Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 12(5): e825, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35522895

RESUMO

AIMS: MORC family CW-type zinc finger 2 (MORC2), a GHKL-type ATPase, is aberrantly upregulated in multiple types of human tumors with profound effects on cancer aggressiveness, therapeutic resistance, and clinical outcome, thus making it an attractive drug target for anticancer therapy. However, the antagonists of MORC2 have not yet been documented. METHODS AND RESULTS: We report that MORC2 is a relatively stable protein, and the N-terminal homodimerization but not ATP binding and hydrolysis is crucial for its stability through immunoblotting analysis and Quantitative real-time PCR. The N-terminal but not C-terminal inhibitors of heat shock protein 90 (HSP90) destabilize MORC2 in multiple cancer cell lines, and strikingly, this process is independent on HSP90. Mechanistical investigations revealed that HSP90 N-terminal inhibitors disrupt MORC2 homodimer formation without affecting its ATPase activities, and promote its lysosomal degradation through the chaperone-mediated autophagy pathway. Consequently, HSP90 inhibitor 17-AAG effectively blocks the growth and metastatic potential of MORC2-expressing breast cancer cells both in vitro and in vivo, and these noted effects are not due to HSP90 inhibition. CONCLUSION: We uncover a previously unknown role for HSP90 N-terminal inhibitors in promoting MORC2 degradation in a HSP90-indepentent manner and support the potential application of these inhibitors for treating MORC2-overexpressing tumors, even those with low or absent HSP90 expression. These results also provide new clue for further design of novel small-molecule inhibitors of MORC2 for anticancer therapeutic application.


Assuntos
Antineoplásicos , Neoplasias da Mama , Fatores de Transcrição , Adenosina Trifosfatases/genética , Antineoplásicos/farmacologia , Autofagia/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas Oncogênicas
2.
Cell Death Dis ; 13(4): 408, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484101

RESUMO

Triple-negative breast cancer (TNBC) is a highly lethal disease due to aggressive clinical phenotype and the lack of validated therapeutic targets. Our recent quantitative proteomic analysis of 90 cases of TNBC tissues and 72 cases of matched adjacent normal tissues revealed that the expression levels of BPTF-associated protein of 18 KDa (BAP18), a component of the MLL1 and NURF chromatin complexes, were upregulated in TNBC tissues relative to normal tissues. However, the biological function and the underlying mechanism of BAP18 in TNBC progression remain unexplored. Here, we report that BAP18 promoted TNBC cell proliferation, migration, and invasion in vitro and xenograft tumor growth and lung colonization in vivo. Mechanistic investigations revealed that S100 calcium-binding protein A9 (S100A9), a member of the S100 protein family that is frequently upregulated in breast tumors and acts as an oncogenic driver in breast cancer progression, was a downstream target gene of BAP18. BAP18 was recruited to histone H3 trimethylation at lysine 4 (H3K4me3)-marked promoter of S100A9 and enhanced its promoter activities. Notably, knockdown of BAP18 by short hairpin RNA in TNBC cells suppressed xenograft tumor growth in mice, the noted effect was partially reverted by re-expression of S100A9 in BAP18-depleted cells. Taken together, these results suggest that BAP18 promotes TNBC progression through, at least in part, transcriptional activation of oncogene S100A9, and represents a potential therapeutic target for TNBC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias de Mama Triplo Negativas , Animais , Calgranulina B/genética , Calgranulina B/metabolismo , Linhagem Celular Tumoral , Cromatina , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Oncogenes/genética , Proteômica , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/patologia
3.
Cell Rep ; 38(9): 110460, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235781

RESUMO

We report a comprehensive proteomic study of a 90-case cohort of paired samples of triple-negative breast cancer (TNBC) in quantification, phosphorylation, and DNA-binding capacity. Four integrative subtypes (iP-1-4) are stratified on the basis of global proteome and phosphoproteome, each of which exhibits distinct molecular and pathway features. Scaffold and co-expression network analyses of three proteomic datasets, integrated with those from genome and transcriptome of the same cohort, reveal key pathways and master regulators that, characteristic of TNBC subtypes, play important regulatory roles within and between scaffold sub-structures and co-expression communities. We find that NAE1 is a potential drug target for subtype iP-1, and a series of key molecules in fatty acid metabolism, such as AKT1/FASN, are plausible targets for subtype iP-2. Libraries of proteins, pathways and networks of TNBC provide a valuable molecular infrastructure for further clinical exploration and in-depth studies of the molecular mechanisms of the disease.


