Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Chemosphere ; 254: 126874, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32361543

RESUMO

Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 µg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.

2.
J Am Chem Soc ; 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32426975

RESUMO

Intrinsically disordered proteins (IDPs) can display a broad spectrum of binding modes and highly variable binding affinities when interacting with both biological and non-biological materials. A quantitative model of such behavior is important for the better understanding of the function of IDPs when encountering inorganic nanomaterials with the potential to control their behavior in vivo and in vitro. Depending on their amino-acid composition and chain length, binding properties can vary strongly between different IDPs. Moreover, due to differences in the physical chemical properties of clusters of amino-acid residues along the IDP primary sequence, individual residues can adopt a wide range of bound state populations. Quantitative experimental binding affinities with synthetic silica nanoparticles (SNPs) at residue-level resolution, which were obtained for a set of IDPs by solution NMR relaxation experiments, are explained here by a first-principle analytical statistical mechanical model termed SILC. SILC quantitatively predicts residue-specific binding affinities to nanoparticles and it expresses binding cooperativity as the cumulative result of pairwise residue effects. The model, which was parametrized for anionic SNPs and applied to experimental data of four IDP systems with distinctive binding behavior, successfully predicts differences in overall binding affinities, fine details of IDP-SNP affinity profiles, and site-directed mutagenesis effects with a spatial resolution at the individual residue level. The SILC model provides an analytical description of such types of fuzzy IDP-SNP complexes and may help advance understanding nanotoxicity and in-vivo targeting of IDPs by specifically designed nanomaterials.

3.
Biomater Sci ; 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32352105

RESUMO

Pharmacotherapy for hypercalcemia, which is mainly caused by osteoporosis, is an effective method to regulate the in vivo calcium equilibrium. From this perspective, the development of a minimally invasive gelling system for the prolonged local delivery of bisphosphonates has practical significance in the clinical therapy of bone osteoporosis. Here, a biocompatible and injectable hydrogel based on a uniform tetra-PEG network carrying a PEG-modified alendronate (ALN) prodrug for the localized elution and long-term sustained release of anti-osteoporotic small molecule drugs is reported. The obtained ALN-based tetra-PEG hydrogels exhibit rapid gel formation and excellent injectability, thereby allowing for the easy injection and consequent adaptation of hydrogels into the bone defects with irregular shapes, which promotes the ALN-based tetra-PEG hydrogels with depot formulation capacity for governing the on-demand release of ALN drugs and local reinforcement of bone osteoporosis at the implantation sites of animals. The findings imply that these injectable hydrogels mediate the optimized release of therapeutic cargoes and effectively promote in situ bone regeneration via minimally invasive procedures, which is effective for clinical osteoporosis therapy.

4.
Sci Adv ; 6(15): eaaz9664, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32300661

RESUMO

Current minimally invasive optical techniques for in vivo deep-brain imaging provide a limited resolution, field of view, and speed. These limitations prohibit direct assessment of detailed histomorphology of various deep-seated brain diseases at their native state and therefore hinder the potential clinical utilities of those techniques. Here, we report an ultracompact (580 µm in outer diameter) theranostic deep-brain microneedle combining 800-nm optical coherence tomography imaging with laser ablation. Its performance was demonstrated by in vivo ultrahigh-resolution (1.7 µm axial and 5.7 µm transverse), high-speed (20 frames per second) volumetric imaging of mouse brain microstructures and optical attenuation coefficients. Its translational potential was further demonstrated by in vivo cancer visualization (with an imaging depth of 1.23 mm) and efficient tissue ablation (with a 1448-nm continuous-wave laser at a 350-mW power) in a deep mouse brain (with an ablation depth of about 600 µm).

5.
Sensors (Basel) ; 20(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295027

RESUMO

In mobile crowdsensing, some users jointly finish a sensing task through the sensors equipped in their intelligent terminals. In particular, the photo crowdsensing based on Mobile Edge Computing (MEC) collects pictures for some specific targets or events and uploads them to nearby edge servers, which leads to richer data content and more efficient data storage compared with the common mobile crowdsensing; hence, it has attracted an important amount of attention recently. However, the mobile users prefer uploading the photos through Wifi APs (PoIs) rather than cellular networks. Therefore, photos stored in mobile phones are exchanged among users, in order to quickly upload them to the PoIs, which are actually the edge services. In this paper, we propose a utility-based Storage Management strategy in mobile phones for Photo Crowdsensing (SMPC), which makes a sending/deleting decision on a user's device for either maximizing photo delivery ratio (SMPC-R) or minimizing average delay (SMPC-D). The decision is made according to the photo's utility, which is calculated by measuring the impact of reproducing or deleting a photo on the above performance goals. We have done simulations based on the random-waypoint model and three real traces: roma/taxi, epfl, and geolife. The results show that, compared with other storage management strategies, SMPC-R gets the highest delivery ratio and SMPC-D achieves the lowest average delay.

