Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.312
Filtrar
1.
Acta Trop ; : 105343, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954135

RESUMO

The odorant receptors (ORs) play a critical role for mosquitoes in the identification of blood-feeding hosts and other physiological processes. The OR8 subfamily in mosquitoes has been shown to be strongly involved in the detection the mammalian host associated odor, 1-octen-3-ol. CquiOR114/117 has been shown to be an orthologous OR8 in Culex quinquefasciatus Say. In this study, the expression of CquiOR114/117 in the different developmental stages of Cx. quinquefasciatus was detected by the amplification of CquiOR114/117 with real-time fluorescence quantitative polymerase chain reaction (PCR). RNA interference (RNAi) technology was used to interfere with the expression of CquiOR114/117 in females to observe the blood-feeding behavior change. The results showed that the expression level of CquiOR114/117 in the egg-to-pupa stage was significantly lower than that in the adult stage and that the expression level of the female mosquitoes peaked on the third day after emergence. The expression of CquiOR114/117 was significantly decreased in the 2-6 days after the injection of dsRNA compared with the control groups. The analysis of the blood-feeding behavior showed a significant positive correlation between CquiOR114/117 expression and the engorgement rate of the mosquitoes. CquiOR114/117 is speculated to have an effect on the blood-feeding behavior of Cx. quinquefasciatus.

2.
J Hazard Mater ; 387: 122011, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927354

RESUMO

Nowadays, designing highly active photocatalysts for pollutant degradation under visible light still remains a challenging problem. Herein, a novel benzothiadiazole functionalized Co-doped MOF-based photocatalyst with electron deficient unit was first synthesized via a feasible step-by-step assembly strategy. Benzothiadiazole, as typical electron deficient group, could effectively promote the separation and transfer of photoinduced charge carriers. The implantation of Co ion could be served as an effective mediator to further facilitate the charge transfer through a Co3+/Co2+ redox pathway. Interestingly, the as-synthesized Co-MIL-53-NH-BT exhibited significantly enhanced photocatalytic degradation capacity for BPA and OFX under visible light irradiation, with removal efficiency as high as 99.9 % and 99.8 % within 120 min. TOC analysis suggested that majority of contaminants had been degraded into CO2 and H2O. The important parameters influencing the photocatalytic activity were investigated, and the kinetics study was also conducted. The possible degradation pathways and the possible photocatalytic mechanism were proposed. More importantly, the as-synthesized Co-MIL-53-NH-BT showed good reusability, stability as well as universal applicability. To sum up, current work not only developed an efficient and visible-light active photocatalyst for treating organic-contaminated wastewater, but also afforded some novel insight into the utilization of benzothiadiazole in MOF-based photocatalyst towards improving photocatalytic activity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31955255

RESUMO

Effects of high light, high salt, nitrogen and phosphorus deficiency on growth and lipid production of Chlorella pyrenoidosa were investigated in a flat-plate photoreactor, and the oil quality indexes such as CN, IV, SV, CFPP, DU, and LCSF were also evaluated. The results show that the growth of C. pyrenoidosa was inhibited under the stress conditions, but the intracellular lipid content was significantly increased. Moreover, the combustion performance, oxidation stability, low temperature fluidity, and other oil quality indicators under these nutrient stress conditions were significantly improved. Importantly, it is found that starch was preferentially synthesized by algal cells, while with the prolongation of stress time, starch was gradually degraded, and the degraded carbon skeleton was mainly used for lipid synthesis.

