Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.025
Filtrar
1.
J Invest Surg ; 36(1): 1-7, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36384418

RESUMO

AIM: The aim of this study was to explore the epidermal barrier structure and function of re-harvested skin from non-scalp donor sites. METHODS: Six patients with large-area deep burns who met the inclusion and exclusion criteria were subjected to split-thickness skin excision three times on the same healthy non-scalp donor sites, with an interval of 14 days. The donor skin thus harvested was labeled as primary skin (S1), secondary skin (S2), and tertiary skin (S3). The transepidermal water loss (TEWL) and stratum corneum water content (SCH) of donor skin were detected before each surgery, and the donor skin was harvested during the surgery. The donor skin was stained with hematoxylin and eosin (HE) and involucrin, loricrin, filaggrin, small molecule proline-rich protein 3 (SPRR3), ZO-3, JAM-A, and JAM-C, or observed by transmission electron microscopy. RESULTS: The epidermal barrier function of the re-harvested skin from the non-scalp donor sites became impaired. The histopathological structure of the re-harvested skin from non-scalp donor sites became abnormal. The barrier of the epidermal stratum corneum of the re-harvested skin from non-scalp donor sites was damaged. The epidermal tight junction barrier in the re-harvested skin from non-scalp donor sites was damaged. CONCLUSIONS: As the number of harvesting increases, the epidermal barrier function of the skin decreased, and the damage to the barrier structure increased. Hence, it is vitally important to restore the epidermal barrier function for re-harvesting in non-scalp donor sites.


Assuntos
Queimaduras , Pele , Humanos , Epiderme/metabolismo , Epiderme/patologia , Queimaduras/patologia , Água/metabolismo
2.
Front Plant Sci ; 13: 1005764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388482

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is a vascular bacteria pathogen causing black rot in cabbage. Here, the resistance mechanisms of cabbage against Xcc infection were explored by integrated metabolome and transcriptome analysis. Pathogen perception, hormone metabolisms, sugar metabolisms, and phenylpropanoid metabolisms in cabbage were systemically re-programmed at both transcriptional and metabolic levels after Xcc infection. Notably, the salicylic acid (SA) metabolism pathway was highly enriched in resistant lines following Xcc infection, indicating that the SA metabolism pathway may positively regulate the resistance of Xcc. Moreover, we also validated our hypothesis by showing that the flavonoid pathway metabolites chlorogenic acid and caffeic acid could effectively inhibit the growth of Xcc. These findings provide valuable insights and resource datasets for further exploring Xcc-cabbage interactions and help uncover molecular breeding targets for black rot-resistant varieties in cabbage.

3.
Int J Biol Macromol ; 223(Pt A): 281-289, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36356864

RESUMO

DNA topoisomerase I was found to be highly abundant in fast-proliferating tumor cells and is a potential target for anticancer therapy. A series of G-quadruplex-containing oligodeoxynucleotides (ODNs) were designed and used as inhibitors of DNA topoisomerase I. It was demonstrated that ODNs with G-quadruplexes can efficiently inhibit the supercoiled DNA relaxation reaction catalyzed by DNA topoisomerase I. Compared with the other conformations, the parallel propeller-type G-quadruplex was the most efficient DNA topoisomerase I inhibitor. Further studies revealed that integrating G-quadruplexes with duplexes to form quadruplex-duplex hybrids could significantly improve the inhibition efficiency. In addition, a circular ODN that consists of a G-quadruplex motif and DNA topoisomerase I binding site was synthesized and used as a DNA topoisomerase I inhibitor. The results showed that the particularly designed circular ODN displayed high inhibitory efficiency on the activity of DNA topoisomerase I with an IC50 value of 54.8 nM. Moreover, the circular ODN exhibited excellent thermal stability and nuclease resistance. Considering the low cytotoxicity of DNA-based biopharmaceuticals, the design strategy and results reported in this study may shed new light on nucleic acid-based DNA topoisomerase I inhibitor construction for potential anticancer drugs.

4.
J Hematol Oncol ; 15(1): 160, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319992

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Microambiente Tumoral , Neoplasias Colorretais/patologia , Fibroblastos Associados a Câncer/patologia , Progressão da Doença
5.
Biology (Basel) ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421399

RESUMO

Climate changes occurring today require detailed research of the effects of increasing temperatures on photosynthesis in different species and cultivars. Temperature variability is a crucial determinant of the yield and quality of plants, particularly when high-temperature episodes coincide with their growth and fruit development. The effect of high temperature (HT) on higher plants primarily concerns photosynthetic functions, but the sensitivity of photosynthesis to high temperature is not well-understood in kiwifruits. In this study, we designed a new environmental monitoring system to evaluate the effects of environmental factors on the photosynthetic physiology of different kiwifruit species and cultivars. A significant positive correlation was determined between the main photosynthetic indices of kiwifruits, such as transpiration rate and net photosynthetic rate. The net photosynthetic rate of commercial kiwifruit cultivars was strongly inhibited when the temperature exceeded 44.5 °C, and the leaves of kiwifruits were irreversibly damaged when the temperature increased to 52 °C. Kiwifruit cultivars with different ploidy levels (diploid, tetraploid and hexaploid) were found to be sensitive to high temperature, whereas tetraploids had higher HT resistance and hexaploids had the highest net photosynthetic rate. Further research showed that the HT tolerance of kiwifruits existed not only between species but also among cultivars. A. eriantha had the highest net photosynthetic rate at more than 44.7 °C, but those of A. deliciosa and A. arguta declined sharply as the temperature exceeded 43.5 °C. As a result, it was determined that high temperatures have important effects on the photosynthetic activities of kiwifruit plants with different ploidy levels, and that these effects can significantly change their development according to how they differ among different species/cultivars.

6.
Micromachines (Basel) ; 13(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363928

RESUMO

Contact and friction are closely related as friction cannot happen without contact. They are widely used in mechanical engineering, traffic, and other fields. The real contact surface is not completely smooth, but it is made up of a series of tiny contact asperities as viewed in the micro-scale. This is just the complexity of the contact and friction behaviors of rough surfaces: the overall mechanical behavior is the result of all asperities which are involved during the contact. Due to the multiplicity of surface topography, the complexity of contact scale, and the nonlinearity of the constitutive material, there are still many open topics in the research of contact and friction behavior of rough surfaces. Based on the perspective of the macroscopic and micro-nano scale contact mechanics, this review gives a brief overview of friction for the latest developments and points out the existing issues and opportunities for future studies.

7.
Ecotoxicol Environ Saf ; 247: 114223, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306624

RESUMO

Gambierdiscus spp. is mainly responsible for the ciguatera fish poisoning (CFP) around the world. The gambiertoxin produced by Gambierdiscus can be passed through the food chain to form ciguatoxins (CTXs) that cause ciguatoxins poisoning. However, the toxic effects of Gambierdiscus on fish through the food chain and related mechanism remains unclear. In this study, the toxicity of Gambierdiscus caribaeus on the marine medaka (Oryzias melastigma) was investigated, where the simulated food chain toxic algae-food organism-fish (G. caribaeus-Artemia metanauplii-O. melastigma) was set. The results showed that direct or indirect exposure through the food chain of G. caribaeus could affect the swimming behaviour of O. melastigma, manifested as decreased swimming performance and spontaneous abnormal swimming behaviours. Histological observation showed that direct or indirect exposure of G. caribaeus caused different degrees of pathological damage to the gills, intestine and liver tissues of O. melastigma. Transcriptome sequencing and RT-qPCR demonstrated that G. caribaeus exposure could trigger a series of physiological and biochemical responses, mainly reflected in energy metabolism, reproductive system, neural activity, immune stress and drug metabolism in marine medaka. Our finding may provide novel insight into the toxicity of Gambierdiscus on fish.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Oryzias , Animais , Ciguatoxinas/toxicidade , Dinoflagelados/genética
8.
Anal Chem ; 94(41): 14280-14289, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36201600

RESUMO

The redox homeostasis in living cells is greatly crucial for maintaining the redox biological function, whereas accurate and dynamic detection of intracellular redox states still remains challenging. Herein, a reversible surface-enhanced Raman scattering (SERS) nanosensor based on covalent organic frameworks (COFs) was prepared to dynamically monitor the redox processes in living cells. The nanosensor was fabricated by modifying the redox-responsive Raman reporter molecule, 2-Mercaptobenzoquione (2-MBQ), on the surface of gold nanoparticles (AuNPs), followed by the in situ coating of COFs shell. 2-MBQ molecules can repeatedly and quickly undergo reduction and oxidation when successively treated with ascorbic acid (AA) and hypochlorite (ClO-) (as models of reductive and oxidative species, respectively), which resulted in the reciprocating changes of SERS spectra at 900 cm-1. The construction of the COFs shell provided the nanosensor with great stability and anti-interference capability, thus reliably visualizing the dynamics of intracellular redox species like AA and ClO- by SERS nanosensor. Taken together, the proposed SERS strategy opens up the prospects to investigate the signal transduction pathways and pathological processes related with redox dynamics.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Ácido Ascórbico , Ouro , Ácido Hipocloroso , Oxirredução , Análise Espectral Raman/métodos
9.
Int J Infect Dis ; 125: 209-215, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243280

RESUMO

OBJECTIVES: To evaluate the efficacy and safety of low-dose trimethoprim (TMP)-sulfamethoxazole (SMX) (TMP-SMX) as the primary prophylaxis for Pneumocystis jirovecii pneumonia (PJP) in adult recipients of kidney transplantation. METHODS: Three kinds of prescriptions in kidney recipients were documented, including 20 mg TMP/100 mg SMX oral daily, 20 mg TMP/100 mg SMX oral every other day, and nonprophylaxis. The primary outcome was the incidence of PJP in the first 180 days of follow-up after kidney transplantation. The secondary outcomes were changes in renal and liver function. RESULTS: Among the 1469 recipients, 1066 (72.56%) received 20 mg TMP/100 mg SMX daily, 127 (8.65%) received 20 mg TMP/100 mg SMX every other day, and 276 (18.79%) did not have prophylaxis prescription. The 276 recipients in the nonprophylaxis group had 124.92 person-years of follow-up, during which PJP occurred in 29 patients, for an incidence rate of 23.21 (95% confidence interval 15.76-32.72) per 100 person-years. The TMP-SMX daily group and the TMP-SMX every other day group had 524.89 and 62.07 person-years of follow-up, respectively, with no occurrence of PJP. There was no significant difference among the three groups in changes in renal and liver function (P >0.05, respectively). A total of 111 recipients in each group were enrolled in the propensity score matching analysis. It was revealed that the 111 nonprophylaxis recipients had 51.27 person-years of follow-up and 10 PJP cases. Prophylaxis was considered effective because there was a significant difference between the three groups (P <0.001). CONCLUSION: Low-dose TMP-SMX prophylaxis significantly reduces the incidence of PJP within 6 months after kidney transplantation and has a favorable safety profile.

10.
Front Plant Sci ; 13: 984422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186029

RESUMO

Phylogeographic, population genetics and diversity analysis are crucial for local tea resource conservation and breeding programs. Lincang in Yunnan has been known as the possible place of domestication for tea worldwide, yet, its genetic makeup and unique Lincang origin are little understood. Here, we reported a large-scale whole-genome resequencing based population genomic analysis in eight main tea-producing areas of Lincang in Yunnan (1,350 accessions), and the first comprehensive map of tea genome variation in Lincang was constructed. Based on the population structure, tea sample in Lincang was divided into three subgroups, and inferred Xigui and Nahan Tea Mountain in Linxiang, Baiying Mountain Ancient Tea Garden in Yun, and Jinxiu Village of Xiaowan Town in Fengqing, which belong to the birthplace of the three subgroups, were all likely to be the origin center of Lincang tea. Meanwhile, the history population sizes analysis show that similar evolutionary patterns were observed for the three subgroups of Lincang. It also was observed that the hybrid among eight areas of Lincang was noticeable, resulting in insignificant genetic differentiation between geographical populations and low genetic diversity. The findings of this study clarified the genetic make-up and evolutionary traits of the local population of tea, which gave some insight into the development of Lincang tea.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36194329

RESUMO

Evidence of the short-term effects of ambient sulfur dioxide (SO2) exposure on the economic burden of ischemic stroke is limited. This study aimed to explore the association between short-term ambient SO2 exposure and hospitalization costs for ischemic stroke in Chongqing, the most populous city in China. The hospital-based study included 7271 ischemic stroke inpatients. Multiple linear regression models were used to estimate the association between SO2 concentration and hospitalization costs. Propensity score matching was used to compare the patients' characteristics when exposed to SO2 concentrations above and below 20 µg/m3. It is found that short-term SO2 exposure was positively correlated with the hospitalization costs of ischemic stroke. The association was more evident in males, people younger than 65, and people hospitalized in the cool seasons. Besides, among the components of hospitalization costs, medicine costs were most significantly associated with SO2. More interesting, the lower concentration of SO2, the higher costs associated with 1 µg/m3 SO2 change. Above all, SO2 was positively associated with hospitalization costs of ischemic stroke, even at its low levels. The measures to reduce the level of SO2 can help reduce the burden of ischemic stroke.

12.
J Trauma Acute Care Surg ; 93(5): 712-718, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301128

RESUMO

BACKGROUND: Severely burned patients have a higher risk of diabetes mellitus after healing, but its mechanism remains unclear. Therefore, the purpose of the study was to explore the influence of burns on pancreatic islets of mice after wound healing. METHODS: Forty-two male C57BL/6 mice were randomized into a sham group and a burn group and subjected to sham treatment or a third-degree burn model of 30% total body surface area. Fasting blood glucose was detected weekly for 8 weeks after severe burns. Glucose-stimulated insulin secretion was measured 8 weeks post severe burns. Islets of the two groups were isolated and mRNA libraries were sequenced by the Illumina sequencing platform. The expressions of differentially expressed genes (DEGs) related to the cell cycle and the amounts of mitochondrial DNA were detected by quantitative real-time polymerase chain reaction after gene ontology, gene set enrichment analysis, and protein-protein network analysis. Hematoxylin-eosin staining of pancreatic tail tissue and adenosine triphosphate (ATP) assay of islets were performed. RESULTS: The levels of fasting blood glucose were significantly higher within 8 weeks post severe burns. Glucose-stimulated insulin secretion was impaired at the eighth week post severe burns. Totally 128 DEGs were selected. Gene ontology and gene set enrichment analysis indicated that the pathways related to the cell cycle, protein processing, and oxidative phosphorylation were downregulated. The expressions of DEGs related to the cell cycle showed a consistent trend with mRNA sequencing data, and most of them were downregulated post severe burns. The cell mass of the burn group was less than that of the sham group. Also, the concentration of ATP and the amount of mitochondrial DNA were lower in the burn group. CONCLUSION: In the model of severe-burned mice, disorders in glucose metabolism persist for 8 weeks after burns, which may be related to low islet cell proliferation, downregulation of protein processing, and less ATP production.


Assuntos
Queimaduras , Ilhotas Pancreáticas , Animais , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Glicemia , Queimaduras/genética , Queimaduras/metabolismo , DNA Mitocondrial/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Transcriptoma , Cicatrização/genética
13.
Angew Chem Int Ed Engl ; : e202210935, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253586

RESUMO

Despite the promise of combination cancer therapy, it remains challenging to develop targeted strategies that are nontoxic to normal cells. Here we report a combination therapeutic strategy based on engineered DNAzyme molecular machines that can promote cancer apoptosis via dynamic inter- and intracellular regulation. To achieve external regulation of T-cell/cancer cell interactions, we designed a DNAzyme-based molecular machine with an aptamer and an i-motif, as the MUC-1-selective aptamer allows the specific recognition of cancer cells. The i-motif is folded under the tumor acidic microenvironment, shortening the intercellular distance. As a result, T-cells are released by metal ion activated DNAzyme cleavage. To achieve internal regulation of mitochondria, we delivered another DNAzyme-based molecular machine with mitochondria-targeted peptides into cancer cells to induce mitochondria aggregation. Our strategy achieved an enhanced killing effect in zinc deficient cancer cells.

14.
Phys Chem Chem Phys ; 24(41): 25580-25587, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36254690

RESUMO

The applications of silicon (Si)-based electrodes in lithium ion batteries have been impeded by mechanical degradation caused by lithiation/delithiation-induced volume changes. Understanding the evolution of mechanical behavior and properties of Si composite electrodes during electrochemical cycling is indispensable to develop coping strategies and predict battery life. In this study, we optimized an in situ method for measuring electro-chemo-mechanical properties, including partial molar volume, elastic modulus, and electrochemical reaction-induced stress, based on the curvature changes of cantilever electrodes. We found that the swell strain and partial molar volume of Si electrodes increase with the Li concentration. The elastic modulus generally decreases with the Li concentration. The in-plain stress transforms from tensile stress to compressive stress and showed an increasing tendency during further lithiation, while it shows a reverse trend during delithiation. The stress evolution correlates well with the "opening" and "closing" of micro-cracks in Si composite electrodes during cycling. These findings provide not only input parameters for battery modeling but also help understand the capacity fading of Si electrodes. Furthermore, the in situ measurement methodology developed in this study is readily applied to other battery electrodes.

15.
Sci Rep ; 12(1): 17317, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243882

RESUMO

Total joint arthroplasty is a common surgical procedure resulting in improved quality of life; however, a leading cause of surgery failure is infection. Periprosthetic joint infections often involve biofilms, making treatment challenging. The metabolic state of pathogens in the joint space and mechanism of their tolerance to antibiotics and host defenses are not well understood. Thus, there is a critical need for increased understanding of the physiological state of pathogens in the joint space for development of improved treatment strategies toward better patient outcomes. Here, we present a quantitative, untargeted NMR-based metabolomics strategy for Pseudomonas aeruginosa suspended culture and biofilm phenotypes grown in bovine synovial fluid as a model system. Significant differences in metabolic pathways were found between the suspended culture and biofilm phenotypes including creatine, glutathione, alanine, and choline metabolism and the tricarboxylic acid cycle. We also identified 21 unique metabolites with the presence of P. aeruginosa in synovial fluid and one uniquely present with the biofilm phenotype in synovial fluid. If translatable in vivo, these unique metabolite and pathway differences have the potential for further development to serve as targets for P. aeruginosa and biofilm control in synovial fluid.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Alanina/metabolismo , Animais , Antibacterianos/metabolismo , Biofilmes , Bovinos , Colina/metabolismo , Creatina/metabolismo , Glutationa/metabolismo , Pseudomonas aeruginosa/fisiologia , Qualidade de Vida , Líquido Sinovial
16.
Environ Res ; 216(Pt 1): 114516, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36220442

RESUMO

Previous researches have reported the association between air pollution and various diseases. However, few researches have investigated whether air pollutants are associated with the economic loss resulting from patients' hospitalization, especially the economic loss of hospitalization due to acute cardiovascular events. The purpose of our research was to explore the association between the levels of carbon monoxide (CO), taken as an index of pollution, and the hospitalization costs of myocardial infarction (MI), and the potential effect modification by the ABO blood group. A total of 3237 MI inpatients were included in this study. A multiple linear regression model was used to evaluate the association between ambient CO levels and hospitalization costs of MI patients. Moreover, we performed stratified analyses by age, gender, body mass index (BMI), season, hypertension, and ABO blood types. There was a positive association between the levels of CO in the air and the costs of hospitalization caused by MI. Furthermore, such association was stronger in males, BMI ≥25, <65 years, with hypertension, and non-O blood group. Interestingly, we found the association was particularly significant in patients with blood group B. Overall, our study first found that ambient CO levels could have an impact on the hospitalization costs for MI patients, and those with blood group B can be more sensitive.

18.
Mol Biol Rep ; 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309616

RESUMO

BACKGROUND: Breast cancer is the leading cause of death from cancer in women worldwide. STAMBP functions as a JAMM family deubiquitinating enzyme that modulates the stability of substrate proteins in cells by cleaving ubiquitin moieties. The expression of STAMBP and its clinical significance in breast cancer remain unclear. METHODS AND RESULTS: The level of the STAMBP protein in noncancerous and tumor tissues of breast cancer patients was examined by immunohistochemical staining. The expression of STAMBP mRNA in tissues based on healthy individual and breast cancer patient data in the TCGA database was evaluated. The association between the expression of STAMBP mRNA and clinical features and prognosis was evaluated using TCGA database. Cell growth was assessed by Cell Counting Kit-8 (CCK-8) assay, and cell migration and invasion were assessed by wound healing and Transwell assays. Activation of the ERK signaling was detected by Western blotting. The expression of STAMBP was markedly upregulated in the cytoplasm of tumor cells from breast cancer patients. The level of STAMBP was closely associated with the tumor subtype and size and the TNM stage of the breast cancer patients. Importantly, high expression of STAMBP predicted poor overall survival (OS) for breast cancer patients. Furthermore, knockdown of STAMBP expression reduced cell mobility and invasion of breast cancer cells. Notably, the phosphorylation of EGFR and ERK was markedly reduced in STAMBP-knockdown cells. CONCLUSION: STAMBP plays a critical role in the progression of breast cancer and may serve as a biomarker to monitor the progression of the disease.

19.
New Phytol ; 236(6): 2233-2248, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36059081

RESUMO

Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.


Assuntos
Brachypodium , Hordeum , Hordeum/genética , Brachypodium/genética , Proteínas de Repetições Ricas em Leucina , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...