Assuntos
Neoplasias de Mama Triplo Negativas , Genoma , Humanos , Proteoma/genética , Proteômica , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Cell Metab ; 34(4): 581-594.e8, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278352

RESUMO

Immunotherapy has achieved limited success in patients with triple-negative breast cancer (TNBC), an aggressive disease with a poor prognosis. Commensal microbiota have been proven to colonize the mammary gland, but whether and how they modulate the tumor microenvironment remains elusive. We performed a multiomics analysis of a cohort of patients with TNBC (n = 360) and found genera under Clostridiales, and the related metabolite trimethylamine N-oxide (TMAO) was more abundant in tumors with an activated immune microenvironment. Patients with higher plasma TMAO achieved better responses to immunotherapy. Mechanistically, TMAO induced pyroptosis in tumor cells by activating the endoplasmic reticulum stress kinase PERK and thus enhanced CD8+ T cell-mediated antitumor immunity in TNBC in vivo. Collectively, our findings offer new insights into microbiota-metabolite-immune crosstalk and indicate that microbial metabolites, such as TMAO or its precursor choline, may represent a novel therapeutic strategy to promote the efficacy of immunotherapy in TNBC.


Assuntos
Microbiota , Neoplasias de Mama Triplo Negativas , Colina/metabolismo , Humanos , Metilaminas/metabolismo , Microambiente Tumoral
5.
Med Oncol ; 39(4): 48, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103856

RESUMO

Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Proteínas de Transporte/genética , Fator de Maturação da Glia/metabolismo , Ubiquitina-Proteína Ligases/genética , Fator de Transcrição YY1/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo/genética , Feminino , Humanos , RNA Mensageiro/genética
6.
Cell Res ; 32(5): 477-490, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35105939

RESUMO

Metabolic reprogramming is a hallmark of cancer. However, systematic characterizations of metabolites in triple-negative breast cancer (TNBC) are still lacking. Our study profiled the polar metabolome and lipidome in 330 TNBC samples and 149 paired normal breast tissues to construct a large metabolomic atlas of TNBC. Combining with previously established transcriptomic and genomic data of the same cohort, we conducted a comprehensive analysis linking TNBC metabolome to genomics. Our study classified TNBCs into three distinct metabolomic subgroups: C1, characterized by the enrichment of ceramides and fatty acids; C2, featured with the upregulation of metabolites related to oxidation reaction and glycosyl transfer; and C3, having the lowest level of metabolic dysregulation. Based on this newly developed metabolomic dataset, we refined previous TNBC transcriptomic subtypes and identified some crucial subtype-specific metabolites as potential therapeutic targets. The transcriptomic luminal androgen receptor (LAR) subtype overlapped with metabolomic C1 subtype. Experiments on patient-derived organoid and xenograft models indicate that targeting sphingosine-1-phosphate (S1P), an intermediate of the ceramide pathway, is a promising therapy for LAR tumors. Moreover, the transcriptomic basal-like immune-suppressed (BLIS) subtype contained two prognostic metabolomic subgroups (C2 and C3), which could be distinguished through machine-learning methods. We show that N-acetyl-aspartyl-glutamate is a crucial tumor-promoting metabolite and potential therapeutic target for high-risk BLIS tumors. Together, our study reveals the clinical significance of TNBC metabolomics, which can not only optimize the transcriptomic subtyping system, but also suggest novel therapeutic targets. This metabolomic dataset can serve as a useful public resource to promote precision treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/genética , Humanos , Metabolômica , Medicina de Precisão , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
7.
Cell Death Differ ; 29(4): 861-873, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974534

