RESUMO
This study compares how a modified distributed Bragg reflector (DBR) and yellow color filter (Y-CF) increase the color purity, viewing angle, and brightness of the quantum dot color conversion layer (QDCC) for micro-LED displays. We designed and built a 53-layer high-performance modified DBR with almost total blue leakage filtering (T %: 0.16 %) and very high G/R band transmittance (T %: 96.97 %) for comparison. We also use a Y-CF that filters blue light (T %: 0.84 %) and has good G/R band transmittance (T %: 94.83 %). Due to DBR's angle dependency effect, the modified DBR/QDCC structure offers a remarkable color gamut (117.41 % NTSC) at the forward viewing angle, but this rapidly diminishes beyond 30°. The Y-CF/QDCC structure retains 116 % NTSC color at all viewing angles. Because of its consistent color performance at all viewing angles, sufficient brightness, and outstanding color gamut, the Y-CF/QDCC structure is the best option for contemporary QDCC-based micro-LED displays.
RESUMO
To ensure survival, animals must sometimes suppress fear responses triggered by potential threats during feeding. However, the mechanisms underlying this process remain poorly understood. In the current study, we demonstrated that when fear-conditioned stimuli (CS) were presented during food consumption, a neural projection from lateral hypothalamic (LH) GAD2 neurons to nucleus incertus (NI) relaxin-3 (RLN3)-expressing neurons was activated, leading to a reduction in CS-induced freezing behavior in male mice. LHGAD2 neurons established excitatory connections with the NI. The activity of this neural circuit, including NIRLN3 neurons, attenuated CS-induced freezing responses during food consumption. Additionally, the lateral mammillary nucleus (LM), which received NIRLN3 projections, along with RLN3 signaling in the LM, mediated the decrease in freezing behavior. Collectively, this study identified an LHGAD2-NIRLN3-LM circuit involved in modulating fear responses during feeding, thereby enhancing our understanding of how animals coordinate nutrient intake with threat avoidance.
Assuntos
Medo , Animais , Medo/fisiologia , Masculino , Camundongos , Hipotálamo/fisiologia , Hipotálamo/metabolismo , Relaxina/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Ingestão de Alimentos/fisiologia , Condicionamento Clássico/fisiologia , Região Hipotalâmica Lateral/fisiologia , Região Hipotalâmica Lateral/metabolismoRESUMO
Cultured fat is an important part of cultured meat, and the ability of adipose-derived mesenchymal stem cells (ADSCs) to differentiate into mature adipose tissue affects the quality of cultured fat. Thus, the primary aim of this study was to screen for combinations of differentiation-inducing factors (DIF) using single-factor experiment and orthogonal experimental design under two-dimensional culture conditions for ADSCs. The results showed that a combination of DIF consisting of 1 µmol/L dexamethasone, 0.1 mmol/L 3-isobutyl-1-methylxanthine, 10 µg/mL insulin, 0.1 mmol/L indomethacin, and 2 µmol/L rosiglitazone was a good choice for the differentiation of ADSCs. An combination of DIF was applied to the preparation of cultured fat with collagen as scaffolds. Forty-eight fatty acids were detected in cultured fat by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Among them, the content of twenty-one fatty acids in cultured fat was significantly higher than that of conventional porcine subcutaneous adipose tissue (P < 0.05), and the content of 14 fatty acids was not significantly different (P > 0.05). The ratio of ω-6 polyunsaturated fatty acids content to ω-3 polyunsaturated fatty acids content was 1.23:1, which meant cultured fat was beneficial for human health. This study provides a method to improve the differentiation ability of ADSCs while also providing a reference for indicating the nutritional value of cultured fat.