4.
Ying Yong Sheng Tai Xue Bao ; 31(1): 157-164, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-31957392

RESUMO

Understanding the effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in the Loess Plateau can provide theoretical support for improving phosphorus conversion, utilization, and rational use of fertilizer. We examined the effects of different fertilizer treatments on soil organic phosphorus fractions, wheat yield and soil properties of a farmland in the long-term (1984-2016) positioning test station of Changwu loess soil. There were eight treatments, including no fertilizer (CK), single application of nitrogen fertilizer (N), single application of phosphorus fertilizer (P), application of nitrogen and phosphorus fertilizer (NP), single application of organic fertilizer (M), nitrogen combined with organic fertilizer (MN), phosphorus combined with organic fertilizer (MP), nitrogen and phosphorus combined with organic fertilizer (MNP). The results showed that the range of soil organic phosphorus content was 244.7-429.1 mg·kg-1 after long-term fertilization. Except for the N treatment, organic phosphorus content was significantly increased by 15.4%-47.9% compared to CK. Long-term application of phosphorus fertilizer changed the content of organic phosphorus fractions in the surface soil (0-20 cm). The treatments of MP and MNP significantly increased the contents of labile organic phosphorus and moderately labile organic phosphorus. The treatments of N, P and NP significantly reduced the content of moderately stable organic phosphorus. The treatments of N, P, NP, MN, MP, MNP all significantly increased the highly stable organic phosphorus. The ratio of soil organic phosphorus fractions to total organic phosphorus content was in order of moderately labile organic phosphorus > highly stable organic phosphorus > labile organic phosphorus > moderately stable organic phosphorus. After long-term fertilizer application, the combination of nitrogen and phosphorus fertilizers, especially with organic fertilizers, significantly increased wheat biomass yield and grain yield. Among all the examined soil properties, organic matter, Olsen-P and total inorganic phosphorus were significantly positively correlated with wheat yield. MP and M could significantly increase the content of Olsen-P, total phosphorus, total inorganic phosphorus, labile organic phosphorus and moderately labile organic phosphorus in the loess soil of Loess Plateau. Our results indicated that the organic and phosphorus fertilizers could improve soil phosphorus components that could be more easily absorbed by crops. In summary, the combination of nitrogen and phosphorus fertilizers, especially with organic fertilizers, could increase soil phosphorus supply in the region and promote the wheat yield, which is important for improving soil quality in the Loess Plateau.

5.
Int J Neurosci ; : 1-7, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31944864

RESUMO

Purpose: Sjögren-Larsson syndrome is a rare, autosomal, recessive neurocutaneous disorder caused by mutations in the ALDH3A2 gene, which encodes the fatty aldehyde dehydrogenase enzyme. Deficiency in fatty aldehyde dehydrogenase results in an abnormal accumulation of toxic fatty aldehydes in the brain and skin, which cause spasticity, intellectual disability, ichthyosis, and other clinical manifestations. We present the clinical features and mutation analyses of a case of SLS.Materials and Methods: The family history and clinical data of the patient were collected. Genomic DNA was extracted from peripheral blood samples of the patient and her parents, and next-generation sequencing was performed. The candidate mutation sites that required further validation were then sequenced by Sanger sequencing. Bioinformatics software PSIPRED and RaptorX were used to predict the secondary and tertiary structures of proteins.Results: The patient, a five-year-old girl with complaints of cough for three days and intermittent convulsions for seven hours, was admitted to the hospital. Other clinical manifestations included spastic paraplegia, mental retardation, tooth defects, and ichthyosis. Brain magnetic resonance imaging showed periventricular leukomalacia. Genetic screening revealed compound heterozygous mutations in the ALDH3A2 gene: a frameshift mutation c.779delA (p.K260Rfs*6) and a missense mutation c.1157A > G (p.N386S). Neither of the ALDH3A2 alleles in the compound heterozygote patient were able to generate normal fatty aldehyde dehydrogenase, which were likely responsible for her phenotype of Sjögren-Larsson syndrome.Conclusion: The compound heterozygous mutations found in the ALDH3A2 gene support the diagnosis of Sjögren-Larsson syndrome in the patient and expand the genotype spectrum of the gene.