6.
J Agric Food Chem ; 68(19): 5507-5520, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320606

RESUMO

Petroselinic acid (18:1Δ6), a monounsaturated cis Δ-6 fatty acid, has many prospective applications in functional foods and for the nutraceutical and pharmaceutical industries. Up to 80% of petroselinic acid has been found in the oil from fruits of coriander (Coriandrum sativum L.), which make it an ideal source for investigating the biosynthesis of petroselinic acid. A coriander acyl-acyl carrier protein desaturase was identified to be involved in its biosynthesis more than two decades ago, but since then little further progress in this area has been reported. In this study, the fatty acid profiles of coriander fruits at six developmental stages were analyzed. Fruit samples from three developmental stages with rapid accumulation of petroselinic acid were used for RNA sequencing using the Illumina Hiseq4000 platform. The transcriptome analysis presented 93 323 nonredundant unigenes and 8545 differentially expressed genes. Functional annotation and combined gene expression data revealed candidate genes potentially involved in petroselinic acid biosynthesis and its incorporation into triacylglycerols. Tissue-specific examination of q-PCR validation further suggested that ACPD1/3, KAS I-1, FATB-1/3, and DGAT2 may be highly involved. Bioinformatic analysis of CsFATB and CsDGAT2 identified their putative key amino acids or functional motifs. These results provide a molecular foundation for petroselinic acid biosynthesis in coriander fruit and facilitate its genetic engineering in other hosts.

8.
Org Lett ; 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286846

RESUMO

A highly efficient enantioselective synthesis of multisubstituted tetrahydrobenzofuran derivatives with four contiguous stereocenters was established by the dual catalysis of a gold(I)/chiral N,N'-dioxide-cobalt(II) complex via a tandem cycloisomerization/Diels-Alder reaction of 2-alkynyl-2-alkenones and electron-deficient olefins. This strategy was not only featured with atom economy, remarkable efficiency and stereoselectivity but also was highlighted by further transformations of the furan-based products into polycyclic molecules. Moreover, a possible transition-state model was proposed to elucidate the origin of stereoselectivity.

9.
J Chem Inf Model ; 60(4): 2004-2011, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32208721

RESUMO

Large volumes of data from material characterizations call for rapid and automatic data analysis to accelerate materials discovery. Herein, we report a convolutional neural network (CNN) that was trained based on theoretical data and very limited experimental data for fast identification of experimental X-ray diffraction (XRD) patterns of metal-organic frameworks (MOFs). To augment the data for training the model, noise was extracted from experimental data and shuffled; then it was merged with the main peaks that were extracted from theoretical spectra to synthesize new spectra. For the first time, one-to-one material identification was achieved. Theoretical MOFs patterns (1012) were augmented to a whole data set of 72 864 samples. It was then randomly shuffled and split into training (58 292 samples) and validation (14 572 samples) data sets at a ratio of 4:1. For the task of discriminating, the optimized model showed the highest identification accuracy of 96.7% for the top 5 ranking on a test data set of 30 hold-out samples. Neighborhood component analysis (NCA) on the experimental XRD samples shows that the samples from the same material are clustered in groups in the NCA map. Analysis on the class activation maps of the last CNN layer further discloses the mechanism by which the CNN model successfully identifies individual MOFs from the XRD patterns. This CNN model trained by the data augmentation technique would not only open numerous potential applications for identifying XRD patterns for different materials, but also pave avenues to autonomously analyze data by other characterization tools such as FTIR, Raman, and NMR spectroscopies.