Assuntos
Diferenciação Celular , Ácidos Graxos , Células-Tronco Mesenquimais , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Suínos , Ácidos Graxos/análise , Células Cultivadas , Tecido Adiposo/citologia , Dexametasona/farmacologia , Espectrometria de Massas em Tandem , Insulina/metabolismo , Rosiglitazona/farmacologia , Indometacina/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Cromatografia Líquida de Alta PressãoRESUMO
Gastrointestinal digestibility behavior, structural and functional characteristics of bovine ß-casein (ß-CN) were studied in vitro under infant and adult conditions. This direct comparison helps reveal the effects of different physiological stages on the digestive behavior of ß-CN. Not only was the degree of hydrolysis (DH) of ß-CN analyzed, but also the changes in its digestive morphology, microstructure, and secondary structure during digestion were explored in depth. Meanwhile, we focused on the physicochemical properties of ß-CN digesta, including solubility, emulsifying and foaming properties, as well as their functional properties, such as antimicrobial and antioxidant activities. Key results showed that ß-CN underwent more extensive hydrolysis in the adult digestion model, with approximately twice the DH compared to the infant model. The adult model exhibited faster digestion kinetics, less protein flocculation, and a more loosened secondary structure, indicating a more efficient digestion process. Notably, the digesta from the adult model displayed significantly improved solubility and emulsifying properties, and also enhanced antioxidant capacities, with significantly better inhibition of two common pathogenic bacteria than the infant model, and an average increase in the diameter of the inhibition zone of approximately 2 mm. These findings underscore the differential digestive behavior and functional potential of ß-CN across physiological stages. This comprehensive assessment approach contributes to a more comprehensive insight into the digestive behavior of ß-CN. Therefore, we conclude that producing products from unmodified ß-CN may be more suitable for the adult population, and that the digesta in the adult model exhibit higher functional properties.
Assuntos
Antioxidantes , Caseínas , Digestão , Solubilidade , Caseínas/química , Caseínas/metabolismo , Animais , Bovinos , Humanos , Adulto , Antioxidantes/química , Lactente , Hidrólise , Modelos BiológicosRESUMO
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
RESUMO
Whether the dynamic development of peripheral inflammation aggravates brain injury and leads to poor outcome in stroke patients receiving intravenous thrombolysis (IVT), remains unclear and warrants further study. In this study, total of 1034 patients with acute ischemic stroke who underwent IVT were enrolled. Serum leukocyte variation (whether increase from baseline to 24 h after IVT), National Institutes of Health Stroke Scale (NIHSS), infarct volume, early neurologic deterioration (END), the unfavorable outcome at 3-month (modified Rankin Scale [mRS] score ≥3) and mortality were recorded. Serum brain injury biomarkers, including Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1), S100ß, neuron-specific enolase (NSE), were measured to reflect the extent of brain injury. We found that patients with increased serum leukocytes had elevated brain injury biomarkers (GFAP, UCH-L1, and S100ß), larger infarct volume, higher 24 h NIHSS, higher proportion of END, unfavorable outcome and mortality. Furthermore, an increase in serum leukocytes was independently associated with infarct volume, 24 h NIHSS, END, and unfavorable outcome at 3 months, and serum UCH-L1, S100ß, and NSE levels. These results suggest that an increase in serum leukocytes indicates severe brain injury and may be used to predict the outcome of patients with ischemic stroke who undergo IVT.
RESUMO
Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur compounds with important roles in stress tolerance, chemotaxis, global carbon and sulfur cycling, and climate-active gas production. Diverse marine prokaryotes and eukaryotes produce DMSP via three known pathways (methylation, transamination, and decarboxylation) and metabolize DMSP via three further pathways (demethylation, cleavage, and oxidation). Over 20 key enzymes from these pathways have been identified to inform on the biodiversity and importance of DMSP cycling. The last dozen years have seen significant changes in our understanding of the enzymology and molecular mechanisms of these DMSP cycling enzymes through the application of biochemistry and structural biology. This has yielded more than 10 crystal structures and, in many cases, detailed explanations as to how and why organisms synthesis and metabolize DMSP. In this review, we describe recent progress in biochemical and mechanistic understandings of DMSP synthesis and metabolism, highlighting the important knowledge gleaned and current challenges that warrant further exploration.
RESUMO
P2X receptors, a subfamily of ligand-gated ion channels activated by extracellular ATP, are implicated in various physiopathological processes, including inflammation, pain perception, and immune and respiratory regulations. Structural determinations using crystallography and cryo-EM have revealed that the extracellular three-dimensional architectures of different P2X subtypes across various species are remarkably identical, greatly advancing our understanding of P2X activation mechanisms. However, structural studies yield paradoxical architectures of the intracellular domain (ICD) of different subtypes (e.g., P2X3 and P2X7) at the apo state, and the role of the ICD in P2X functional regulation remains unclear. Here, we propose that the P2X3 receptor's ICD has an apo state conformation similar to the open state but with a less tense architecture, containing allosteric sites that influence P2X3's physiological and pathological roles. Using covalent occupancy, engineered disulfide bonds and voltage-clamp fluorometry, we suggested that the ICD can undergo coordinated motions with the transmembrane domain of P2X3, thereby facilitating channel activation. Additionally, we identified a novel P2X3 enhancer, PSFL77, and uncovered its potential allosteric site located in the 1α3ß domain of the ICD. PSFL77 modulated pain perception in P2rx3+/+, but not in P2rx3-/-, mice, indicating that the 1α3ß, a "tunable" region implicated in the regulation of P2X3 functions. Thus, when P2X3 is in its apo state, its ICD architecture is fairly ordered rather than an unstructured outward folding, enabling allosteric modulation of the signaling of P2X3 receptors.
