Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.713
Filtrar
1.
Nano Lett ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33950692

RESUMO

Intercalation in black phosphorus (BP) can induce and modulate a variety of the properties including superconductivity like other two-dimensional (2D) materials. In this perspective, spatially controlled intercalation has the possibility to incorporate different properties into a single crystal of BP. We demonstrate anisotropic angstrom-wide (∼4.3 Å) Cu intercalation in BP, where Cu atoms are intercalated along a zigzag direction of BP because of its inherent anisotropy. With atomic structure, its microstructural effects, arising from the angstrom-wide Cu intercalation, were investigated and extended to relation with macrostructure. As the intercalation mechanism, it was revealed by in situ transmission electron microscopy and theoretical calculation that Cu atoms are intercalated through top-down direction of BP. The Cu intercalation anisotropically induces transition of angstrom-wide electronic channels from semiconductor to semimetal in BP. Our findings throw light on the fundamental relationship between microstructure changes and properties in intercalated BP, and tailoring anisotropic 2D materials at angstrom scale.

2.
PLoS One ; 16(5): e0246649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961624

RESUMO

ABC (ATP-binding cassette) transporters are a class of superfamily transmembrane proteins that are commonly observed in natural organisms. The ABCC (ATP-binding cassette C subfamily) protein belongs to a subfamily of the ABC protein family and is a multidrug resistance-associated transporter that localizes to the tonoplast and plays a significant role in pathogenic microbial responses, heavy metal regulation, secondary metabolite transport, and plant growth. Recent studies have shown that the ABCC protein is also involved in the transport of anthocyanins/proanthocyanidins (PAs). To clarify the types and numbers of ABCC genes involved in PA transport in Gossypium hirsutum, the phylogenetic evolution, physical location, and structure of ABCC genes were classified by bioinformatic methods in the upland cotton genome, and the expression levels of these genes were analyzed at different developmental stages of the cotton fiber. The results showed that 42 ABCC genes were initially identified in the whole genome of upland cotton; they were designated GhABCC1-42. The gene structure and phylogenetic analysis showed that the closely related ABCC genes were structurally identical. The analysis of chromosomal localization demonstrated that there were no ABCC genes on the chromosomes of AD/At2, AD/At5, AD/At6, AD/At10, AD/At12, AD/At13, AD/Dt2, AD/Dt6, AD/Dt10, and AD/Dt13. Outside the genes, there were ABCC genes on other chromosomes, and gene clusters appeared on the two chromosomes AD/At11 and AD/Dt8. Phylogenetic tree analysis showed that some ABCC proteins in G. hirsutum were clustered with those of Arabidopsis thaliana, Vitis vinifera and Zea mays, which are known to function in anthocyanin/PA transport. The protein structure prediction indicated that the GhABCC protein structure is similar to the AtABCC protein in A. thaliana, and most of these proteins have a transmembrane domain. At the same time, a quantitative RT-PCR analysis of 42 ABCC genes at different developmental stages of brown cotton fiber showed that the relative expression levels of GhABCC24, GhABCC27, GhABCC28, GhABCC29 and GhABCC33 were consistent with the trend of PA accumulation, which may play a role in PA transport. These results provide a theoretical basis for further analysis of the function of the cotton ABCC genes and their role in the transport of PA.

3.
Cell Death Dis ; 12(5): 442, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947842

RESUMO

Despite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia-reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.

4.
Anal Chem ; 93(15): 6112-6119, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33821620

RESUMO

Sensitivity-improved versions of two-dimensional (2D) 13C-1H HSQC (heteronuclear single quantum coherence) and HSQC-TOCSY (HSQC-total correlation spectroscopy) NMR experiments optimized for small biological molecules and their complex mixtures encountered in metabolomics are presented that preserve the magnetization of 1H spins not directly attached to 13C spins. This allows (i) the application of rapid acquisition techniques to substantially shorten measurement time and (ii) their incorporation into supersequences (NOAH-NMR by ordered acquisition using 1H detection) for the compact acquisition of multiple 2D NMR data sets with significant gains in sensitivity, resolution, and/or time. The new pulse sequences, which are demonstrated for both metabolite model mixtures and mouse urine, offer an attractive approach for the efficient measurement of multiple 2D NMR spectra (HSQCsi and/or HSQCsi-TOCSY and TOCSY) of metabolomics samples in a single experiment for the accurate and comprehensive identification and quantitation of metabolites. These new methods bring to bear the advantages of 2D NMR to metabolomics studies with larger cohorts of samples.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33880797