6.
J Ethnopharmacol ; : 112573, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31945401

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qishen Granule (QSG) is a prevailing traditional Chinese medicine formula that displays impressive cardiovascular protection in clinical. However, underlying mechanisms by which QSG alleviates endoplasmic reticulum (ER) stress-induced apoptosis in myocardial ischemia still remain unknown. AIM OF THE STUDY: This study aims to elucidate whether QSG ameliorates ER stress-induced myocardial apoptosis to protect against myocardial ischemia via inositol requiring enzyme 1 (IRE-1)-αBcrystallin (CRYAB) signaling pathway. MATERIALS AND METHODS: Left anterior descending (LAD) ligation induced-ischemic heart model and oxygen-glucose deprivation-reperfusion (OGD/R)-induced H9C2 cells injury model were established to clarify the effects and potential mechanism of QSG. Ethanol extracts of QSG (2.352 g/kg) were orally administered for four weeks and Ginaton Tablets (100 mg/kg) was selected as a positive group in vivo. In vitro, QSG (800 µg/ml) or STF080310 (an inhibitor of IRE-1, 10 µM) was co-cultured under OGD/R in H9C2 cells. Inhibition of IRE-1 was conducted in H9C2 cells to further confirm the exact mechanism. Finally, to define the active components of anti-cardiomyocyte apoptosis in QSG which absorbed into the blood, we furtherly used the OGD/R-induced cardiomyocyte apoptosis model to evaluate the effects. RESULTS: QSG treatment improved cardiac function, ameliorated inflammatory cell infiltration and myocardial apoptosis. Similar effects were revalidated in OGD/R-induced H9C2 injury model. Western blots demonstrated QSG exerted anti-apoptotic effects by regulating apoptosis-related proteins, including increasing Bcl-2 and caspase 3/12, reducing the expressions of Bax and cleaved-caspase 3/12. Mechanistically, the IRE-1-CRYAB signaling pathway was significantly activated by QSG. Co-treatment with STF080310, the IRE-1 specific inhibitor significantly compromised the protective effects of QSG in vitro. Especially, the active components of QSG including Formononetin, Tanshinone IIA, Tanshinone I, Cryptotanshinon and Harpagoside showed significantly anti-apoptosis effects. CONCLUSION: QSG protected against ER stress-induced myocardial apoptosis via the IRE-1-CRYAB pathway, which is proposed as a promising therapeutic target for myocardial ischemia.

7.
Sci Rep ; 10(1): 520, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949258

RESUMO

The tyrosine kinase receptor EphB4 is frequently overexpressed in ovarian and other solid tumors and is involved in interactions between tumor cells and the tumor microenvironment, contributing to metastasis. Trans-interaction between EphB4 and its membrane-bound ligand ephrin B2 (EFNB2) mediates bi-directional signaling: forward EFNB2-to-EphB4 signaling suppresses tumor cell proliferation, while reverse EphB4-to-EFNB2 signaling stimulates the invasive and angiogenic properties of endothelial cells. Currently, no small molecule-based, dual-function, EphB4-binding peptides are available. Here, we report our discovery of a bi-directional ephrin agonist peptide, BIDEN-AP which, when selectively internalized via receptor-mediated endocytosis, suppressed invasion and epithelial-mesenchymal transition of ovarian cancer cells. BIDEN-AP also inhibited endothelial migration and tube formation. In vivo, BIDEN-AP and its nanoconjugate CCPM-BIDEN-AP significantly reduced growth of orthotopic ovarian tumors, with CCPM-BIDEN-AP displaying greater antitumor potency than BIDEN-AP. Both BIDEN-AP and CCPM-BIDEN-AP compromised angiogenesis by downregulating epithelial-mesenchymal transition and angiogenic pathways. Thus, we report a novel EphB4-based therapeutic approach against ovarian cancer.

9.
Nano Lett ; 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31917588

RESUMO

Metallic halide perovskites are promising for low-cost, low-consumption, flexible optoelectronic devices. However, research is lacking on light propagation and dielectric behaviors as fundamental properties for optoelectronic perovskite applications, particularly the mechanism supporting strong light-matter interaction and the different properties of low-dimensional structures from their bulk counterparts. We use spatially resolved photoluminescence (SRPL) spectroscopy to explore light propagation and measure the refractive index of CsPbBr3 nanowires (NWs). Owing to strong exciton-photon interactions, light is guided as an exciton-polariton inside the NWs at room temperature. Remarkable spatial dispersion is confirmed, in which both the real and imaginary parts of the refractive index increase dramatically approaching exciton resonance, thus slowing light and enhancing absorption, respectively. Reducing the NWs dimension increases exciton-photon coupling and the exciton fraction, increasing the light absorption coefficient and group index five- and threefold, respectively, relative to those of bulk films and slowing the light group velocity by ~74%. Furthermore, dispersive absorption induces an energy redshift to the propagating PL at 4.1-5.5 meV µm-1 until the bottleneck region. These findings clarify light-matter interaction in confined perovskite structures to improve their optoelectronic device performance.