Assuntos
Sítio Alostérico , Domínios Proteicos , Receptores Purinérgicos P2X3 , Animais , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Humanos , Camundongos , Células HEK293 , Trifosfato de Adenosina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regulação AlostéricaRESUMO
BACKGROUND: Sodium-glucose cotransporter 2 inhibitors (SGLT-2is) have demonstrated associations with lowering cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM). However, the impact of SGLT-2is on individuals at dialysis commencement remains unclear. The aim of this real-world study is to study the association between SGLT-2is and outcomes in patients with T2DM at dialysis commencement. METHODS: This is a retrospective cohort study of electronic health records (EHRs) of patients with T2DM from TriNetX Research Network database between January 1, 2012, and January 1, 2024. New-users using intention to treatment design was employed and propensity score matching was utilized to select the cohort. Clinical outcomes included major adverse cardiac events (MACE) and all-cause mortality. Safety outcomes using ICD-10 codes, ketoacidosis, urinary tract infection (UTI) or genital infection, dehydration, bone fracture, below-knee amputation, hypoglycemia, and achieving dialysis-free status at 90 days and 90-day readmission. RESULTS: Of 49,762 patients with T2DM who initiated dialysis for evaluation, a mere 1.57% of patients utilized SGLT-2is within 3 months after dialysis. 771 SGLT-2i users (age 63.3 ± 12.3 years, male 65.1%) were matched with 771 non-users (age 63.1 ± 12.9 years, male 65.8%). After a median follow-up of 2.0 (IQR 0.3-3.9) years, SGLT-2i users were associated with a lower risk of MACE (adjusted Hazard Ratio [aHR] = 0.52, p value < 0.001), all-cause mortality (aHR = 0.49, p < 0.001). SGLT-2i users were more likely to become dialysis-free 90 days after the index date (aHR = 0.49, p < 0.001). No significant differences were observed in the incidence of ketoacidosis, UTI or genital infection, hypoglycemia, dehydration, bone fractures, below-knee amputations, or 90-day readmissions. CONCLUSIONS: Our findings indicated a lower incidence of all-cause mortality and MACE after long-term follow-up, along with a higher likelihood of achieving dialysis-free status at 90 days in SGLT-2i users. Importantly, they underscored the potential cardiovascular protection and safety of SGLT-2is use in T2DM patients at the onset of dialysis.
Assuntos
Doenças Cardiovasculares , Bases de Dados Factuais , Diabetes Mellitus Tipo 2 , Diálise Renal , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Masculino , Feminino , Estudos Retrospectivos , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Fatores de Tempo , Diálise Renal/efeitos adversos , Diálise Renal/mortalidade , Medição de Risco , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco , Nefropatias Diabéticas/mortalidade , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/terapia , Registros Eletrônicos de SaúdeRESUMO
Background: Clinical acupuncture decisions are highly operator-dependent and require physician-patient interactions. The Delphi method allows subjective factors such as expert experience and preference of patients to be taken into account in clinical decision making, which is particularly applicable to acupuncture. Currently, the Delphi method is widely used to support clinical decisions in acupuncture. Therefore, it is necessary to provide high-quality and complete descriptions of the Delphi process when making clinical decisions. This study aims to evaluate the quality of the Delphi process in acupuncture, facilitate its standardization and rigor for further clinical decision making in acupuncture. Methods: Articles sourced from six databases were searched systematically to assess the quality of the Delphi consensus process based on the standards for conducting and reporting Delphi studies (CREDES). Descriptive statistics and analysis were presented according to the percentage of each item. Five-score Likert scale was used to evaluate the reporting quality of four domains as well as each item in CREDES by two independent researchers, combined with ICC-value to assess the consistency. Results: A total of 37 qualified articles were included according to eligibility criteria. As for the low reporting rate, the item "External validation" was reported as the lowest positive rate at 32.43% and the item "Prevention of bias" was 48.65%. The item "Adequacy of conclusions", "Definition and attainment of consensus", and "Discussion of limitations" were reported at a positive ratio of 62.16%, 64.86%, and 67.57% individually. The average scores of the four domains based on CREDES from highest to lowest were, respectively, as follows: planning and design (68.75%), reporting (66.07%), rationale for the choice of the Delphi technique (65.54%), study conduct (45.10%). Conclusion: The reporting quality of the Delphi consensus process in acupuncture is acceptable currently, but the reporting rate on some items is still low. Further standardization, including either clearer checklists or study reports, should be developed and strengthened to guide clinical decisions in acupuncture.