10.
Elife ; 92020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32207684

RESUMO

Carbon catabolite repression 4 (CCR4) is a conserved mRNA deadenylase regulating posttranscriptional gene expression. However, regulation of CCR4 in virus infections is less understood. Here, we characterized a pro-viral role of CCR4 in replication of a plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV). The barley (Hordeum vulgare) CCR4 protein (HvCCR4) was identified to interact with the BYSMV phosphoprotein (P). The BYSMV P protein recruited HvCCR4 from processing bodies (PBs) into viroplasm-like bodies. Overexpression of HvCCR4 promoted BYSMV replication in plants. Conversely, knockdown of the small brown planthopper CCR4 inhibited viral accumulation in the insect vector. Biochemistry experiments revealed that HvCCR4 was recruited into N-RNA complexes by the BYSMV P protein and triggered turnover of N-bound cellular mRNAs, thereby releasing RNA-free N protein to bind viral genomic RNA for optimal viral replication. Our results demonstrate that the co-opted CCR4-mediated RNA decay facilitates cytorhabdovirus replication in plants and insects.

11.
Mult Scler Relat Disord ; 37: 101426, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32172997

RESUMO

BACKGROUND: Cervical spinal cord atrophy (CSCA), which partly reflects the axonal loss in the spinal cord, is increasingly recognized as a valuable predictor of disease outcome. However, inconsistent results have been reported regarding the correlation of CSCA and clinical disability in multiple sclerosis (MS). The aim of this meta-analysis was to synthesize the available data obtained from 3.0-Tesla (3T) MRI scanners and to explore the relationship between CSCA and scores on the Expanded Disability Status Scale (EDSS). METHODS: We searched PubMed, Embase, and Web of Science for articles published from the database inception to February 1, 2019. The quality of the articles was assessed according to a quality evaluation checklist which was created based on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. We conducted a meta-analysis of the correlation between EDSS scores and CSCA at 3T MRI in MS. RESULTS: Twenty-two eligible studies involving 1933 participants were incorporated into our meta-analysis. Our results demonstrated that CSCA was negatively and moderately correlated with EDSS scores (rs = -0.42, 95% CI: -0.51 to -0.32; p < 0.0001). Subgroup analyses revealed a weaker correlation in the group of relapsing-remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) (rs = -0.19, 95% CI: -0.31 to -0.07; p = 0.0029). CONCLUSIONS: The correlation between CSCA and EDSS scores was significant but moderate. We encourage more studies using reliable and consistent methods to explore whether CSCA is suitable as a predictor for MS progression.

12.
Otolaryngol Head Neck Surg ; 162(5): 674-682, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32122245

RESUMO

OBJECTIVE: To describe our clinical experience with surgical treatments for sinonasal phosphaturic mesenchymal tumors diagnosed at our institution. STUDY DESIGN: Retrospective case series. SETTING: Affiliated Sixth People's Hospital, Shanghai Jiao Tong University. SUBJECTS AND METHODS: We retrospectively reviewed the medical records of 10 patients diagnosed with phosphaturic mesenchymal tumors associated with tumor-induced osteomalacia between December 2014 and October 2019. RESULTS: There were 4 men and 6 women with a disease course of 1 to 19 years. All patients exhibited hypophosphatemia and tumor-induced osteomalacia. The tumor was located in the sinonasal region, frontal bone, and temporal bone in 8 patients, 1 patient, and 1 patient, respectively. Technetium-99m octreotide scintigraphy was used for tumor localization in 4 cases. Six patients underwent endoscopic resection; the remaining 4 underwent unilateral transorbital anterior and posterior ethmoid artery ligation + endoscopic resection, endoscopic resection + skull base repair, internal carotid artery stenting + transcatheter arterial embolization + temporal bone tumor excision + adipose tissue plugging, and endoscopic resection + transfrontal craniotomy (n = 1 each). Two patients had a history of incomplete endoscopic resection. All patients achieved clinical remission and normalized biochemical indices after surgery. Only 1 patient developed recurrence and died of a brain hernia. CONCLUSIONS: A diagnosis of sinonasal phosphaturic mesenchymal tumors should be based on a combination of clinical, imaging, and pathological findings. Technetium-99m octreotide scintigraphy helps in locating the tumor. Complete surgical excision guarantees clinical remission, and preoperative transcatheter arterial embolization or feeding artery ligation may reduce intraoperative bleeding in cases of highly vascularized tumors.

13.
Viruses ; 12(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178444

RESUMO

Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.

14.
Plant Sci ; 292: 110379, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005384

RESUMO

Plant defensins have been implicated in the plant defense system, but their role in poplar immunity is still unclear. In the present study, we present evidence that PtDefensin, a putative plant defensin, participates in the defense of poplar plants against Septotis populiperda infection. After the construction of recombinant plasmid PET-32a-PtDefensin, PtDefensin protein was expressed in Escherichia coli strain BL21 (DE3) and purified through Ni-IDA resin affinity chromatography. The Trx-PtDefensin fusion protein displayed no cytotoxic activity against RAW264.7 cells but had cytotoxic activity against E. coli K12D31 cells. Analyses of PtDefensin transcript abundance showed that the expression levels of PtDefensin responded to abiotic and biotic stresses. Overexpression of PtDefensin in 'Nanlin 895' poplars (Populus × euramericana cv 'Nanlin895') increased resistance to Septotis populiperda, coupled with upregulation of MYC2 (basic helix-loop-helix (bHLH) transcription factor) related to jasmonic acid (JA) signal transduction pathways and downregulation of Jasmonate-zim domain (JAZ), an inhibitor in the JA signal transduction pathway. We speculate that systemic acquired resistance (SAR) was activated in non-transgenic poplars after S. populiperda incubation, and that induced systemic resistance (ISR) was activated more obviously in transgenic poplars after S. populiperda incubation. Hence, overexpression of PtDefensin may improve the resistance of poplar plants to pathogens.

15.
J Proteome Res ; 19(4): 1674-1683, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32073269

RESUMO

Accurate identification of lipids in biological samples is a key step in lipidomics studies. Multidimensional nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool for this purpose as it provides comprehensive structural information on lipid composition at atomic resolution. However, the interpretation of NMR spectra of complex lipid mixtures is currently hampered by limited spectral resolution and the absence of a customized lipid NMR database along with user-friendly spectral analysis tools. We introduce a new two-dimensional (2D) NMR metabolite database "COLMAR Lipids" that was specifically curated for hydrophobic metabolites presently containing 501 compounds with accurate experimental 2D 13C-1H heteronuclear single quantum coherence (HSQC) chemical shift data measured in CDCl3. A new module in the public COLMAR suite of NMR web servers was developed for the (semi)automated analysis of complex lipidomics mixtures (http://spin.ccic.osu.edu/index.php/colmarm/index2). To obtain 2D HSQC spectra with the necessary high spectral resolution along both 13C and 1H dimensions, nonuniform sampling in combination with pure shift spectroscopy was applied allowing the extraction of an abundance of unique cross-peaks belonging to hydrophobic compounds in complex lipidomics mixtures. As shown here, this information is critical for the unambiguous identification of underlying lipid molecules by means of the new COLMAR Lipids web server, also in combination with mass spectrometry, as is demonstrated for Caco-2 cell and lung tissue cell extracts.

16.
DNA Cell Biol ; 39(5): 836-847, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32101033

RESUMO

Prostate cancer (PCa) is a common malignant tumor in elderly men worldwide. Most primary PCas inevitably progress into castration-resistant prostate cancer (CRPC) after androgen deprivation therapy. The mechanisms contributing to this progression are still controversial. In this study, functional module genes, DNA methylations, core regulators, and potential drugs in primary PCa and CRPC were explored by integrating a series of bioinformatics analyses. First, 588 differentially expressed genes (DEGs) were identified. Combined with related genes, protein-protein interaction networks were constructed, and 22 and 14 significant modules were identified in primary PCa and CRPC, respectively. More DEGs were identified in differentially methylated genes in CRPC modules. The hub genes in CRPC included CDC20 and CDK1. Moreover, core noncoding RNAs and transcription factors that significantly regulate CRPC modules were identified, including TUG1, MALAT1, E2F3, and MED1. Finally, the prediction of potential drugs for primary PCa and CRPC was also performed. Exisulind and phosphodiesterase-4 inhibitors were predicted as potential drugs for CRPC. The results of this study provide a new way for biologists and pharmacists to understand the potential molecular mechanisms of CRPC and also provide valuable references for drug redirection and new drug development for PCa.


Assuntos
Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Fatores de Transcrição/genética
17.
Chem Commun (Camb) ; 56(19): 2933-2936, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32040106

RESUMO

We developed a novel enzyme-free amplified SERS immunoassay by combining silver nanoparticle (AgNP)-linked immunoreaction and SERS transduction for the detection of disease biomarkers. As a proof of concept, our method was successfully illustrated with the disease biomarker α-fetoprotein with the detection limit of 3.3 × 10-13 g mL-1 and a double-blind experiment consisting of tens of serum samples was performed to confirm its reliability.


Assuntos
Imunoensaio/métodos , Análise Espectral Raman/métodos , Biomarcadores/sangue , Método Duplo-Cego , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Prata/química
18.
Sci Rep ; 10(1): 2627, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060321

RESUMO

Opisthopappus taihangensis (Ling) Shih, as a relative of chrysanthemum, mainly survives on the cracks of steep slopes and cliffs. Due to the harsh environment in which O. taihangensis lives, it has evolved strong adaptive traits to drought stress. The root system first perceives soil water deficiency, triggering a multi-pronged response mechanism to maintain water potential; however, the drought tolerance mechanism of O. taihangensis roots remains unclear. Therefore, roots were selected as materials to explore the physiological and molecular responsive mechanisms. We found that the roots had a stronger water retention capacity than the leaves. This result was attributed to ABA accumulation, which promoted an increased accumulation of proline and trehalose to maintain cell osmotic pressure, activated SOD and POD to scavenge ROS to protect root cell membrane structure and induced suberin depositions to minimize water backflow to dry soil. Transcriptome sequencing analyses further confirmed that O. taihangensis strongly activated genes involved in the ABA signalling pathway, osmolyte metabolism, antioxidant enzyme activity and biosynthesis of suberin monomer. Overall, these results not only will provide new insights into the drought response mechanisms of O. taihangensis but also will be helpful for future drought breeding programmes of chrysanthemum.

19.
Anal Chim Acta ; 1099: 119-125, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31986268

RESUMO

γ-Glutamyl transpeptidase (GGT) has attracted considerable attention for its regulatory effect on glutathione metabolism in living organisms; further, its close relationship with physiological dysfunctions such as hepatitis and liver cancers has enhanced its applicability. Therefore, the accurate detection of GGT levels is particularly important for the early diagnosis of diseases. Thus, we herein report the development of a surface-enhanced Raman spectroscopic (SERS) probe, namely bis-s,s'-((s)-4,4'-thiolphenylamide-Glu) (b-(s)-TPA-Glu), that comprises of a γ-glutamyl moiety for detection of the GGT activity. In this system, detection was achieved by observing differences in the SERS spectral profiles of the b-(s)-TPA-Glu probe and its corresponding hydrolysis product that resulted from the catalytic action of GGT. This SERS probe system exhibited a high selectivity toward GGT due to a combination of its specific catalytic action and the distinctive spectroscopic fingerprint of the SERS technique. The developed SERS approach was also found to be approximately linear in the range of 0.2-200 U/L, and a limit of detection of 0.09 U/L was determined. Furthermore, the proposed SERS method was suitable for detection of the GGT activity of clinical serum samples and also for evaluation of the inhibitors of GGT. Consequently, this approach is considered to be a promising diagnostic and drug screening tool for GGT-associated diseases.

20.
New Phytol ; 225(4): 1618-1634, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31574168

RESUMO

Kiwifruit (Actinidia spp.) is a climacteric fruit with high sensitivity to ethylene, influenced by multiple ethylene-responsive structural genes and transcription factors. However, the roles of other post-transcriptional regulators (e.g. miRNAs) necessary for ripening remain elusive. High-throughput sequencing sRNAome, degradome and transcriptome methods were used to identify further contributors to ripening control in the kiwifruit (A. deliciosa cv 'Hayward'). Two NAM/ATAF/CUC domain transcription factors (AdNAC6 and AdNAC7), both predicted targets for miR164, showed significant upregulation by exogenous ethylene. Gene expression analysis and luciferase reporter assays indicated that Ade-miR164 and one of its precursor miRNAs (Ade-MIR164b) were repressed by ethylene treatment and negatively correlated with AdNAC6/7 expression. Subsequent analysis indicated that both AdNAC6 and AdNAC7 proteins are transcriptional activators and physically bind the promoters of AdACS1 (1-aminocyclopropane-1-carboxylate synthase), AdACO1 (1-aminocyclopropane-1-carboxylic acid oxidase), AdMAN1 (endo-ß-mannanase) and AaTPS1 (terpene synthase). Moreover, subcellular analysis indicated that the location of the AdNAC6/7 proteins was influenced by Ade-miR164. Multiple omics-based approaches revealed a novel regulatory link for fruit ripening that involved ethylene-miR164-NAC. The regulatory pathway for miR164-NAC is present in various fruit (e.g. Rosaceae fruit, citrus, grape), with implications for fruit ripening regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA