Chao1 and Shannon indices increased at the thermophilic stage in the treatment (T), while those of the control (C) decreased. Microbial inoculant increased the relative abundance of Flavobacterium and Solibacillus in 4-12 and 12-24 days, respectively. Acinetobacter was reduced at 4-12 days. The key physicochemical factors affecting microbial successions were revealed by canonical correspondence analysis (CCA) and correlation analysis. Linear discriminant analysis (LDA) effect size (LEfse) analysis showed that there were 78 biomarkers, while in piles T and C, there were 35 and 43 biomarkers, respectively. These results indicated the addition of microbial inoculant improved the maturity and fertility, as well as significantly regulating the microbial community structure.


Assuntos
Compostagem , Microbiota , Animais , Bactérias , Esterco , Solo , Suínos , Zea mays
20.
Mol Biol Rep ; 46(4): 3777-3789, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31006101

RESUMO

Fusarium verticillioides is the pathogen associated with pokkah boeng disease (PBD), the most significant airborne disease of sugarcane. The molecular mechanisms that regulate the defense responses of sugarcane towards this fungus are not yet fully known. Samples of 'YT 94/128' (resistant, R) and 'GT 37' (susceptible, S) inoculated with F. verticillioides on the 14 days post-inoculation were used to analyze the transcriptome to screen R genes. In total, 80.93 Gb of data and 76,175 Unigenes were obtained after assembling the sequencing data, and comparisons of Unigenes with NR, Swiss-prot, KOG, and KEGG databases confirmed 42,451 Unigenes. The analysis of differentially expression genes (DEGs) in each sample revealed 9092 DEGs in 'YT 94/128,' including 8131 up-regulated DEGs and 961 down-regulated DEGs; there were 9829 DEGs in 'GT 37,' including 7552 up-regulated DEGs and 2277 down-regulated DEGs. The identified DEGs were mainly involved in catalytic enzyme activity, cell protease, hydrolytic enzymes, peptide enzyme, protein metabolism process of negative regulation, phenylpropanoid metabolism, extracellular region, aldehyde dehydrogenase, endopeptidase, REDOX enzyme, protein kinases, and phosphoric acid transferase categories. KEGG pathway clustering analysis showed that the DEGs involved in resistance were significantly related to metabolic pathways of phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, nitrogenous metabolism, biosynthesis of secondary metabolites, and plant-pathogen interactions. This application of transcriptomic data clarifies the mechanism of interactions between sugarcane and F. verticillioides, which can help to reveal disease-related metabolic pathways, molecular regulatory networks, and key genes involved in sugarcane responses to F. verticillioides.


Assuntos
Resistência à Doença , Fusarium/patogenicidade , Interações Hospedeiro-Patógeno/genética , Saccharum/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Doenças das Plantas/microbiologia , RNA-Seq , Saccharum/metabolismo , Saccharum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...