RESUMO
BACKGROUND: The proteasome in eukaryotic cells can degrade a variety of proteins and plays an important role in regulating the cell cycle, cell survival and apoptosis. The proteasome receives much attention as a potential chemotherapeutic target for treatment of a variety of infectious parasitic diseases, but few studies of proteasomes have been done on parasitic nematodes. METHODS: A proteasomal ß5 subunit encoding gene (named Hc-pbs-5) and its inferred product (Hc-PBS-5) in Haemonchus contortus were identified and characterized in this study. Then, the transcriptional profiles and anatomical expression were studied using an integrated molecular approach. Finally, a specific proteasome inhibitor bortezomib (BTZ), together with RNA interference (RNAi), was employed to assess the function of Hc-PBS-5. RESULTS: Bioinformatic analysis revealed that the coding sequence of Hc-pbs-5 was 855 bp long and encoded 284 amino acids (aa). The predicted protein (Hc-PBS-5) had core conservative sequences (65-250 aa) belonging to N-terminal nucleophile (Ntn) family of hydrolases. Real-time PCR results revealed that Hc-pbs-5 was continuously transcribed in eight developmental stages with higher levels at the infective third-stage larvae (L3s) and adult males of H. contortus. Immunohistochemical results revealed that Hc-PBS-5 was expressed in intestine, outer cuticle, muscle cells under the outer cuticle, cervical glands and seminal vesicles of male adults and also in intestine, outer cuticle, cervical glands, uterine wall, eggs and ovaries of female adults of H. contortus. BTZ could reduce proportions of egg hatching, and the fourth-stage larvae (L4s) developed from the exsheathed L3s (xL3s) of H. contortus. In addition, silencing Hc-pbs-5 by soaking the specific double-stranded RNA (dsRNA) could decrease the transcription of Hc-pbs-5 and result in fewer xL3s developing to L4s in vitro. CONCLUSIONS: These results indicate that proteasomal ß5 subunit plays an important role in the growth, development and life span of H. contortus.
Assuntos
Haemonchus , Animais , Feminino , Masculino , Haemonchus/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Longevidade , Interferência de RNA , Biologia Computacional , Larva/genética , Larva/metabolismoRESUMO
BACKGROUND: Psoriasis is one of the most frequent inflammatory skin conditions and could be treated via tele-dermatology, provided that the current lack of reliable tools for objective severity assessments is overcome. Psoriasis Area and Severity Index (PASI) has a prominent level of subjectivity and is rarely used in real practice, although it is the most widely accepted metric for measuring psoriasis severity currently. OBJECTIVE: This study aimed to develop an image-artificial intelligence (AI)-based validated system for severity assessment with the explicit intention of facilitating long-term management of patients with psoriasis. METHODS: A deep learning system was trained to estimate the PASI score by using 14,096 images from 2367 patients with psoriasis. We used 1962 patients from January 2015 to April 2021 to train the model and the other 405 patients from May 2021 to July 2021 to validate it. A multiview feature enhancement block was designed to combine vision features from different perspectives to better simulate the visual diagnostic method in clinical practice. A classification header along with a regression header was simultaneously applied to generate PASI scores, and an extra cross-teacher header after these 2 headers was designed to revise their output. The mean average error (MAE) was used as the metric to evaluate the accuracy of the predicted PASI score. By making the model minimize the MAE value, the model becomes closer to the target value. Then, the proposed model was compared with 43 experienced dermatologists. Finally, the proposed model was deployed into an app named SkinTeller on the WeChat platform. RESULTS: The proposed image-AI-based PASI-estimating model outperformed the average performance of 43 experienced dermatologists with a 33.2% performance gain in the overall PASI score. The model achieved the smallest MAE of 2.05 at 3 input images by the ablation experiment. In other words, for the task of psoriasis severity assessment, the severity score predicted by our model was close to the PASI score diagnosed by experienced dermatologists. The SkinTeller app has been used 3369 times for PASI scoring in 1497 patients from 18 hospitals, and its excellent performance was confirmed by a feedback survey of 43 dermatologist users. CONCLUSIONS: An image-AI-based psoriasis severity assessment model has been proposed to automatically calculate PASI scores in an efficient, objective, and accurate manner. The SkinTeller app may be a promising alternative for dermatologists' accurate assessment in the real world and chronic disease self-management in patients with psoriasis.