10.
BMC Musculoskelet Disord ; 21(1): 13, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914975

RESUMO

BACKGROUND: Mucosal melanomas are rare and have a high potential for metastasizing. Surgical resection is the treatment of choice for single distant metastases. Malignant melanoma usually shows the highest uptake of fluorine-18 fluorodeoxyglucose (18F-FDG). 18F- FDG positron emission tomography /computed tomography (PET/CT) is usually used for melanoma staging. An extensive literature review revealed only 4 published case reports and an original paper involving 8 cases (12 cases in total) of patients with skin melanomas in whom pigmented villous nodular synovitis (PVNS) mimicked metastatic melanoma, however, none of the melanomas reported were of rectal mucosal origin. CASE PRESENTATION: A 60-year-old woman presented with recent diagnosis of rectal mucosal melanoma, two additional 18F-FDG-avid lesions in the left ankle and left foot were detected on 18F-FDG PET/CT. Metastases were initially suspected; however, the final diagnosis was PVNS. CONCLUSIONS: This is the first report of PVNS mimicking metastases on 18F-FDG PET/CT in a patient with rectal mucosal melanoma. Although high 18F-FDG-avid lesions in patients with rectal mucosal melanoma are highly suspected to be metastasis and warrant an meticulous examination, the present case is a reminder that in such patients, not all lesions with high 18F-FDG uptake, especially those near a joint, are metastases and that more extensive resection is unnecessary.

11.
Oncol Rep ; 43(2): 461-470, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894342

RESUMO

In recent years, the important role of long non­â€‹coding RNAs (lncRNAs) in the development of liver cancer has received increasing attention. The abnormal expression level of long non­coding RNAs has been associated with the occurrence and development of liver cancer. However, the role and molecular mechanisms of lncRNAs in the development and progression of liver cancer are not fully understood. The present study aimed to clarify the function and molecular mechanism of lncRNA brain cytoplasmic 200 (BC200) in liver cancer. In the present study, it was found that BC200 expression level was higher in hepatocellular carcinoma (HCC) tissues than that in adjacent tissues. Cell function was examined by constructing BC200 knockout (KO) and BC200­overexpression in vitro models. It was found that BC200 affected the proliferation and migration of HepG2 cells. Interestingly, it was found that BC200 affected the expression of c­Myc protein but did not affect the mRNA expression level of c­MYC. BC200 KO cells exhibited a reduced protein expression level of Bax protein and an increased protein expression level of Bcl­xL. Conversely, BC200 overexpression reduced the expression of Bcl­xL protein and increased the expression of Bax protein. Importantly, it was found that BC200 affected the formation of subcutaneous tumors in nude mice. In conclusion, the present results suggested that lncRNA BC200 may play an important role in liver cancer.

12.
Zhongguo Zhen Jiu ; 40(1): 106-8, 2020 Jan 12.
Artigo em Chinês | MEDLINE | ID: mdl-31930909

RESUMO

The new teaching mode of Science of Meridians and Acupoints based on the practice platform was explored so as to promote the mutual benefits for both teaching and learning. As the basic course of acupuncture-moxibustion and tuina specialty, Science of Meridians and Acupoints is the core theoretical and practical course. Through the establishment of on-campus practice platforms, e.g. the Technique Association of Acupuncture-Moxibustion and Tuina, physical therapy room of acupuncture-moxibustion and tuina and the practical platform for promoting outside-campus medical service, in accordance with the teaching mode of "theory → practice → re-theory → re-practice", the class teaching of theory and the skill training were optimized, the three-dimensional practice platforms for teaching Science of Meridians and Acupoints was constructed, meaning "class teaching → on-campus practice → social service". This teaching mode motivates the enthusiasm of teaching and learning, improves the teaching quality of Science of Meridians and Acupoints, enhances the professional theoretical level as well as the clinical practice ability. Such teaching mode plays a positive role in the cultivation of talents of acupuncture-moxibustion and tuina.

13.
J Ethnopharmacol ; : 112536, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931161

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Previous studies have approved that Baoyuan decoction (BYD) exerted remarkable cardioprotective effects on heart failure (HF) due to its anti-apoptotic properties. As a novel biomarker and target of HF, Cardiac ankyrin repeat protein (CARP) can exacerbate apoptosis via activation by angiotensin type 1 receptor (AT1) and subsequently deteriorate heart function. Transcriptome results in our previous study indicated BYD was beneficial to HF post-acute myocardial infarction (AMI) with a promising effect on CARP. However, the mechanism remains to be validated. AIM OF THE STUDY: This study aims to elucidate whether BYD ameliorates apoptosis to protect against HF via AT1-CARP signaling pathway. MATERIALS AND METHODS: Left anterior descending ligation was applied to induce an HF rat model, Ang Ⅱ-stimulated H9C2 cells apoptotic model and overexpression of Ankrd1/CARP H9C2 cells were established to clarify the effects and potential mechanism of BYD. Ethanol extracts of BYD (0.64; 1.28; 2.57 g/kg) were orally administered for four weeks and Fosinopril (4.67 mg/kg) was selected as a positive group in vivo. In vitro, BYD (400, 600, 800 µg/ml) or RNH6270 (an inhibitor of AT1, 1 µM) was co-cultured with Ang Ⅱ stimulation for 48 h in H9C2 cells. Overexpression of Ankrd1/CARP was conducted by transient transfection with H9C2 cells to further confirm the exact mechanism. Finally, to define the active ingredients of anti-cardiomyocyte apoptosis in BYD, we furtherly used the Ang Ⅱ-induced cardiomyocyte apoptosis model to evaluate the effects. RESULTS: Echocardiography and TUNEL results showed that BYD in different doses remarkably improved heart function and inhibited apoptosis in vivo. Further study demonstrated that AT1 and CARP expressions in cardiac tissue were suppressed by BYD, accompanied with upregulation of B cell lymphoma-2 (Bcl-2) and downregulation of several pro-apoptotic molecules, including p53, Bcl-2 Associated X Protein (Bax) and Cleaved caspase 3. In parallel with the vivo experiment, in vitro research indicated BYD dramatically reduced the apoptotic cells and regulated expressions of critical apoptosis-related molecules mediated through downregulation of AT1 and CARP simultaneously which were consistent with the results in vivo experiment. Transiently transfected CARP over-expression further confirmed that BYD could suppress severe cardiomyocytes apoptosis induced by overexpression of CARP. Especially, the active ingredients of BYD including Astragaloside IV, Ginsenoside Rg3, Rb1, Rc and Re showed significantly anti-apoptosis effects. CONCLUSION: BYD improves cardiac function and protects against cardiomyocytes injury by inhibiting apoptosis via regulating the AT1-CARP signaling pathway.

14.
ACS Chem Biol ; 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899610

RESUMO

The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family. Here, we establish chemoproteomic platforms to identify oxidized and reduced cysteine residues within the ER. Subcellular fractionation methods were utilized to enrich for the ER and significantly enhance the coverage of ER-localized cysteine residues. Reactive-cysteine profiling ranked ∼900 secretory pathway cysteines by reactivity with an iodoacetamide-alkyne probe, revealing functional cysteines annotated to participate in disulfide bonds, or S-palmitoylation sites within proteins. Through application of a variation of the OxICAT protocol for quantifying cysteine oxidation, the percentages of oxidation for each of ∼700 ER-localized cysteines were calculated. Lastly, perturbation of ER function, through chemical induction of ER stress, was used to investigate the effect of initiation of the unfolded protein response (UPR) on ER-localized cysteine oxidation. Together, these studies establish a platform for identifying reactive and functional cysteine residues on proteins within the secretory pathway as well as for interrogating the effects of diverse cellular stresses on ER-localized cysteine oxidation.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31935697

RESUMO

Ni3Al is an extremely significant reinforcing phase in nickel-based single crystal superalloys. As an alternative strengthening way to improve its mechanical properties, carbon nanotube (CNT)-reinforced Ni3Al composites have recently been synthesized in experiment. Here, in order to explore the corresponding influence factors and the underlying mechanism, tensile and compressive mechanical properties of CNT-Ni3Al composites are systematically investigated by using molecular dynamics simulations. It is shown that the dispersion of a minor fraction of a CNT into Ni3Al matrix leads to a sufficient enhancement in the stiffness of CNT-Ni3Al composites compared with the pure Ni3Al. It is demonstrated that CNT reinforcement takes effect in elastic stage under compression while works continuously during tension. Compared with armchair CNTs, zigzag CNTs are predicted to provide more strength for raising elastic modulus while armchair CNTs can provide superior elongation. Particularly, CNTs are found to hinder the generation of slip bands under tensile loading owing to the robust interfacial interactions. Furthermore, quantitative analysis reveals that the impact of volume fraction of CNT is much more significant than the size effect. The role of chirality, temperature, and volume fraction of CNT obtained in the present work could provide beneficial references for subsequent theoretical and experimental investigations, and shed some light on the design of CNT-reinforced composites in nanoscale engineering.

16.
17.
Artigo em Inglês | MEDLINE | ID: mdl-31896579

RESUMO

The reaction scheme of rotary catalysis and the torque generation mechanism of bovine mitochondrial F1 (bMF1) were studied in single-molecule experiments. Under ATP-saturated concentrations, high-speed imaging of a single 40-nm gold bead attached to the γ subunit of bMF1 showed 2 types of intervening pauses during the rotation that were discriminated by short dwell and long dwell. Using ATPγS as a slowly hydrolyzing ATP derivative as well as using a functional mutant ßE188D with slowed ATP hydrolysis, the 2 pausing events were distinctively identified. Buffer-exchange experiments with a nonhydrolyzable analog (AMP-PNP) revealed that the long dwell corresponds to the catalytic dwell, that is, the waiting state for hydrolysis, while it remains elusive which catalytic state short pause represents. The angular position of catalytic dwell was determined to be at +80° from the ATP-binding angle, mostly consistent with other F1s. The position of short dwell was found at 50 to 60° from catalytic dwell, that is, +10 to 20° from the ATP-binding angle. This is a distinct difference from human mitochondrial F1, which also shows intervening dwell that probably corresponds to the short dwell of bMF1, at +65° from the binding pause. Furthermore, we conducted "stall-and-release" experiments with magnetic tweezers to reveal how the binding affinity and hydrolysis equilibrium are modulated by the γ rotation. Similar to thermophilic F1, bMF1 showed a strong exponential increase in ATP affinity, while the hydrolysis equilibrium did not change significantly. This indicates that the ATP binding process generates larger torque than the hydrolysis process.

18.
Microb Cell Fact ; 19(1): 9, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931839

RESUMO

BACKGROUND: Aerobic growth provides benefits in biomass yield and stress tolerance of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). Catabolite control protein A (CcpA) is a master regulator involved in the aerobic and anaerobic growth, metabolic production and stress response in L. bulgaricus, but its potential molecular mechanisms remains unclear. The aim of this study is to elucidate the role of CcpA in L. bulgaricus in aerobic growth at the proteomic perspective. RESULTS: The differential proteomic analysis was performed on the L. bulgaricus ATCC11842 and its ccpA inactivated mutant strain using iTRAQ technology. A total of 132 differentially expressed proteins were obtained, among which 58 were up-regulated and 74 were down-regulated. These proteins were mainly involved in the cellular stress response, carbohydrate and energy metabolism, amino acid transport and protein synthesis, genetic information processing. Moreover, inactivation of ccpA negatively affected the expression of key enzymes involved in glycolysis pathway, while it enhanced the expression of proteins related to the pyruvate pathway, supporting the conclusion that CcpA mediated the shift from homolactic fermentation to mixed acid fermentation in L. bulgaricus. CONCLUSIONS: Overall, these results showed that the role of CcpA in L. bulgaricus as a pleiotropic regulator in aerobic metabolism and stress response. This proteomic analysis also provide new insights into the CcpA-mediated regulatory network of L. bulgaricus and potential strategies to improve the production of starter and probiotic cultures based on the metabolic engineering of global regulators.

19.
Nat Commun ; 11(1): 285, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941905

RESUMO

Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean.

20.
Acta Pharmacol Sin ; 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937931

RESUMO

Mitochondria serve as sensors of energy regulation and glucose levels, which are impaired by diabetes progression. Catalpol is an iridoid glycoside that exerts a hypoglycemic effect by improving mitochondrial function, but the underlying mechanism has not been fully elucidated. In the current study we explored the effects of catalpol on mitochondrial function in db/db mice and C2C12 myotubes in vitro. After oral administration of catalpol (200 mg·kg-1·d-1) for 8 weeks, db/db mice exhibited a decreased fasting blood glucose level and restored mitochondrial function in skeletal muscle. Catalpol increased mitochondrial biogenesis, evidenced by significant elevations in the number of mitochondria, mitochondrial DNA levels, and the expression of three genes associated with mitochondrial biogenesis: peroxisome proliferator-activated receptor gammaco-activator 1 (PGC-1α), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1). In C2C12 myotubes, catalpol significantly increased glucose uptake and ATP production. These effects depended on activation of AMP-activated protein kinase (AMPK)-mediated mitochondrial biogenesis. Thus, catalpol improves skeletal muscle mitochondrial function by activating AMPK-mediated mitochondrial biogenesis. These findings may guide the development of a new therapeutic approach for type 2 diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA