Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34655489

RESUMO

Rht-B1b and Rht-D1b, the 'Green Revolution' (GR) genes, greatly improved yield potential of wheat under nitrogen fertilizer application, but reduced coleoptile length, seedling vigor and grain weight. Thus, mining alternative reduced plant height genes without adverse effects is urgently needed. We isolated the causal gene of Rht24 through map-based cloning and characterized its function using transgenic, physiobiochemical and transcriptome assays. We confirmed genetic effects of the dwarfing allele Rht24b with an association analysis and also traced its origin and distribution. Rht24 encodes a gibberellin (GA) 2-oxidase, TaGA2ox-A9. Rht24b conferred higher expression of TaGA2ox-A9 in stems, leading to a reduction of bioactive GA in stems but an elevation in leaves at the jointing stage. Strikingly, Rht24b reduced plant height, but had no yield penalty; it significantly increased nitrogen use efficiency, photosynthetic rate and the expression of related genes. Evolutionary analysis demonstrated that Rht24b first appeared in wild emmer and was detected in more than half of wild emmer and wheat accessions, suggesting that it underwent both natural and artificial selection. These findings uncover an important genetic resource for wheat breeding and also provide clues for dissecting the regulatory mechanisms underlying GA-mediated morphogenesis and yield formation.

2.
Plant Dis ; 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645309

RESUMO

Wheat pathogens, especially those causing powdery mildew and stripe rust, seriously threaten yield worldwide. Utilizing newly identified disease resistance genes from wheat relatives is an effective strategy to minimize disease damage. In this study, chromosome-specific molecular markers for the 3Sb and 7Sb chromosomes of Aegilops bicornis were developed using PCR-based landmark unique gene (PLUG) primers for screening wheat-Ae. bicornis progenies. Fluorescence in situ hybridization (FISH) was performed to further identify wheat-Ae. bicornis progenies using oligonucleotides probes Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-(GAA)8. After establishing Ae. bicornis 3Sb and 7Sb chromosome-specific FISH markers, Holdfast (common wheat)-Ae. bicornis 3Sb addition, 7Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, 3Sb(3D) substitution, 7Sb(7A) substitution, and 7Sb(7B) substitution lines were identified by the molecular and cytological markers. Stripe rust and powdery mildew resistance, along with agronomic traits were investigated to evaluate the breeding potential of these lines. Holdfast and Holdfast-Ae. bicornis progenies were all highly resistant to stripe rust, indicating that the stripe rust resistance might derive from Holdfast. However, Holdfast-Ae. bicornis 3Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, and 3Sb(3D) substitution lines showed high resistance to powdery mildew while Holdfast was highly susceptible, indicating that chromosome 3Sb of Ae. bicornis carries previously unknown powdery mildew resistance gene(s). Additionally, the transfer of the 3Sb chromosome from Ae. bicornis to wheat significantly increased tiller number, but chromosome 7Sb has a negative effect on agronomic traits. Therefore, wheat germplasm containing Ae. bicornis chromosome 3Sb has potential to contribute to improving powdery mildew resistance and tiller number during wheat breeding.

3.
Front Plant Sci ; 12: 708551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381484

RESUMO

Aegilops sharonensis, a wild relative of wheat, harbors diverse disease and insect resistance genes, making it a potentially excellent gene source for wheat improvement. In this study, we characterized and evaluated six wheat-A. sharonensis derivatives, which included three disomic additions, one disomic substitution + monotelosomic addition and two disomic substitution + disomic additions. A total of 51 PLUG markers were developed and used to allocate the A. sharonensis chromosomes in each of the six derivatives to Triticeae homoeologous groups. A set of cytogenetic markers specific for A. sharonensis chromosomes was established based on FISH using oligonucleotides as probes. Molecular cytogenetic marker analysis confirmed that these lines were a CS-A. sharonensis 2Ssh disomic addition, a 4Ssh disomic addition, a 4Ssh (4D) substitution + 5SshL monotelosomic addition, a 6Ssh disomic addition, a 4Ssh (4D) substitution + 6Ssh disomic addition and a 4Ssh (4D) substitution + 7Ssh disomic addition line, respectively. Disease resistance investigations showed that chromosome 7Ssh of A. sharonensis might harbor a new powdery mildew resistance gene, and therefore it has potential for use as resistance source for wheat breeding.

4.
BMC Genomics ; 22(1): 174, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706703

RESUMO

BACKGROUND: Phosphorus (P) is an important in ensuring plant morphogenesis and grain quality, therefore an efficient root system is crucial for P-uptake. Identification of useful loci for root morphological and P uptake related traits at seedling stage is important for wheat breeding. The aims of this study were to evaluate phenotypic diversity of Yangmai 16/Zhongmai 895 derived doubled haploid (DH) population for root system architecture (RSA) and biomass related traits (BRT) in different P treatments at seedling stage using hydroponic culture, and to identify QTL using 660 K SNP array based high-density genetic map. RESULTS: All traits showed significant variations among the DH lines with high heritabilities (0.76 to 0.91) and high correlations (r = 0.59 to 0.98) among all traits. Inclusive composite interval mapping (ICIM) identified 34 QTL with 4.64-20.41% of the phenotypic variances individually, and the log of odds (LOD) values ranging from 2.59 to 10.43. Seven QTL clusters (C1 to C7) were mapped on chromosomes 3DL, 4BS, 4DS, 6BL, 7AS, 7AL and 7BL, cluster C5 on chromosome 7AS (AX-109955164 - AX-109445593) with pleiotropic effect played key role in modulating root length (RL), root tips number (RTN) and root surface area (ROSA) under low P condition, with the favorable allele from Zhongmai 895. CONCLUSIONS: This study carried out an imaging pipeline-based rapid phenotyping of RSA and BRT traits in hydroponic culture. It is an efficient approach for screening of large populations under different nutrient conditions. Four QTL on chromosomes 6BL (2) and 7AL (2) identified in low P treatment showed positive additive effects contributed by Zhongmai 895, indicating that Zhongmai 895 could be used as parent for P-deficient breeding. The most stable QTL QRRS.caas-4DS for ratio of root to shoot dry weight (RRS) harbored the stable genetic region with high phenotypic effect, and QTL clusters on 7A might be used for speedy selection of genotypes for P-uptake. SNPs closely linked to QTLs and clusters could be used to improve nutrient-use efficiency.


Assuntos
Fósforo , Triticum , Mapeamento Cromossômico , Hidroponia , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
5.
Theor Appl Genet ; 133(8): 2431-2450, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451598

RESUMO

KEY MESSAGE: We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Melhoramento Vegetal/métodos , Reação em Cadeia da Polimerase/métodos , Triticum/genética , Alelos , Farinha/normas , Genes de Plantas , Marcadores Genéticos , Genótipo , Germinação , Fenótipo , Locos de Características Quantitativas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
6.
Theor Appl Genet ; 132(11): 3191-3200, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31515582

RESUMO

KEY MESSAGE: Genetic dissection uncovered a major QTL QTKW.caas-4BS corresponding with a 483 kb deletion that included genes ZnF, EamA and Rht-B1. This deletion was associated with increased grain weight and semi-dwarf phenotype. Previous studies identified quantitative trait loci (QTL) for thousand kernel weight (TKW) in the region spanning the Rht-B1 locus in wheat (Triticum aestivum L.). We recently mapped a major QTL QTKW.caas-4BS for TKW spanning the Rht-B1 locus in a recombinant inbred line (RIL) population derived from Doumai/Shi 4185 using the wheat 90K array. The allele from Doumai at QTKW.caas-4BS significantly increased TKW and kernel number per spike, and conferred semi-dwarf trait, which was beneficial to improve grain yield without a penalty to lodging. To further dissect QTKW.caas-4BS, we firstly re-investigated the genotypes and phenotypes of the RILs and confirmed the QTL using cleaved amplified polymorphic sequence (CAPS) markers developed from flanking SNP markers IWA102 and IWB54814. The target sequences of the CAPS markers were used as queries to BLAST the wheat reference genome RefSeq v1.0 and hit an approximate 10.4 Mb genomic region. Based on genomic mining and SNP loci from the wheat 660K SNP array in the above genomic region, we developed eight new markers and narrowed QTKW.caas-4BS to a genetic interval of 1.5 cM. A 483 kb deletion in Doumai corresponded with QTKW.caas-4BS genetically, including three genes ZnF, EamA and Rht-B1. The other 15 genes with either differential expressions and/or sequence variations between parents were also potential candidate genes for QTKW.caas-4BS. The findings not only provide a toolkit for marker-assisted selection of QTKW.caas-4BS but also defined candidate genes for further functional analysis.


Assuntos
Locos de Características Quantitativas , Sementes/fisiologia , Deleção de Sequência , Triticum/genética , Alelos , Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
7.
BMC Plant Biol ; 19(1): 168, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035920

RESUMO

BACKGROUND: Identification of loci for grain yield (GY) and related traits, and dissection of the genetic architecture are important for yield improvement through marker-assisted selection (MAS). Two genome-wide association study (GWAS) methods were used on a diverse panel of 166 elite wheat varieties from the Yellow and Huai River Valleys Wheat Zone (YHRVWD) of China to detect stable loci and analyze relationships among GY and related traits. RESULTS: A total of 326,570 single nucleotide polymorphism (SNP) markers from the wheat 90 K and 660 K SNP arrays were chosen for GWAS of GY and related traits, generating a physical distance of 14,064.8 Mb. One hundred and twenty common loci were detected using SNP-GWAS and Haplotype-GWAS, among which two were potentially functional genes underpinning kernel weight and plant height (PH), eight were at similar locations to the quantitative trait loci (QTL) identified in recombinant inbred line (RIL) populations in a previous study, and 78 were potentially new. Twelve pleiotropic loci were detected on eight chromosomes; among these the interval 714.4-725.8 Mb on chromosome 3A was significantly associated with GY, kernel number per spike (KNS), kernel width (KW), spike dry weight (SDW), PH, uppermost internode length (UIL), and flag leaf length (FLL). GY shared five loci with thousand kernel weight (TKW) and PH, indicating significantly affected by two traits. Compared with the total number of loci for each trait in the diverse panel, the average number of alleles for increasing phenotypic values of GY, TKW, kernel length (KL), KW, and flag leaf width (FLW) were higher, whereas the numbers for PH, UIL and FLL were lower. There were significant additive effects for each trait when favorable alleles were combined. UIL and FLL can be directly used for selecting high-yielding varieties, whereas FLW can be used to select spike number per unit area (SN) and KNS. CONCLUSIONS: The loci and significant SNP markers identified in the present study can be used for pyramiding favorable alleles in developing high-yielding varieties. Our study proved that both GWAS methods and high-density genetic markers are reliable means of identifying loci for GY and related traits, and provided new insight to the genetic architecture of GY.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Triticum/genética , Alelos , China , Marcadores Genéticos , Pleiotropia Genética , Variação Genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Desenvolvimento Vegetal/genética , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/genética , Triticum/crescimento & desenvolvimento
8.
Theor Appl Genet ; 131(9): 1903-1924, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29858949

RESUMO

KEY MESSAGE: We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Marcadores Genéticos , Pleiotropia Genética , Fenótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...