Assuntos
Inteligência Artificial , Psoríase , Humanos , Índice de Gravidade de Doença , Psoríase/diagnóstico , Doença Crônica , Inquéritos e QuestionáriosRESUMO
We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft x-ray regime. We use the tricellulose acetate (C_{9}H_{16}O_{8}) foam of 2 mg/cm^{3} density and 1 mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. We diagnose the plasma parameters to be T_{e}=17 eV and n_{e}=4×10^{20} cm^{-3}. We observe the average charge states passing through the plasma to be higher than those predicted by the commonly used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects, which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. The underlying physics is actually the balancing of the lifetime of excited states versus the collisional frequency. In previous measurement with partially ionized plasma from gas discharge and z pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we are able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-glass laser radiation. The finding is important for heavy ion beam driven high-energy-density physics and fast ignitions. The method provides a new approach to precisely address the beam-plasma interaction issues with high-intensity short-pulse lasers in dense plasma regimes.
RESUMO
Background: Previous research has demonstrated that poor controlled diabetic showed higher prevalence of AP compared to well-controlled patients and endodontic treatment may improve metabolic control of patients with diabetes. The purpose of this trial was to clinically assess the effects of endodontic treatment on glycemic control in patients with type 2 diabetes mellitus (T2DM) and apical periodontitis (AP). Study design: For present trial, AP + T2DM with patients insulin injection (Group1, G1,n = 65), AP + T2DM patients with hypoglycaemic agents (Group2, G2, n = 82), and AP patients without DM (Group3, G3, n = 86) were enrolled. After demographic characteristics and clinical examination were achieved, root canal treatment (RCT) was performed for each patient. Subjects were followed up at 2-week, 3- and 6-month. At each visit, blood samples were taken and clinical laboratory studies were performed. At 6-month follow-up, Periapical Index (PAI) score was used to assess the periapical status. Results: A total of 237 subjects who met the including criteria were allocated in three groups and 223 subjects (94.1%) completed the treatments and the follow-up assessments. After treatment, taking PAI into consideration, both groups showed significant improvement of AP in each group (P < 0.05). Patients in G3 had a continued significant lower concentration of fasting plasma glucose (FPG) levels at follow-up (P < 0.05). A continued reduction of hemoglobin glycation (HbA1c) was observed in most of time points (P < 0.05). Throughout the trial, there are also significant changes in inflammatory factors in short-term. Conclusion: Endodontic therapy improved AP healing, glycemic control and systemic inflammation in patients with T2DM and/or AP in each group. However, a continued reduction in inflammatory factors and decreasing of HbA1c in short-term could not be observed in this trial.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Yinma Jiedu Granule (YMJD) is a traditional Chinese patent medicine (CPM), which has been proved to have anti-inflammatory effects and therapeutical effects on obstructive pulmonary disease. AIM OF STUDY: The purpose of the current investigation is to find out if YMJD can alleviate acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats and its underlying mechanisms. MATERIALS AND METHODS: Rats were treated with either vehicle or YMJD for 14 consecutive days, and two hours after the last administration, the rat model of ALI was induced by the intratracheal instillation of LPS. HPLC was applied for the fingerprint analysis of YMJD. The efficacy and molecular mechanisms were investigated. RESULTS: The results showed that treatment with YMJD improved the general state of rats, reduced weight loss and serum lactate (LA) levels, attenuated pulmonary edema and pathological damage of the lung tissue. Moreover, we found that YMJD effectively decreased the infiltration of white blood cells (WBC), lymphocyte (LYM), mononuclear cells (MON) and neutrophils (NEUT) in bronchoalveolar lavage fluid (BALF), reduced the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the lung and inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression. We also found that YMJD could increase the activity of superoxide dismutase (SOD) and reduce the malondialdehyde (MDA) level in the lung tissue of rats. By employing RNA-sequencing, we have identified that JAK2/STAT1 is an important pathway that is involved in the lung protection of YMJD, and further western blot assay verified that YMJD could effectively inhibit the activation of the JAK2/STAT1 pathway. CONCLUSIONS: YMJD could attenuate LPS-induced ALI through suppressing inflammation and oxidative stress in the lung tissue of rats, associating with the inhibition of JAK2/STAT1 activation. These findings provide evidence for the clinical use of YMJD for treatment of inflammatory pulmonary diseases like ALI.
RESUMO
BACKGROUND: This study aimed to investigate correlations of the severity of radiation-induced oral mucositis (RIOM) with epidermal growth factor (EGF) and inflammatory cytokines in patients with head and neck cancer (HNC). METHODS: Levels of inflammatory cytokines and EGF in saliva of HNC patients were measured. Correlations of inflammatory cytokines and EGF levels with RIOM severity and pain degree, and their diagnostic values on RIOM severity were determined. RESULTS: Elevated IFN-γ, TNF-α, IL-2, and IL-6 levels, and reduced IL-4, IL-10, and EGF levels were found in patients with severe RIOM. IFN-γ, TNF-α, IL-2, and IL-6 were positively correlated with RIOM severity, while IL-10, IL-4, and EGF were negatively correlated with it. All factors were effective in predicting the severity of RIOM. CONCLUSION: IFN-γ, TNF-α, IL-2, and IL-6 in saliva of patients with HNC are positively correlated with the severity of RIOM, and IL-4, IL-10, and EGF were negatively correlated with it.
RESUMO
OBJECTIVES: Fluoxetine has been used as the first line for the therapy of depression. However, lack of therapeutic efficacy and time lag still limit the application of fluoxetine. Gap junction dysfunction is a potentially novel pathogenic mechanism for depression. To clarify the mechanism underlying these limitations, we investigated whether gap junction was related to the antidepressant effects of fluoxetine. METHODS AND KEY FINDINGS: After chronic unpredictable stress (CUS), animals showed decreases in gap junction intracellular communication (GJIC). Treatment with fluoxetine 10 mg/kg significantly improved GJIC and anhedonia of rats until six days. These results indicated that fluoxetine improved gap junction indirectly. Furthermore, to test the role of gap junction on antidepressant effects of fluoxetine, we blocked gap junction using carbenoxolone (CBX) infusion in the prefrontal cortex. CBX dampened fluoxetine-induced decrease in immobility time of mice in tail suspension test (TST). CONCLUSIONS: Our study suggested that gap junction dysfunction blocks antidepressant effects of fluoxetine, contributing to understanding the mechanism underlying the time lag of fluoxetine.
RESUMO
Developing fire-retardant building materials is vital in reducing fire loss. The design and preparation of novel fire-retardant coatings merely require the adhesion of flame retardants with high fire-retardant characteristics on the surface, which is significantly more economical than adding excessive amounts of flame retardants into bulk building materials. Meanwhile, fire-retardant coating has excellent performance because it can block the self-sustaining mechanisms of heat and mass transfer over combustion interfaces. In recent years, research of fire-retardant coatings for building materials has been subject to rapid development, and a variety of novel environmentally benign fire-retardant coatings have been reported. Nonetheless, as the surface characteristics of various flammable building materials are contrastively different, selecting chemical ingredients and controlling the physical morphology of fire-retardant coatings for specific building materials is rather complicated. Thus, it is urgent to review the ideas and preparation methods for new fire-retardant coatings. This paper summarizes the latest research progress of fire-retardant building materials, focusing on the compositions and performances of fire-retardant coatings, as well as the principles of their bottom-up design and preparation methods on the surface of building materials.