RESUMO

MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme involved in DNA damage response and gene transcription, and its dysregulation has been linked with Charcot-Marie-Tooth disease, neurodevelopmental disorder, and cancer. Despite its functional importance, how MORC2 is regulated remains enigmatic. Here, we report that MORC2 is O-GlcNAcylated by O-GlcNAc transferase (OGT) at threonine 556. Mutation of this site or pharmacological inhibition of OGT impairs MORC2-mediated breast cancer cell migration and invasion in vitro and lung colonization in vivo. Moreover, transforming growth factor-ß1 (TGF-ß1) induces MORC2 O-GlcNAcylation through enhancing the stability of glutamine-fructose-6-phosphate aminotransferase (GFAT), the rate-limiting enzyme for producing the sugar donor for OGT. O-GlcNAcylated MORC2 is required for transcriptional activation of TGF-ß1 target genes connective tissue growth factor (CTGF) and snail family transcriptional repressor 1 (SNAIL). In support of these observations, knockdown of GFAT, SNAIL or CTGF compromises TGF-ß1-induced, MORC2 O-GlcNAcylation-mediated breast cancer cell migration and invasion. Clinically, high expression of OGT, MORC2, SNAIL, and CTGF in breast tumors is associated with poor patient prognosis. Collectively, these findings uncover a previously unrecognized mechanistic role for MORC2 O-GlcNAcylation in breast cancer progression and provide evidence for targeting MORC2-dependent breast cancer through blocking its O-GlcNAcylation.


Assuntos
Neoplasias da Mama , Fator de Crescimento Transformador beta1 , Neoplasias da Mama/patologia , Feminino , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Treonina , Fatores de Transcrição/genética
8.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321275

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks definite treatment targets. Tumor immune microenvironment (TIME) heterogeneity has a profound impact on the immunotherapy response. Tumors with non-inflamed TIME derive limited benefit from immunotherapy. However, what drives the formation of the non-inflamed TIME in TNBC remains unclear. METHODS: Using our multiomics database of TNBC, we conducted an analysis to explore the key genomic events driving the formation of the non-inflamed TIME in TNBC. In vitro and in vivo studies further revealed potential mechanisms and the efficacy of combination treatment with immunotherapy. RESULTS: With transcriptomic and genomic data, we systematically analyzed the TIME of TNBC and revealed that the classical basal-like subtype of TNBC consisted of two distinct microenvironment phenotypes, defined as the 'inflamed' and 'non-inflamed' subtypes. We performed further screening and demonstrated that MYC amplification and overexpression led to low immune infiltration and cytolytic activity in TIME. Mechanistically, MYC bound to DNMT1 promoter and activated DNMT1 transcription in TNBC cells, thus suppressing the Cyclic GMP-AMP synthase (cGAS)-STING pathway via an epigenetic regulatory way. In MYC-overexpressing TNBC, decitabine, an Food and Drug Administration (FDA)-approved DNA methyltransferase inhibitor, converted tumors from non-inflamed to inflamed tumors by enhancing T cell infiltration. Furthermore, the combination of decitabine with programmed cell death protein 1 (PD-1) inhibitor reversed T cell exhaustion and improved T cell function in mouse models, which elicited potent antitumor activity in MYC-overexpressing TNBC. CONCLUSIONS: Our work elucidates that the classic oncogene MYC induces immune evasion by repressing innate immunity. Furthermore, we provide a rationale for combining DNA methyltransferase inhibition with immunotherapy for the treatment of MYC-overexpressing TNBC.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Animais , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Feminino , Xenoenxertos , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Evasão Tumoral , Regulação para Cima
9.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34281987

RESUMO

PURPOSE: Regulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC. EXPERIMENTAL DESIGN: Using the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism. RESULTS: We revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy. CONCLUSIONS: Tumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


Assuntos
GTP Cicloidrolase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Humanos , Camundongos , Regulação para Cima
10.
J Natl Cancer Inst ; 113(7): 884-892, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151324

RESUMO

BACKGROUND: The germline variant spectrum of triple-negative breast cancer (TNBC) is different from that of other subtypes and has demonstrated ethnic differences. However, the germline variants of TNBC among Chinese patients and its clinical significance remain unclear. METHODS: Using our multi-omics TNBC cohort (n = 325), we determined the spectrum of germline variants in TNBC and aimed to illustrate their biological and clinical implications. RESULTS: Overall, 16.0% (52 of 325) of TNBC patients harbored at least 1 pathogenic or likely pathogenic germline variant. These germline variants were associated with early onset of TNBC, the occurrence of contralateral breast cancer, the basal-like immune-suppressed mRNA subtype, and the homologous recombination deficiency (HRD) mutation subtype. Somatic allele-specific imbalance was observed in 54.1% of these germline variants, which was correlated with early onset of breast cancer and elevated HRD. The genes BRCA1 (7.4%), RAD51D (2.8%), and BRCA2 (2.2%) were those most frequently mutated. The RAD51D germline variants, especially K91fs, were enriched in Chinese patients with TNBC compared with Caucasian and African American patients. The Chinese-specific RAD51D germline variants were functionally associated with the instability of the RAD51D protein, HRD, and sensitivity to PARP inhibitors. CONCLUSIONS: Chinese TNBC patients have a distinct spectrum of germline variants, with a remarkable impact on the clinical and molecular characteristics of the tumor. Integrative germline-somatic analysis may help identify TNBC patients who are most likely to be affected by their germline variants and in performing clinical interventions more precisely. The RAD51D variants enriched in our cohort may serve as therapeutic targets and guide precision treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , /genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Células Germinativas/patologia , Mutação em Linhagem Germinativa , Humanos , Mutação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/genética
11.
Cell Metab ; 33(1): 51-64.e9, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33181091

RESUMO

Triple-negative breast cancer (TNBC) remains an unmet medical challenge. We investigated metabolic dysregulation in TNBCs by using our multi-omics database (n = 465, the largest to date). TNBC samples were classified into three heterogeneous metabolic-pathway-based subtypes (MPSs) with distinct metabolic features: MPS1, the lipogenic subtype with upregulated lipid metabolism; MPS2, the glycolytic subtype with upregulated carbohydrate and nucleotide metabolism; and MPS3, the mixed subtype with partial pathway dysregulation. These subtypes were validated by metabolomic profiling of 72 samples. These three subtypes had distinct prognoses, molecular subtype distributions, and genomic alterations. Moreover, MPS1 TNBCs were more sensitive to metabolic inhibitors targeting fatty acid synthesis, whereas MPS2 TNBCs showed higher sensitivity to inhibitors targeting glycolysis. Importantly, inhibition of lactate dehydrogenase could enhance tumor response to anti-PD-1 immunotherapy in MPS2 TNBCs. Collectively, our analysis demonstrated the metabolic heterogeneity of TNBCs and enabled the development of personalized therapies targeting unique tumor metabolic profiles.


Assuntos
Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Feminino , Humanos , Imunoterapia , Masculino , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Neoplasias de Mama Triplo Negativas/terapia , Células Tumorais Cultivadas
12.
Clin Transl Med ; 10(8): e245, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377651

RESUMO

Pregnancy-specific glycoprotein 9 (PSG9) is a placental glycoprotein essential for the maintenance of normal gestation in mammals. Bioinformatics analysis of multiple publicly available datasets revealed aberrant PSG9 expression in breast tumors, but its functional and mechanistic role in breast cancer remains unexplored. Here, we report that PSG9 expression levels were elevated in tumor tissues and plasma specimens from breast cancer patients, and were associated with poor prognosis. Gain- or loss-of-function studies demonstrated that PSG9 promoted breast cancer cell proliferation, migration, and invasionin vitro, and enhanced tumor growth and lung colonization in vivo. Mechanistically, transforming growth factor-ß1 (TGF-ß1) transcriptionally activated PSG9 expression through enhancing the enrichment of Smad3 and Smad4 onto PSG9 promoter regions containing two putative Smad-binding elements (SBEs). Mutation of both SBEs in the PSG9 promoter, or knockdown of TGF-ß receptor 1 (TGFBR1), TGFBR2, Smad3, or Smad4 impaired the ability of TGF-ß1 to induce PSG9 expression. Consequently, PSG9 contributed to TGF-ß1-induced epithelial-mesenchymal transition (EMT) and breast cancer cell migration and invasion. Moreover, PSG9 enhanced the stability of Smad2, Smad3, and Smad4 proteins by blocking their proteasomal degradation, and regulated the expression of TGF-ß1 target genes involved in EMT and breast cancer progression, thus further amplifying the canonical TGF-ß/Smad signaling in breast cancer cells. Collectively, these findings establish PSG9 as a novel player in breast cancer progressionvia hijacking the canonical TGF-ß/Smad signaling, and identify PSG9 as a potential plasma biomarker for the early detection of breast cancer.

13.
Nat Commun ; 11(1): 5679, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173047

RESUMO

The remarkable advances in next-generation sequencing technology have enabled the wide usage of sequencing as a clinical tool. To promote the advance of precision oncology for breast cancer in China, here we report a large-scale prospective clinical sequencing program using the Fudan-BC panel, and comprehensively analyze the clinical and genomic characteristics of Chinese breast cancer. The mutational landscape of 1,134 breast cancers reveals that the most significant differences between Chinese and Western patients occurred in the hormone receptor positive, human epidermal growth factor receptor 2 negative breast cancer subtype. Mutations in p53 and Hippo signaling pathways are more prevalent, and 2 mutually exclusive and 9 co-occurring patterns exist among 9 oncogenic pathways in our cohort. Further preclinical investigation partially suggests that NF2 loss-of-function mutations can be sensitive to a Hippo-targeted strategy. We establish a public database (Fudan Portal) and a precision medicine knowledge base for data exchange and interpretation. Collectively, our study presents a leading approach to Chinese precision oncology treatment and reveals potentially actionable mutations in breast cancer.


Assuntos
/genética , Neoplasias da Mama , Terapia de Alvo Molecular , Mutação , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , China , Gerenciamento de Dados , Feminino , Marcadores Genéticos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neurofibromina 2/genética , Oncogenes , Medicina de Precisão , Estudos Prospectivos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
14.
Theranostics ; 10(24): 11092-11109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042272

RESUMO

Rationale: Paclitaxel resistance is a major concern when treating triple-negative breast cancer (TNBC) patients. We aimed to identify candidates causing paclitaxel resistance and explore their significance in TNBC therapeutics. Methods: A genome-wide CRISPR screening, integrated with transcriptome analyses, was performed to identify candidates involved in paclitaxel-resistant TNBCs. Cell proliferation, cytotoxicity, immunofluorescent staining, and xenograft assays were conducted to verify the phenotypes of paclitaxel resistance induced by candidate genes, both in vitro and in vivo. RNA sequencing, Western blotting, and chromatin immunoprecipitation assays were used to explore the underlying mechanisms. Results: MEF2-interacting transcriptional repressor (MITR), the truncated isoform of histone deacetylase 9 (HDAC9) lacking the deacetylation domain, was enriched in paclitaxel-resistant cells. Elevated MITR expression resulted in increased interleukin-11 (IL11) expression and activation of downstream JAK/STAT3 signaling. Mechanistically, MITR counteracted MEF2A-induced transcriptional suppression of IL11, ultimately causing paclitaxel resistance. By contrast, pharmacological inhibition of JAK1/2 by ruxolitinib reversed paclitaxel resistance both in vitro and in vivo. Conclusion: Our in vitro and in vivo genetic and cellular analyses elucidated the pivotal role of MITR/MEF2A/IL11 axis in paclitaxel resistance and provided a novel therapeutic strategy for TNBC patients to overcome poor chemotherapy responses.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Histona Desacetilases/metabolismo , Paclitaxel/farmacologia , Proteínas Repressoras/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Histona Desacetilases/genética , Humanos , Interleucina-11/genética , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Estimativa de Kaplan-Meier , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Nitrilas , Paclitaxel/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas , RNA-Seq , Proteínas Repressoras/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Theranostics ; 10(12): 5242-5258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373210

RESUMO

Rationale: Chromodomain Y-like 2 (CDYL2) is a member of the CDY gene family involved in spermatogenesis, but its role in human cancer has not been reported. Analyses of publicly available databases demonstrate that CDYL2 is abundantly expressed in breast tumors. However, whether CDYL2 is involved in breast cancer progression remains unknown. Methods: Quantitative real-time PCR and immunoblotting assays were used to determine the expression levels of CDYL2 transcript variants in breast cancer cell lines and primary breast tumors. The effect of CDYL2 transcript variants on the malignant phenotypes of breast cancer cells was examined through in vitro and in vivo assays. Immunofluorescent staining, RNA-seq, ATAC-seq, and ChIP-qPCR were used to investigate the underlying mechanisms behind the aforementioned observations. Results: Here we show that CDYL2 generated four transcript variants, named CDYL2a-CDYL2d. CDYL2a and CDYL2b were the predominant variants expressed in breast cancer cell lines and breast tumors and exerted strikingly discrete functions in breast cancer growth and metastasis. CDYL2a was upregulated in the majority of the breast cancer cell lines and tumors, and promoted breast cancer cell proliferation, colony formation in vitro, and tumorigenesis in xenografts. In contrast, CDYL2b was mainly expressed in luminal- and HER2-positive types of breast cancer cell lines and tumors, and suppressed the migratory, invasive, and metastatic potential of breast cancer cells in vitro and in vivo. Mechanistically, CDYL2a partially localized to SC35-positive nuclear speckles and promoted alternative splicing of a subset of target genes, including FIP1L1, NKTR, and ADD3 by exon skipping. Elimination of full-length FIP1L1, NKTR, and ADD3 rescued the impaired cell proliferation through CDYL2a depletion. In contrast, CDYL2b localized to heterochromatin and transcriptionally repressed several metastasis-promoting genes, including HPSE, HLA-F, and SELL. Restoration of HPSE, HLA-F, or SELL expression in CDYL2b-overexpressing cells attenuated the ability of CDYL2b to suppress breast cancer cell migration and invasion. Conclusions: Collectively, these findings establish an isoform-specific function of CDYL2 in breast cancer development and progression and highlight that pharmacological inhibition of the CDYL2a, but not the CDYL2b, isoform may be an effective strategy for breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imunoprecipitação da Cromatina , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células MCF-7 , Camundongos , Camundongos Nus
16.
Am J Cancer Res ; 10(4): 1238-1254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368399

RESUMO

SH3 domain-binding glutamic acid-rich-like protein 2 (SH3BGRL2) is a poorly defined member of the SH3BGR gene family with potential roles in cell differentiation and tissue development. Here, we report for the first time that SH3BGRL2 exerts a dual function in breast tumor growth and metastasis. SH3BGRL2 was downregulated in a subset of primary breast tumors, and suppressed breast cancer cell proliferation and colony formation in vitro and xenograft tumor growth in vivo. Strikingly, SH3BGRL2 enhanced breast cancer cell migratory, invasive, and lung metastatic capacity. Mechanistic investigations revealed that SH3BGRL2 interacted with and transcriptionally repressed spectrin alpha, non-erythrocytic 1 (SPTAN1) and spectrin beta, non-erythrocytic 1 (SPTBN1), two important cytoskeletal proteins. Functional rescue assays further demonstrated that depletion of SH3BGRL2 reduced breast cancer cell invasive potential, which was partially rescued by knockdown of SPTAN1 and SPTBN1 using specific small interfering RNA. Moreover, transforming growth factor-ß1 (TGF-ß1) transcriptionally activated SH3BGRL2 expression in breast cancer cells through the canonical TGF-ß receptor-Smad pathway. Collectively, these results establish a dual function of SH3BGRL2 in breast cancer growth and metastasis and uncover SH3BGRL2 as a downstream target of the TGF-ß1 signaling pathway in breast cancer cells.

17.
Autophagy ; 16(6): 1061-1076, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32401166

RESUMO

Aberrant activation of estrogen signaling through three ESR (estrogen receptor) subtypes, termed ESR1/ERα, ESR2/ERß, and GPER1 (G protein-coupled estrogen receptor 1), is implicated in breast cancer pathogenesis and progression. Antiestrogens tamoxifen (TAM) and fulvestrant (FUL) are effective for treatment of ESR1-positive breast tumors, but development of resistance represents a major clinical challenge. However, the molecular mechanisms behind these events remain largely unknown. Here, we report that 17ß-estradiol (E2), TAM, and FUL stabilize MORC2 (MORC family CW-type zinc finger 2), an emerging oncoprotein in human cancer, in a GPER1-dependent manner. Mechanistically, GPER1 activates PRKACA (protein kinase cAMP-activated catalytic subunit alpha), which in turn phosphorylates MORC2 at threonine 582 (T582). Phosphorylated MORC2 decreases its interaction with HSPA8 (heat shock protein family A [Hsp70] member 8) and LAMP2A (lysosomal associated membrane protein 2A), two core components of the chaperone-mediated autophagy (CMA) machinery, thus protecting MORC2 from lysosomal degradation by CMA. Functionally, knockdown of MORC2 attenuates E2-induced cell proliferation and enhances cellular sensitivity to TAM and FUL. Moreover, introduction of wild-type MORC2, but not its phosphorylation-lacking mutant (T582A), in MORC2-depleted cells restores resistance to antiestrogens. Clinically, the phosphorylation levels of MORC2 at T582 are elevated in breast tumors from patients undergoing recurrence after TAM treatment. Together, these findings delineate a phosphorylation-dependent mechanism for MORC2 stabilization in response to estrogen and antiestrogens via blocking CMA-mediated lysosomal degradation and uncover a dual role for MORC2 in both estrogen-induced proliferation and resistance to antiestrogen therapies of breast cancer cells. ABBREVIATIONS: 4-OHT: 4-hydroxytamoxifen; Baf A1: bafilomycin A1; CMA: chaperone-mediated autophagy; E2: 17ß-estradiol; ESR: estrogen receptor; FUL: fulvestrant; GPER1: G protein-coupled estrogen receptor 1; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MORC2: MORC family CW-type zinc finger 2; PRKACA: protein kinase cAMP-activated catalytic subunit alpha; TAM: tamoxifen; VCL: vinculin.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Quimases/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Estradiol/farmacologia , Feminino , Fulvestranto/farmacologia , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Imuno-Histoquímica , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fosforilação , Estabilidade Proteica , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
18.
Mol Cancer ; 19(1): 87, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393270

RESUMO

BACKGROUND: Estrogen receptor-positive (ER+) breast cancers represent approximately two-thirds of all breast cancers and have a sustained risk of late disease recurrence. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown significant efficacy in ER+ breast cancer. However, their effects are still limited by drug resistance. In this study, we aim to explore the role of long noncoding RNA TROJAN in ER+ breast cancer. METHODS: The expression level of TROJAN in breast cancer tissue and cell lines was determined by quantitative real-time PCR. In vitro and in vivo assays as well as patient derived organoid were preformed to explore the phenotype of TROJAN in ER+ breast cancer. The TROJAN-NKRF-CDK2 axis were screened and validated by RNA pull-down, mass spectrometry, RNA immunoprecipitation, microarray, dual-luciferase reporter and chromatin immunoprecipitation assays. RESULTS: Herein, we showed that TROJAN was highly expressed in ER+ breast cancer. TROJAN promoted cell proliferation and resistance to a CDK4/6 inhibitor and was associated with poor survival in ER+ breast cancer. TROJAN can bind to NKRF and inhibit its interaction with RELA, upregulating the expression of CDK2. The inhibition of TROJAN abolished the activity of CDK2, reversing the resistance to CDK4/6 inhibitor. A TROJAN antisense oligonucleotide sensitized breast cancer cells and organoid to the CDK4/6 inhibitor palbociclib both in vitro and in vivo. CONCLUSIONS: TROJAN promotes ER+ breast cancer proliferation and is a potential target for reversing CDK4/6 inhibitor resistance.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quinase 2 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/genética , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nucleic Acids Res ; 48(7): 3638-3656, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32112098

RESUMO

MORC family CW-type zinc finger 2 (MORC2) is an oncogenic chromatin-remodeling enzyme with an emerging role in DNA repair. Here, we report a novel function for MORC2 in cell-cycle checkpoint control through an acetylation-dependent mechanism. MORC2 is acetylated by the acetyltransferase NAT10 at lysine 767 (K767Ac) and this process is counteracted by the deacetylase SIRT2 under unperturbed conditions. DNA-damaging chemotherapeutic agents and ionizing radiation stimulate MORC2 K767Ac through enhancing the interaction between MORC2 and NAT10. Notably, acetylated MORC2 binds to histone H3 phosphorylation at threonine 11 (H3T11P) and is essential for DNA damage-induced reduction of H3T11P and transcriptional repression of its downstream target genes CDK1 and Cyclin B1, thus contributing to DNA damage-induced G2 checkpoint activation. Chemical inhibition or depletion of NAT10 or expression of an acetylation-defective MORC2 (K767R) forces cells to pass through G2 checkpoint, resulting in hypersensitivity to DNA-damaging agents. Moreover, MORC2 acetylation levels are associated with elevated NAT10 expression in clinical breast tumor samples. Together, these findings uncover a previously unrecognized role for MORC2 in regulating DNA damage-induced G2 checkpoint through NAT10-mediated acetylation and provide a potential therapeutic strategy to sensitize breast cancer cells to DNA-damaging chemotherapy and radiotherapy by targeting NAT10.


Assuntos
Neoplasias da Mama/enzimologia , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Acetiltransferases N-Terminal/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Antineoplásicos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina/metabolismo , Radiação Ionizante , Sirtuína 2/metabolismo , Fatores de Transcrição/química
20.
Cell Death Differ ; 27(3): 1105-1118, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31406303

RESUMO

Deregulation of E3 ubiquitin ligases is intimately implicated in breast cancer pathogenesis and progression, but the underlying mechanisms still remain elusive. Here we report that RING finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, functions as a tumor suppressor in breast cancer. RNF144A was  downregulated in a subset of primary breast tumors and restoration of RNF144A suppressed breast cancer cell proliferation, colony formation, migration, invasion in vitro, tumor growth, and lung metastasis in vivo. In contrast, knockdown of RNF144A promoted malignant phenotypes of breast cancer cells. Quantitative proteomics and biochemical analysis revealed that RNF144A interacted with and targeted heat-shock protein family A member 2 (HSPA2), a putative oncoprotein that is frequently upregulated in human cancer and promotes tumor growth and progression, for ubiquitination and degradation. Notably, the ligase activity-defective mutants of RNF144A impaired its ability to induce ubiquitination and degradation of HSPA2, and to suppress breast cancer cell proliferation, migration, and invasion as compared with its wild-type counterpart. Moreover, RNF144A-mediated suppression of breast cancer cell proliferation, migration, and invasion was rescued by ectopic HSPA2 expression. Clinically, low RNF144A and high HSPA2 expression in breast cancer patients was correlated with aggressive clinicopathological characteristics and decreased overall and disease-free survival. Collectively, these findings reveal a previously unappreciated role for RNF144A in suppression of breast cancer growth and metastasis, and identify RNF144A as the first, to our knowledge, E3 ubiquitin ligase for HSPA2 in human cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Oncogenes , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo/genética , Feminino , Humanos , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...