Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445456


Flavonoids are representative secondary metabolites with different metabolic functions in plants. Previous study found that ectopic expression of EsMYB90 from Eutremasalsugineum could strongly increase anthocyanin content in transgenic tobacco via regulating the expression of anthocyanin biosynthesis genes. In the present research, metabolome analysis showed that there existed 130 significantly differential metabolites, of which 23 metabolites enhanced more than 1000 times in EsMYB90 transgenic tobacco leaves relative to the control, and the top 10 of the increased metabolites included caffeic acid, cyanidin O-syringic acid, myricetin and naringin. A total of 50 markedly differential flavonoids including flavones (14), flavonols (13), flavone C-glycosides (9), flavanones (7), catechin derivatives (5), anthocyanins (1) and isoflavone (1) were identified, of which 46 metabolites were at a significantly enhanced level. Integrated analysis of metabolome and transcriptome revealed that ectopic expression of EsMYB90 in transgenic tobacco leaves is highly associated with the prominent up-regulation of 16 flavonoid metabolites and the corresponding 42 flavonoid biosynthesis structure genes in phenylpropanoid/flavonoid pathways. Dual luciferase assay documented that EsMYB90 strongly activated the transcription of NtANS and NtDFR genes via improving their promoter activity in transiently expressed tobacco leaves, suggesting that EsMYB90 functions as a key regulator on anthocyanin and flavonoid biosynthesis. Taken together, the crucial regulatory role of EsMYB90 on enhancing many flavonoid metabolite levels is clearly demonstrated via modulating flavonoid biosynthesis gene expression in the leaves of transgenic tobacco, which extends our understanding of the regulating mechanism of MYB transcription factor in the phenylpropanoid/flavonoid pathways and provides a new clue and tool for further investigation and genetic engineering of flavonoid metabolism in plants.

Antocianinas , Brassicaceae/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tabaco , Antocianinas/biossíntese , Antocianinas/genética , Brassicaceae/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tabaco/genética , Tabaco/metabolismo
BMC Plant Biol ; 20(1): 186, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345216


BACKGROUND: Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants. However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum. RESULT: Here we report the identification of an important anthocyanin biosynthesis regulator EsMYB90 from Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization analyses supported that EsMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The transcriptome analysis revealed that 42 genes upregulated by EsMYB90 in 35S:EsMYB90 tobacco transgenic plants are required for anthocyanin biosynthesis. Moreover, our qRT-PCR results showed that EsMYB90 promoted expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems, leaves, and flowers of 35S:EsMYB90 tobacco transgenic plants. CONCLUSIONS: Our results indicated that EsMYB90 is a MYB transcription factor, which regulates anthocyanin biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin production in various plants.

Antocianinas/biossíntese , Brassicaceae/genética , Genes de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Brassicaceae/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Tabaco/genética , Fatores de Transcrição/fisiologia