Assuntos
Incêndios , Retardadores de Chama , Temperatura Alta , Materiais de ConstruçãoRESUMO
Background: Ovarian cancer (OC) is the most lethal gynecologic malignancy, yet the clinical results for OC patients are still variable. Therefore, we examined how elafin expression affects the patients' prognoses and immunotherapy responses in OC, which may facilitate treatment selection and improve prognosis. Methods: The elafin mRNA expression profile was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus. Elafin's prognostic potential and its relationship with clinical variables were investigated using Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves as well as univariate and multivariate Cox regression models. As validation, protein expression in the tumor and adjacent tissues of OC patients was investigated by using immunohistochemistry (IHC). Comprehensive analyses were then conducted to explore the correlation between immune infiltration and elafin expression. Results: A higher mRNA expression of elafin was associated with an unfavorable prognosis in TCGA cohort and was validated in GSE31245 and IHC. Moreover, elafin was indicated as an independent risk factor for OC. A significantly higher protein expression of elafin was detected in the adjacent tissues of OC patients with shorter overall survival (OS). The immune-related pathways were mainly enriched in the high-elafin-mRNA-expression group. However, the mRNA expression of elafin was favorably correlated with indicators of the immune filtration and immunotherapy response, which also proved better immunotherapy outcomes. Conclusion: The high elafin expression was associated with an unfavorable OS, while it also indicated better immunotherapy responses. Thus, the detection of elafin is beneficial to diagnosis and treatment selection.
Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Humanos , Feminino , Elafina/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Imunoterapia , Estimativa de Kaplan-MeierRESUMO
Pregnancy complications are more likely to occur in obese women because of defective decidualization. However, the specific mechanism of glycolysis in decidual modulation associated with obesity remains unknown. Therefore, we explored the role of glycolysis in the endometrium of obese pregnant mice during decidualization. C57BL/6J mice were fed a high-fat diet (HFD) to induce obesity. All obesity related parameters were significantly higher in the HFD mice than control. Furthermore, the HFD mice had fewer implantation sites, a smaller decidual area growth, and decreased decidualization marker protein expression than control. The HFD mice also had significantly decreased lactate production and glycolytic enzyme expression. To confirm the functional role of glycolysis during the decidual period in obese pregnant mice, we extracted endometrial stromal cells (ESCs) and treated them with oleic acid (OA) and palmitic acid (PA) to mimic a high-fat environment. Decidualization and glycolysis were significantly restricted in the OA-and PA-treated groups. Moreover, we administered a glycolytic inhibitor, 2-DG, and an agonist, pioglitazone. 2-DG treatment considerably decreased the cells' glycolysis and decidualization. However, pioglitazone treatment improved glycolysis and alleviated defective decidualization. In conclusion, obesity-induced endometrial glycolysis modifications and key glycolytic enzyme downregulation during early pregnancy might cause abnormal decidualization, leading to an unsustainable pregnancy.
Assuntos
Decídua , Endométrio , Gravidez , Feminino , Animais , Camundongos , Decídua/metabolismo , Pioglitazona/metabolismo , Camundongos Endogâmicos C57BL , Endométrio/metabolismo , Glicólise , Obesidade/complicações , Obesidade/metabolismoRESUMO
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
RESUMO
This study was designed to investigate the impact of the preexisting use of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) on the cellular immune response in peripheral blood and the clinical outcomes of patients with acute ischemic stroke. We retrospectively collected clinical data from a cohort of 69 patients with premorbid beta-blockers and 56 patients with premorbid ACEIs/ARBs. Additionally, we selected a cohort of 107 patients with acute ischemic stroke to be the control of the same age and sex. We analyzed cellular immune parameters in peripheral blood 1 day after the appearance of symptoms, including the frequencies of circulating white blood cell subpopulations, the neutrophil-to-lymphocyte ratio (NLR), and the lymphocyte-to-monocyte ratio (LMR). We found that the count of lymphocytes and the lymphocyte-to-monocyte ratio were significantly higher in the peripheral blood of patients treated with beta-blockers before stroke than in matched controls. However, the premorbid use of ACEIs/ARBs did not considerably impact the circulating immune parameters listed above in patients with acute ischemic stroke. Furthermore, we found that premorbid use of beta-blockers or ACEIs/ARBs did not significantly change functional outcomes in patients 3 months after the onset of stroke. These results suggest that premorbid use of beta-blockers, but not ACEIs/ARBs, reversed lymphopenia associated with acute ischemic stroke. As cellular immune changes in peripheral blood could be an independent predictor of stroke prognosis, more large-scale studies are warranted to further verify the impact of premorbid use of beta-blockers or ACEIs/ARBs on the prognosis of patients with ischemic stroke. Our research is beneficial to understanding the mechanism of the systemic immune response induced by stroke and has the potential for a therapeutic strategy in stroke interventions and treatment.
Assuntos
Antagonistas Adrenérgicos beta , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , AVC Isquêmico , Humanos , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Estudos RetrospectivosRESUMO
Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections. Here we report that geminiviruses counteract activated autophagy-mediated antiviral defense in plant cells through the C2 proteins they encode. We found that, in Nicotiana benthamiana plants, tomato leaf curl Yunnan virus (TLCYnV) infection upregulated the transcription levels of autophagy-related genes (ATGs). Overexpression of NbATG5, NbATG7, or NbATG8a in N. benthamiana plants decreased TLCYnV accumulation and attenuated viral symptoms. Interestingly, transgenic overexpression of NbATG7 promoted the growth of N. benthamiana plants and enhanced plant resistance to TLCYnV. We further revealed that the C2 protein encoded by TLCYnV directly interacted with the ubiquitin-activating domain of ATG7. This interaction competitively disrupted the ATG7-ATG8 binding in N. benthamiana and Solanum lycopersicum plants, thereby inhibiting autophagy activity. Furthermore, we uncovered that the C2-mediated autophagy inhibition mechanism was conserved in three other geminiviruses. In summary, we discovered a novel counter-defensive strategy employed by geminiviruses that enlists their C2 proteins as disrupters of ATG7-ATG8 interactions to defeat antiviral autophagy.
RESUMO
BACKGROUND: Neonatal hypoxic ischemic encephalopathy (HIE) is a main factor of neonatal death and permanent neurologic deficit. This study sought to investigate the functional role of hsa_circ_0007706 (circ_0007706) in modulating neonatal HIE. METHODS: In vitro HIE cell model was established in hBMVECs under the condition of oxygenglucose deprivation/reperfusion (OGD/R) treatment. qRT-PCR analysis was utilized for detecting the level of circ_0007706, microRNA-579-3p (miR-579-3p) and TNF receptor-associated factor 6 (TRAF6). RNase R treatment and Oligo (dT) 18 primers were employed to verify the features of circ_0007706, and nucleocytoplasmic separation was conducted for determining the location of circ_0007706. CCK-8 assay, EdU assay, and flow cytometry were carried out to measure cell proliferation and apoptosis, respectively. The protein expression of Bax, Bcl-2 and TRAF6 was detected using western blot. Meanwhile, the levels of the pro-inflammatory factors were determined via ELISA. SOD activity and MDA level were assessed via the respective kits. Besides, dual-luciferase reporter assay and RNA pull-down were used to identify the association between miR-579-3p and circ_0007706 or TRAF6. RESULTS: Circ_0007706 was elevated in HIE newborns and OGD/R cell model. Knockdown of circ_0007706 greatly alleviated OGD/R-induced injury, inflammatory response and oxidative stress. We found that miR-579-3p was a direct target of circ_0007706, and miR-579-3p inhibitor could reverse the impact of circ_0007706 knockdown on OGD/R-caused cell damage in hBMVECs. In addition, miR-579-3p directly interacted with TRAF6, and the protective effects of miR-579-3p on OGD/R-induced injury in hBMVECs were harbored by TRAF6 overexpression. Our data indicated that circ_0007706 knockdown could downregulate the expression of TRAF6 by sponging miR-579-3p in OGD/R-treated hBMVECs. CONCLUSION: This study demonstrated that circ_0007706 knockdown assuaged HIE-induced injury by decreasing TRAF6 expression via targeting miR-579-3p.
Assuntos
Hipóxia-Isquemia Encefálica , MicroRNAs , Recém-Nascido , Humanos , Regulação para Baixo , Hipóxia-Isquemia Encefálica/genética , Fator 6 Associado a Receptor de TNF/genética , Apoptose , Proliferação de Células/genética , Glucose , MicroRNAs/genéticaRESUMO
RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals. However, it is not known whether two other RNA quality control pathways, nonstop decay and no-go decay, are capable of restricting viruses in plants. Here, we show that the evolutionarily conserved Pelota-Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae (termed potyvirids), the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide. Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron, which is conserved in almost all potyvirids. This allows Pelota to target the virus and act as a viral restriction factor. Furthermore, Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta. Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation. These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants.
Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Sumoilação , RNA , Plantas , PotyvirusRESUMO
Toxicity screening and risk assessment of an overwhelmingly large and ever-increasing number of chemicals are vitally essential for ecological safety and human health. Genotoxicity is particularly important because of its association with mutagenicity, carcinogenicity and cancer. Phosphorylated histone H2AX (γH2AX) is an early sensitive genotoxic biomarker. It is therefore highly desirable to develop analytical methods for the detection of trace γH2AX to enable screening and assessment of genotoxicity. Here, we developed a novel cathodic photoelectrochemical (PEC) immunoassay with dual signal amplification for the rapid and ultrasensitive detection of γH2AX in cell lysates. A sandwich immuno-reaction targeting γH2AX was first carried out on a 96-well plate, using a secondary antibody/gold nanoparticle/glucose oxidase conjugate as the labeled detection antibody. The conjugate increased the production of H2O2 and thus provided the first mechanism of signal amplification. The immuno-reaction product containing H2O2 was then detected on a photocathode prepared from Bi2+xWO6 rich in oxygen vacancies, with H2O2 acting as electron acceptor. The oxygen vacancies acted as both adsorption and activation sites of H2O2 and thus enhanced the photocurrent, which provided another mechanism of signal amplification. As a result, an ultrasensitive immunoassay for γH2AX determination was established with a limit of detection of 6.87 pg/mL (S/N = 3) and a wide linear range from 0.01 to 500 ng/mL. The practicability of this assay was verified by detecting γH2AX in cell lysates exposed to known genotoxic chemicals. Our work offers a promising tool for the screening of genotoxic chemicals and opening a new avenue toward environmental risk assessment.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Peróxido de Hidrogênio , Ouro , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Biomarcadores , Dano ao DNA , Técnicas Eletroquímicas/métodos , Limite de DetecçãoRESUMO
Pain is a common clinical symptom among patients. Although various opioid analgesics have been developed, their side effects hinder their application. This study aimed to develop a novel opioid analgesic, HAGD (H-Tyr-D-AIa-GIy-Phe-NH2), with limited side effects. In vivo studies on mouse models as well as in vitro studies on Chinese hamster ovary (CHO) cells expressing human mu, delta, or kappa opioid receptors (CHOhMOP, CHOhDOP, and CHOhKOP, respectively) and human sperm were conducted. Compared with subcutaneous morphine (10 mg/kg), subcutaneous HAGD (10 mg/kg) produced equipotent or even greater antinociception with a prolonged duration by activating mu/delta opioid receptors in preclinical mouse pain models. The analgesic tolerance, rewarding effects (i.e., conditioned place preference and acute hyperlocomotion), and gastrointestinal transit inhibition of HAGD were significantly reduced compared with those of morphine. Both HAGD and morphine exhibited a withdrawal response and had no impacts on motor coordination. In CHOhMOP and CHOhDOP, HAGD showed specific and efficient intracellular Ca2+ stimulation. HAGD had minimal impact on human sperm motility in vitro, whereas 1 × 10-7 and 1 × 10-8 mol/L of morphine significantly declined sperm motility at 3.5 h. Overall, HAGD may serve as a promising antinociceptive compound.
Assuntos
Analgésicos Opioides , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Cricetinae , Humanos , Masculino , Camundongos , Animais , Analgésicos Opioides/efeitos adversos , Receptores Opioides delta , Células CHO , Motilidade dos Espermatozoides , Cricetulus , Sêmen , Morfina/efeitos adversos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Receptores Opioides mu/agonistasRESUMO
CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.