RESUMO
Introduction: ChatGPT can serve as an adjunct informational tool for ophthalmologists and their patients. However, the reliability and readability of its responses to myopia-related queries in the Chinese language remain underexplored. Purpose: This study aimed to evaluate the ability of ChatGPT to address frequently asked questions (FAQs) about myopia by parents and caregivers. Method: Myopia-related FAQs were input three times into fresh ChatGPT sessions, and the responses were evaluated by 10 ophthalmologists using a Likert scale for appropriateness, usability, and clarity. The Chinese Readability Index Explorer (CRIE) was used to evaluate the readability of each response. Inter-rater reliability among the reviewers was examined using Cohen's kappa coefficient, and Spearman's rank correlation analysis and one-way analysis of variance were used to investigate the relationship between CRIE scores and each criterion. Results: Forty-five percent of the responses of ChatGPT in Chinese language were appropriate and usable and only 35% met all the set criteria. The CRIE scores for 20 ChatGPT responses ranged from 7.29 to 12.09, indicating that the readability level was equivalent to a middle-to-high school level. Responses about the treatment efficacy and side effects were deficient for all three criteria. Conclusions: The performance of ChatGPT in addressing pediatric myopia-related questions is currently suboptimal. As parents increasingly utilize digital resources to obtain health information, it has become crucial for eye care professionals to familiarize themselves with artificial intelligence-driven information on pediatric myopia.
RESUMO
Although precise regulation of the crystalline structures of metal oxides is an effective method to improve their antibacterial activities, the corresponding mechanisms involved in this process are still unclear. In this study, three kinds of cuprous oxide (Cu2O) samples with different structures of cubes, octahedra, and rhombic dodecahedra (c-Cu2O, o-Cu2O, and r-Cu2O) have been successfully synthesized and their antibacterial activities are compared. The antibacterial activities follow the order of r-Cu2O > o-Cu2O > c-Cu2O, revealing the significant dependence of the antibacterial activities on the crystalline structures of Cu2O. Quenching experiments, as well as the NBT and DPD experiments indicate that ≡CuIIâOO⢠superoxo and ≡CuIIâOOH peroxo, instead of â¢OH, O2â¢-, and H2O2, are the primary oxidizing species in the oxidative damage to E. coli. Raman analysis further confirms the presence of both ≡CuIIâOO⢠superoxo and ≡CuIIâOOH peroxo on the surface of r-Cu2O. On the other hand, the NCP experiment reveals that Cu+, instead of Cu2+, also contributes to the antibacterial process. This study provides new insight into the antibacterial mechanisms of Cu2O.
RESUMO
The objective of this study was to investigate the potential of Lacticaseibacillus rhamnosus L08 (L. rhamnosus L08) to enhance the functionality, improve the taste, and explore efficient storage methods of blue honeysuckle juice (BHJ). The fermentation process resulted in an increase in the levels of polyphenols, flavonoids, and anthocyanins in blue honeysuckle juice, which was attributed to the action of ß-glucosidase on specific phenolic compounds, namely Cyanidin-3-Glucoside and Quinic acid. The increase in phenolic content resulted in an enhancement of the antioxidant capacity of BHJ. The fermentation processed, utilizing L. rhamnosus L08, not only enhanced the flavor and taste of BHJ, but also mitigated its bitter aftertaste while minimizing the loss of bioactive components during storage. In conclusion, this study demonstrated a potential avenue for enhancing the commercial value and dietary significance of this lesser-known superfruit, with fermented BHJ emerging as a promising innovation in the field of functional foods.
RESUMO
Polycystic ovarian syndrome (PCOS) is a common heterogeneous reproductive endocrine metabolic disorder in women of reproductive age characterized by clinical and biochemical hyperandrogenemia, ovulation disorders, and polycystic ovarian morphology. Ferroptosis is a novel type of cell death driven by iron accumulation and lipid peroxidation. Ferroptosis plays a role in maintaining redox balance, iron metabolism, lipid metabolism, amino acid metabolism, mitochondrial activity, and many other signaling pathways linked to diseases. Iron overload is closely related to insulin resistance, decreased glucose tolerance, and the occurrence of diabetes mellitus. There is limited research on the role of ferroptosis in PCOS. Patients with PCOS have elevated levels of ferritin and increased reactive oxygen species in ovarian GCs. Studying ferroptosis in PCOS patients is highly important for achieving personalized treatment. This article reviews the progress of research on ferroptosis in PCOS, introduces the potential connections between iron metabolism abnormalities and oxidative stress-mediated PCOS, and provides a theoretical basis for diagnosing and treating PCOS.
Assuntos
Ferroptose , Ferro , Estresse Oxidativo , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Ferroptose/fisiologia , Feminino , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Insulina/fisiologia , Animais , Peroxidação de LipídeosRESUMO
This study employed a combination of principal component analysis (PCA) and gas chromatography-ion mobility spectrometry (GC-IMS) to examine the distinctive taste mixtures produced by Chinese spicy cabbage (CSC) fermented at varying temperatures. As the fermentation progressed, the pH gradually decreased and stabilized after the 11 days of fermentation, and the total content of organic acids and short-chain fatty acids increased. A total of 49 volatile mixtures were detected during CSC fermentation and storage for 21 days. These included 7 aldehydes, 6 alcohols, 7 esters, 6 ketones, 5 pyrazines, 4 sulfides, 4 phenols, 2 ethers, 2 olefins, and 1 acid. With time, the content of most volatile flavor substances decreased. PCA of the signal intensities of the volatile chemicals in the samples showed significant differences in the flavor of CSC fermented at different temperatures; consequently, the samples fermented at different temperatures were effectively separated in relatively independent regions of CSC. Therefore, low-temperature fermentation and storage at 4 °C were more suitable for CSC. Based on the identified volatile chemicals, HS-GC-IMS and PCA could effectively construct the flavour fingerprints of CSC samples. This study provided a theoretical basis for improving the fermentation quality of CSC.
Assuntos
Brassica , Fermentação , Análise de Componente Principal , Paladar , Compostos Orgânicos Voláteis , Brassica/química , Brassica/microbiologia , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Espectrometria de Mobilidade Iônica , Temperatura , Compostos Orgânicos Voláteis/análiseRESUMO
Recently, renewable bio-based materials have received more and more attention due to environmental issues such as global warming and ecosystem destruction. In the present work, a series of isosorbide-based bioelastomers poly(isosorbide carbonate-co-butanediol aliphatic esters)s (PICBAs) are synthesized by a facile and economical two-step melt polycondensation. Due to the slightly self-crosslinking reaction of isosorbide, PICBAs exhibit excellent tensile strength and self-healing ability, the mechanical properties of PICBAs can recover over 95% after 48 h under room temperature. In addition, PICBAs can stick different substances, such as glass, rubber, plastic, and stones, and show better adhesive performance than 3M commercially available double-sided tape. Consequently, isosorbide-based bioelastomers PICBAs are of great potential to be used as environmentally friendly pressure-sensitive adhesives (PSA) in the future.
RESUMO
The traditional industrial synthesis of urea relies on the energy-intensive and polluting process, namely the Haber-Bosch method for ammonia production, followed by the Bosch-Meiser process for urea synthesis. In contrast, electrocatalytic C-N coupling from carbon dioxide (CO2) and nitrogenous species presents a promising alternative for direct urea synthesis under ambient conditions, bypassing the need for ammonia production. This review provides an overview of recent progress in the electrocatalytic coupling of CO2 and nitrogen sources for urea synthesis. It focuses on the role of intermediate species and active site structures in promoting urea synthesis, drawing from insights into reactants' adsorption behavior and interactions with catalysts tailored for CO2 reduction, nitrogen reduction, and nitrate reduction. Advanced electrocatalyst design strategies for urea synthesis from CO2 and nitrogenous species under ambient conditions are explored, providing insights for efficient catalyst design. Key challenges and prospective directions are presented in the conclusion. Mechanistic studies elucidating the C-N coupling reaction and future development directions are discussed. The review aims to inspire further research and development in electrocatalysts for electrochemical urea synthesis.
RESUMO
OBJECTIVES: To investigate the relationships among myopia treatment, decision regret, shared decision-making, and vision-related quality of life among parents of 6-12-year-old children with myopia. METHODS: An online Google Forms questionnaire was developed using a cross-sectional design and distributed between January 16 and August 22, 2023. Parents of 6-12-year-old children with myopia were recruited through school nurses working in Taiwan. The children's and parents' demographic data were collected. Study instruments included the Decisional Regret Scale, Shared Decision-Making, and Vision-Related Quality of Life questionnaires. Multivariable linear regression analysis was used to identify factors influencing vision-related quality of life. RESULTS: Of 350 parents contacted, 314 questionnaires were analyzed. Among the respondents, 77.39 % (n = 243) were mothers, and most were aged >40 years. The mean age of children at myopia diagnosis was 7.12 ± 1.24 years; 46.50 % had < - 1.0 diopters of refractive error. Atropine eye drops were the primary treatment; 17.71 % of children were prescribed orthokeratology for myopia control. Parents reported low levels of decision regret and moderate levels of shared decision-making and vision-related quality of life. Children's age, use of orthokeratology lenses, decision regret, and shared decision-making significantly influenced the vision-related quality of life reported by the parents, accounting for 22.5 % of the variance. CONCLUSION: The study's findings emphasize the importance of addressing decision regret and promoting shared decision-making in myopia treatment. Eye care professionals should discuss treatment options thoroughly before making decisions. Through shared decision-making, parents can make informed choices about treatments based on a comprehensive understanding of the benefits and drawbacks, ultimately benefitting children's vision health.
RESUMO
(+)4-cholesten-3-one has been proved to have potential wound healing effect in the process of wound regeneration. This study aimed to evaluate the effect of (+)4-cholesten-3-one/sodium alginate/gelatin on skin injury and reveal its potential molecular mechanism. First, we prepared sodium alginate/gelatin hydrogel (SA/Gel hydrogel) with different ratios and tested their characteristics. Based on these results, different concentrations of (+)4-cholesten-3-one were added into SA/Gel hydrogel. A full-thickness skin injury model was successfully established to evaluate wound healing activityin vivo. HE staining and Masson staining were used to evaluate the thickness of granulation tissue and collagen deposition level. Immunohistochemical staining and immunofluorescence staining were applied to detect the level of revascularization and proliferation in each group of wounds. Western blot, quantitative-PCR and immunofluorescence staining were used to detect the expression of proteins related to Wnt/ß-catenin signaling pathway in each group of wounds.In vitroresults showed that the hydrogel not only created a 3D structure for cell adhesion and growth, but also exhibited good swelling ability, excellent degradability and favorable bio-compatibility. Most importantly,in vivoexperiments further indicated that (+)4-cholesten-3-one/SA/Gel hydrogel effectively enhanced wound healing. The effectiveness is due to its superior abilities in accelerating healing process, granulation tissue regeneration, collagen deposition, promoting angiogenesis, tissue proliferation, as well as fibroblast activation and differentiation. The underlying mechanism was related to the Wnt/ß-catenin signaling pathway. This study highlighted that (+)4-cholesten-3-one/SA/Gel hydrogel holds promise as a wound healing dressing in future clinical applications.
Assuntos
Alginatos , Gelatina , Hidrogéis , Regeneração , Pele , Cicatrização , Cicatrização/efeitos dos fármacos , Alginatos/química , Animais , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Pele/lesões , Pele/efeitos dos fármacos , Pele/metabolismo , Regeneração/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Colágeno/química , Via de Sinalização Wnt/efeitos dos fármacos , HumanosRESUMO
A metal-free method is developed to perform the synthesis of urea derivatives utilizing CO2 as the C1 building block at atmospheric pressure and room temperature. In addition to diverse symmetric and dissymmetric ureas, benzimidazolones and quinazolinone can also be easily prepared using this protocol. Most importantly, the gram-scale preparation of fungicide pencycuron and antipsychotic drug pimavanserin proceeded smoothly under the mild conditions.