RESUMO

BACKGROUND AND AIM: This study aims to construct a strategy that uses assistance from artificial intelligence (AI) to assist radiologists in the identification of malignant versus benign focal liver lesions (FLLs) using contrast-enhanced ultrasound (CEUS). METHODS: A training set (patients = 363) and a testing set (patients = 211) were collected from our institute. On four-phase CEUS images in the training set, a composite deep learning architecture was trained and tuned for differentiating malignant and benign FLLs. In the test dataset, AI performance was evaluated by comparison with radiologists with varied levels of experience. Based on the comparison, an AI assistance strategy was constructed, and its usefulness in reducing CEUS interobserver heterogeneity was further tested. RESULTS: In the test set, to identify malignant versus benign FLLs, AI achieved an area under the curve of 0.934 (95% CI 0.890-0.978) with an accuracy of 91.0%. Comparing with radiologists reviewing videos along with complementary patient information, AI outperformed residents (82.9-84.4%, P = 0.038) and matched the performance of experts (87.2-88.2%, P = 0.438). Due to the higher positive predictive value (PPV) (AI: 95.6% vs residents: 88.6-89.7%, P = 0.056), an AI strategy was defined to improve the malignant diagnosis. With the assistance of AI, radiologists exhibited a sensitivity improvement of 97.0-99.4% (P < 0.05) and an accuracy of 91.0-92.9% (P = 0.008-0.189), which was comparable with that of the experts (P = 0.904). CONCLUSIONS: The CEUS-based AI strategy improved the performance of residents and reduced CEUS's interobserver heterogeneity in the differentiation of benign and malignant FLLs.

6.
Nanomaterials (Basel) ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807262

RESUMO

α″-Fe16N2 nanomaterials with a shape anisotropy for high coercivity performance are of interest in potential applications such as rare-earth-free permanent magnets, which are difficult to synthesize in situ anisotropic growth. Here, we develop a new and facile one-pot microemulsion method with Fe(CO)5 as the iron source and tetraethylenepentamine (TEPA) as the N/C source at low synthesis temperatures to fabricate carbon-coated tetragonal α″-Fe16N2 nanocones. Magnetocrystalline anisotropy energy is suggested as the driving force for the anisotropic growth of α″-Fe16N2@C nanocones because the easy magnetization direction of tetragonal α″-Fe16N2 nanocrystals is along the c axis. The α″-Fe16N2@C nanocones agglomerate to form a fan-like microstructure, in which the thin ends of nanocones direct to its center, due to the magnetostatic energy. The lengths of α″-Fe16N2@C nanocones are ~200 nm and the diameters vary from ~10 nm on one end to ~40 nm on the other end. Carbon shells with a thickness of 2-3 nm protect α″-Fe16N2 nanocones from oxidation in air atmosphere. The α″-Fe16N2@C nanocones synthesized at 433 K show a room-temperature saturation magnetization of 82.6 emu/g and a coercive force of 320 Oe.

7.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809597

RESUMO

To speed up the fabrication of optical metamaterials by making use of the fast speed advantage of femtosecond laser preparation, a metamaterial appropriate for femtosecond laser processing was designed, and the interaction between femtosecond laser and metal-dielectric-metal fishnet stacks was investigated in detail. Two kinds of processing mechanisms, thermal melting and stress break, were revealed during the fabrication. The thermal melting process, dominated by the interaction of femtosecond laser with metals, makes the upper and lower metal layers adhere to each other, which leads to the magnetic resonance impossible. The stress break process, dominated by the interaction of femtosecond laser with dielectrics, can keep the upper and lower metal coatings isolated. Fishnet optical metamaterial was fabricated by femtosecond laser-induced stress break technique, using back side ablation, high numerical aperture and super-Gaussian beam. The resolution and speed can reach 500 nm, and 100 units/s, respectively. Spectrophotometer measurement results proved that the magnetic resonances were found in the fishnet nanostructure. The theoretical refractive index of the metamaterial on a glass substrate reached -0.12 at the wavelength of 3225 nm. It proved that femtosecond laser-induced stress break was a good and fast tool during the fabrication of optical metamaterials.

8.
Infect Dis Poverty ; 10(1): 46, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789762

RESUMO

BACKGROUND: Brucellosis is an infectious-allergic zoonotic disease caused by bacteria of the genus Brucella. Early diagnosis is the key to preventing, treating, and controlling brucellosis. Fluorescence polarization immunoassay (FPA) is a new immunoassay for relatively rapid and accurate detection of antibodies or antigens based on antigen-antibody interaction. However, there is no report on FPA-based detection of human brucellosis in China. Therefore, this study is to evaluate the value of FPA for the diagnosis of human brucellosis in China. METHODS: We recruited 320 suspected brucellosis cases who had the clinical symptoms and epidemiological risk factors between January and December, 2019. According to China Guideline for Human Brucellosis Diagnosis, the Rose Bengal test (RBT) was used for the screening test, and the serum agglutination test (SAT) was used as the confirmatory test. Brucellosis was confirmed only if the results of both tests were positive. Additionally, FPA and enzyme linked immune sorbent assay (ELISA) were compared with SAT, and their sensitivity, specificity, coincidence rate and consistency coefficient (Kappa value) as diagnostic tests were analyzed individually and in combination. The optimal cut-off value of FPA was also determined using the receiver operator characteristic (ROC) curve. RESULTS: The optimum cut-off value of FPA was determined to be 88.5 millipolarization (mP) units, with a sensitivity of 94.5% and specificity of 100.0%. Additionally, the coincidence rate with the SAT test was 96.6%, and the Kappa value (0.9) showed excellent consistency. The sensitivity and specificity of FPA and ELISA combined were higher at 98.0% and 100.0% respectively. CONCLUSIONS: When the cut-off value of FPA test is set at 88.5 mP, it has high value for the diagnosis of brucellosis. Additionally, when FPA and ELISA are combined, the sensitivity of diagnosis is significantly improved. Thus, FPA may have potential in the future as a diagnostic method for human brucellosis in China.

9.
Pharmacol Ther ; 226: 107875, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33901503

RESUMO

Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.

10.
Commun Biol ; 4(1): 499, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893391

RESUMO

An increased number of highly active regulatory T cells (Tregs) and macrophages has been found in peritoneal fluid from women with endometriosis. Here, we show that the level of Tregs-derived soluble fibrinogen-like protein 2 (sFGL2) increases in the peritoneal fluid of women with endometriosis. Higher expression of FGL2 and its receptor CD32B is observed in eutopic endometrium and ectopic tissues. The production of sFGL2 in Tregs may be enhanced by several cytokines. sFGL2 selectively induces pro-repair macrophage polarization mainly through the activation of the SHP2-ERK1/2-STAT3 signaling pathway, and the suppression of the NF-κB signaling pathway. Furthermore, sFGL2 induces a much higher level of metallothionein (MT) expression that in turn facilitates pro-repair macrophages polarization. sFGL2-induced pro-repair macrophages promote Th2 and Tregs differentiation, creating a positive feedback loop. These findings suggest that sFGL2 secreted by Tregs skews macrophages toward a pro-repair phenotype via SHP2-ERK1/2-STAT3 signaling pathway, which is involved in the progression of endometriosis.

11.
Front Immunol ; 12: 634559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868256

RESUMO

Background: As an emerging therapy with a promising efficacy, immunotherapy has been widely used in the treatment of solid tumors and hematologic malignancies. This clinical study compares the efficacy of tislelizumab, a domestic immune checkpoint inhibitor (ICI), to that of sorafenib when used as a first-line therapeutic option in hepatocellular carcinoma (HCC), and the concurrence of HCC and non-Hodgkin's lymphoma (NHL) is rare, especially in the treatment of ICIs. Case presentation: A 61-year-old patient presenting with primary HCC and indolent B-cell lymphoma had a partial clinical response to tislelizumab for his primary HCC. Besides, we described a phenomenon of pseudo-progression and delayed diagnosis of his lymphoma during a long course of treatment. Conclusion: Tislelizumab, an immunotherapeutic option with a favorable efficacy and toxicity, can be used to manage double primary tumors. However, studies should aim to elucidate the probable mechanisms of this therapy. Pseudo-progression and separation remission make the treatment of double primary tumors even more challenging, which calls for additional caution in patients undergoing immunotherapy to avoid misdiagnosis and, therefore, begin early appropriate interventions.

12.
Zool Res ; 42(3): 287-293, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33880891

RESUMO

The Eremias multiocellata-przewalskii species complex is a viviparous group in the genus Eremias, and a well-known representative of taxonomically complicated taxa. Within this complex, a new species - E. dzungarica (Orlova et al., 2017) - has been described recently from western Mongolia and eastern Kazakhstan, with an apparent distribution gap in northwestern China. In this study, we used an integrative taxonomic framework to address whether E. dzungarica indeed occurs in China. Thirty specimens previously classified as E. multiocellata were collected in eastern Kazakhstan and the adjacent Altay region in China. The cytochrome c oxidase I ( COI) barcodes were sequenced and compiled with those from Orlova et al. (2017) and analyzed with the standard and diverse barcoding techniques. We detected an absence of a barcoding gap in this complex, which indicates potential cryptic species in Eremias sp. 3 with high intraspecific diversity and multiple recently evolved species in Clade A. Both BIN and GMYC suggested an unrealistically large number of species (23 and 26, respectively), while ABGD, mPTP and BPP indicated a more conservative number of species (10, 12, and 15, respectively), largely concordant with the previously defined species-level lineages according to phylogenetic trees. Based on molecular phylogeny and morphological examination, all 30 individuals collected in this study were reliably identified as E. dzungarica - a distinct species - confirming the occurrence of this species in the Altay region, Xinjiang, China. Potentially owing to the larger sample size in this study, our morphological analyses revealed many inconsistencies with the original descriptions of E. dzungarica, which were primarily associated with sexual dimorphism and a broader range of values for various traits.

13.
Chin Med Sci J ; 36(1): 66-71, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33853711

RESUMO

In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.


Assuntos
/métodos , Aprendizado Profundo , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Pequim , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Humanos , Masculino
14.
Artigo em Inglês | MEDLINE | ID: mdl-33852266

RESUMO

Although single-atom catalysts (SACs) with transition metal-nitrogen complexes have been studied widely, investigations that use light-element atoms to adjust the coordination environment of the central metal atoms in metal-nitrogen complexes are still rare but show enormous potential for various electrocatalytic reactions. Herein, we design novel SACs based on monolayer BN adjusted by B, C, or O coordinating atoms as catalysts for the CO2 reduction reaction (CRR). These SACs are denoted as M@BN_D (BN = monolayer boron nitride; D = B, C, or O atom; M = Co, Cr, Fe, Mn, Mo, Pd, Pt, Ru, V, W, Ni, Zn, Zr, Ag, Au, Cu, or Ti atom) and are investigated as CRR catalysts using density functional theory calculations. Among these structures, we identified some promising candidate catalysts for CRR with impressive low limiting potential (UL): Pt@BN_C with a UL of -0.18 for the product CH4 and Co@BN_C and Au@BN_O with UL of -0.41 and -0.37 V, respectively, for the product CH3OH. In particular, Pt@BN_C shows a remarkable reduction in UL for the product CH4 compared to any existing catalysts, synthesized or predicted. In addition, the ultralow UL for CRR on Pt@BN_C was derived from the unique bonding feature between the single metal atom and adsorbates and the modulation of ionic interactions induced by the coordination effect of the C atom.

15.
Biosensors (Basel) ; 11(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917075

RESUMO

This study aimed to develop simple electrochemical electrodes for the fast detection of chloride, sodium and potassium ions in human serum. A flat thin-film gold electrode was used as the detection electrode for chloride ions; a single-piece type membrane based solid-state ion-selective electrode (ISE), which was formed by covering a flat thin-film gold electrode with a mixture of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and ion-selective membrane (ISM), was developed for sodium and potassium ions detection. Through cyclic voltammetry (CV) and square-wave voltammetry (SWV), the detection data can be obtained within two minutes. The linear detection ranges in the standard samples of chloride, sodium, and potassium ions were 25-200 mM, 50-200 mM, and 2-10 mM, with the average relative standard deviation (RSD) of 0.79%, 1.65%, and 0.47% and the average recovery rates of 101%, 100% and 96%, respectively. Interference experiments with Na+, K+, Cl-, Ca2+, and Mg2+ ions demonstrated that the proposed detection electrodes have good selectivity. Moreover, the proposed detection electrodes have characteristics such as the ability to be prepared under relatively simple process conditions, excellent detection sensitivity, and low RSD, and the detection linear range is suitable for the Cl-, Na+ and K+ concentrations in human serum.

16.
Stroke Vasc Neurol ; 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737399

RESUMO

BACKGROUND: Haemorrhages of brainstem cavernous malformations (CMs) can lead to neurological deficits, the natural history of which is uncertain. The study aimed to evaluate the neurological outcomes of untreated brainstem CMs and to identify the adverse factors associated with worsened outcomes. METHODS: From 2009 to 2015, 698 patients (321 women) with brainstem CMs were entered into the prospective cohort after excluding patients lost to follow-up (n=43). All patients were registered, clinical data were collected and scheduled follow-up was performed. RESULTS: After a median follow-up of 60.9 months, prospective haemorrhages occurred in 167 patients (23.9%). The mean modified Rankin Scale scores at enrolment and at censoring time were 1.6 and 1.2. Neurological status was improved, unchanged and worsened in 334 (47.9%), 293 (42.0%) and 71 (10.2%) patients, respectively; 233 (33.4%) recovered to normal levels. Lesions crossing the axial midpoint (relative risk (RR) 2.325, p=0.003) and developmental venous anomaly (DVA) (RR 1.776, p=0.036) were independently significantly related to worsened outcomes. The percentage of worsened outcomes was 5.3% (18 of 337) in low-risk patients (neither DVA nor crossing the axial point) and increased to 26.0% (13 of 50) in high-risk patients (with both DVA and crossing the axial point). The percentage of worsened outcomes significantly increased as the number of prospective haemorrhages increased (from 1.5% (8 of 531, if 0 prospective ictus) to 37.5% (48 of 128, if 1 ictus) and 38.5% (15 of 39, if >1 ictus)). CONCLUSIONS: The neurological outcomes of untreated brainstem CMs were improved/unchanged in majority of patients (89.8%) with a fatality rate of 1.7% in our cohort, which seemed to be favourable. Radiological features significantly predicted worsened outcomes. Our results provide evidence for clinical consultation and individualised treatment. The referral bias of our cohort was underlined.

17.
Front Immunol ; 12: 642392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717198

RESUMO

The success of pregnancy relies on the fine adjustment of the maternal immune system to tolerate the allogeneic fetus. Trophoblasts carrying paternal antigens are the only fetal-derived cells that come into direct contact with the maternal immune cells at the maternal-fetal interface. The crosstalk between trophoblasts and decidual immune cells (DICs) via cell-cell direct interaction and soluble factors such as chemokines and cytokines is a core event contributing to the unique immunotolerant microenvironment. Abnormal trophoblasts-DICs crosstalk can lead to dysregulated immune situations, which is well known to be a potential cause of a series of pregnancy complications including recurrent spontaneous abortion (RSA), which is the most common one. Immunotherapy has been applied to RSA. However, its development has been far less rapid or mature than that of cancer immunotherapy. Elucidating the mechanism of maternal-fetal immune tolerance, the theoretical basis for RSA immunotherapy, not only helps to understand the establishment and maintenance of normal pregnancy but also provides new therapeutic strategies and promotes the progress of immunotherapy against pregnancy-related diseases caused by disrupted immunotolerance. In this review, we focus on recent progress in the maternal-fetal immune tolerance mediated by trophoblasts-DICs crosstalk and clinical application of immunotherapy in RSA. Advancement in this area will further accelerate the basic research and clinical transformation of reproductive immunity and tumor immunity.

18.
Chemosphere ; 277: 130275, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33774245

RESUMO

Saline-sodic soil is widely distributed around the world and has induced severe impacts on ecosystems and agriculture. Plant microbial desalination cell (PMDC) and soil microbial desalination cell (SMDC) were constructed to migrate excessive salt in the soil in this study. Compared with SMDC, PMDCs generated higher voltage ranging from 150 mV to 410 mV (500Ω) and the maximum power density reached 34 mW/m2. Higher desalinization efficiency was obtained by PMDCs, the soil conductivity reduced from initial 2.4 mS/cm to 0.4 ± 0.1 mS/cm and pH decreased from initial 10.4 to 8.2 ± 0.1. Soils desalination in PMDCs was achieved through multiple pathways, including ion migration in PMDCs driven by electrokinetic process, plant absorption and bioremediation by plant roots and anode microorganism activity. Geobacter was the dominant electrogenic bacteria at the PMDC anode. The electrochemical and desalinating performance of PMDCs was enhanced by plants and provided a new method for remediation of saline-sodic soil.

19.
Environ Pollut ; 279: 116922, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743436

RESUMO

Short-chain chlorinated paraffins (SCCPs) are persistent organic pollutants which are toxic to human. Median-chain chlorinated paraffins (MCCPs) have similar toxicity to SCCPs. The productions of chlorinated paraffins (CPs) in China were 1 million tons in 2013 and remained high after that, which may lead to high risks for human exposure to CPs. To investigate temporal trends and health risks of SCCPs and MCCPs in breast milk in China, samples (n = 2020) were collected from urban and rural areas of 11 Chinese provinces in 2017 and mixed into 42 pooled samples. SCCPs and MCCPs were analyzed by two-dimensional gas chromatography with electron-capture negative-ionization mass spectrometry (GC × GC-ECNI-MS). The MCCP concentrations (median (range)) were 472 (94-1714) and 567 (211-1089) ng g-1 lipid in urban and rural areas, respectively, which showed continuously rapidly increasing during 2007-2017. The SCCP concentrations (median (range)) were 393 (131-808) and 525 (139-1543) ng g-1 lipid in urban and rural areas, respectively. The results showed SCCP levels decreased in urban areas between 2007 and 2017. Significant increases in MCCP/SCCP ratios might arise from extensive manufacturing and use of MCCPs. The median estimated dietary intake via breast milk in urban and rural samples were 1230 and 2510 ng kg-1 d-1, respectively, for SCCPs and 2150 and 1890 ng kg-1 d-1, respectively, for MCCPs. Preliminarily risk assessment showed that SCCPs posed a significant health risk to infants via breastfeeding. The high MCCP levels should also be of concern because of continuous growth and negative effect on infants. Correspondence analysis indicated congeners with higher carbon and chlorine numbers in dietary tend to accumulate in breast milk.


Assuntos
Hidrocarbonetos Clorados , Parafina , China , Exposição Dietética , Monitoramento Ambiental , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrocarbonetos Clorados/análise , Lactente , Leite Humano/química , Parafina/análise
20.
Mol Cell Endocrinol ; 527: 111228, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662476

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-age women. In this study, BPTF associated protein of 18 kDa (BAP18) is decreased in luteinized granulosa cells (GCs) from PCOS women. BAP18 depletion significantly decreases CYP19A1 expression levels, leading to an abrogation in transfer capacity of androgen to estrogen in GCs. Also, BAP18 knockdown delays cell cycle G1 to S phase transition and induces cell apoptosis to decrease GCs proliferation. We also provide evidence showing BAP18 interacts with androgen receptor (AR) and enhances AR-mediated transactivation in GCs. Results indicate that AR or BAP18 recruits to androgen response elements (AREs) of CYP19A1 and FSHR, which are putative AR-induced genes in GCs. BAP18 interacts with Sp1 transcription factor and co-recruits to the promoter region of AR gene, resulting in AR transactivation in GCs. Taken together, these data provide new insights on the pathophysiology of PCOS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...