Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Neural Regen Res ; 18(3): 634-642, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018188

RESUMO

Chronic spinal cord compression (CSCC) is induced by disc herniation and other reasons, leading to movement and sensation dysfunction, with a serious impact on quality of life. Spontaneous disc herniation rarely occurs in rodents, and therefore establishing a chronic spinal cord compression (CSCC) animal model is of crucial importance to explore the pathogenesis and treatment of CSCC. The absence of secreted protein, acidic, and rich in cysteine (SPARC) leads to spontaneous intervertebral disc degeneration in mice, which resembles human disc degeneration. In this study, we evaluated whether SPARC-null mice may serve as an animal model for CSCC. We performed rod rotation test, pain threshold test, gait analysis, and Basso Mouse Scale score. Our results showed that the motor function of SPARC-null mice was weakened, and magnetic resonance images revealed compression at different spinal cord levels, particularly in the lumbar segments. Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes, activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype; it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway. Notably, these findings are characteristics of CSCC. Therefore, we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation.

2.
Anal Chim Acta ; 1225: 340203, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36038232

RESUMO

Early rapid screening diagnostic assay is essential for the identification, prevention, and evaluation of many contagious or refractory diseases. The optical density transducer created by platinum nanoparticles (PtNPs) (OD-CRISPR) is reported in the present research as a cheap and easy-to-execute CRISPR/Cas12a-based diagnostic platform. The OD-CRISPR uses PtNPs, with ultra-high peroxidase-mimicking activity, to increase the detection sensitivity, thereby enabling the reduction of detection time and cost. The OD-CRISPR can be utilized to identify nucleic acid or protein biomarkers within an incubation time of 30-40min in clinical specimens. In the case of taking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene as an instance, when compared to a quantitative reverse transcription-polymerase chain reaction (RT-qPCR), the OD-CRISPR test attains a sensitivity of 79.17% and a specificity of 100%. In terms of detecting prostate-specific antigen (PSA), aptamer-based OD-CRISPR assay achieves the least discoverable concentration of 0.01 ng mL-1. In general, the OD-CRISPR can detect nucleic acid and protein biomarkers, and is a potential strategy for early rapid screening diagnostic tools.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ácidos Nucleicos , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificação de Ácido Nucleico , Platina , SARS-CoV-2
3.
Front Oncol ; 12: 949656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992800

RESUMO

Colorectal cancer (CRC) is the leading malignant tumor in terms of morbidity and mortality worldwide, and its pathogenesis involves multiple factors, including environment, lifestyle, and genetics. Continuing evidence suggests that circular RNAs (circRNAs), as a novel non-coding RNA, constitute an important genetic variable in the pathogenesis of CRC. These circRNAs with covalently closed-loop structures exist objectively in organisms. They not only have the biological functions of regulating the expression of target genes, changing the activity of proteins, and translating proteins, but also play a key role in the proliferation, invasion, migration, and apoptosis of tumor cells. CRC is one of the most common cancers in which circRNAs are involved in tumorigenesis, metastasis, and drug resistance, and circRNAs have been demonstrated to function through crosstalk with multiple signaling pathways. Therefore, this review summarizes the biological and carcinogenic functions of circRNAs and their related PI3K/AKT, MAPK, Notch, JAK/STAT, Hippo/YAP, WNT/ß-catenin, and VEGF signaling pathways in CRC. We further explore the clinical value of circRNAs and important signaling proteins in the diagnosis, prognosis, and treatment of CRC.

4.
BMC Med Genomics ; 15(1): 177, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941638

RESUMO

BACKGROUND: Increasing evidence indicates that the immune microenvironment plays a key role in the genesis and progression of colorectal cancer (CRC). This study aimed to establish an immune-related gene (IRG) signature and determine its clinical prognostic value in patients with CRC. METHODS: The RNA sequencing and associated clinical data of CRC were downloaded from The Cancer Genome Atlas (TCGA) database. We then screened for differentially expressed IRGs by intersecting with IRGs obtained from the Immunology Database and Analysis Portal. Functional enrichment analyses were carried out to determine the potential biological functions and pathways of the IRGs. We also explored the specific molecular mechanisms of the IRGs by constructing regulatory networks. Prognostic IRGs were obtained by LASSO regression analysis, and subsequently, gene models were constructed in the TCGA dataset to confirm the predictive capacity of these IRGs. Finally, we used the TIMER tool to assess the immune properties of prognostic IRGs and correlate them with immune cells. RESULTS: We identified 409 differentially expressed IRGs in patients with CRC. Kyoto Encyclopaedia of Genes and Genomes and Gene Ontology enrichment analyses suggested that these differentially expressed IRGs were significantly related to 102 cancer signalling pathways and various biological functions. Based on the prediction and interaction results, we obtained 59 TF-IRG, 48 miRNA-IRG, and 214 drug-IRG interaction networks for CRC. Four prognostic genes (POMC, TNFRSF19, FGF2, and SCG2) were developed by integrating 47 survival-related IRGs and 42 characteristic CRC genes. The results of gene model showed that patients in the low risk group had better survival outcomes compared to those in the high risk group. The expression of POMC, TNFRSF19, FGF2, and SCG2 was significantly correlated with immune cells. CONCLUSION: This study identified some valid IRGs, and these findings can provide strong evidence for precision immunotherapy in patients with CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Detecção Precoce de Câncer , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Imunoterapia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Prognóstico , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transcriptoma , Microambiente Tumoral
5.
Front Med (Lausanne) ; 9: 854788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646985

RESUMO

Objective: The long-term impact of COVID-19 on patient health has been a recent focus. This study aims to determine the persistent symptoms and psychological conditions of patients hospitalized with COVID-19 15 months after onset, that patients first developed symptoms. The potential risk factors were also explored. Methods: A cohort of COVID-19 patients discharged from February 20, 2020 to March 31, 2020 was recruited. Follow-ups were conducted using validated questionnaires and psychological screening scales at 15 months after onset to evaluate the patients' health status. The risk factors for long-term health impacts and their associations with disease severity was analyzed. Findings: 534 COVID-19 patients were enrolled. The median age of the patients was 62.0 years old (IQR 52.0-70.0) and 295 were female (55.2%). The median time from onset to follow-up was 460.0 (451.0-467.0) days. Sleep disturbance (18.5%, 99/534) and fatigue (17.2%, 92/534) were the most common persistent symptoms. 6.4% (34/534) of the patients had depression, 9.2% (49/534) were anxious, 13.0% (70/534) had insomnia and 4.7% (25/534) suffered from post-traumatic stress disorder (PTSD). Multivariate adjusted logistic regression analysis showed that glucocorticoid use during hospitalization (OR 3.58, 95% CI 1.12-11.44) was significantly associated with an increased risk of fatigue. The OR values for anxiety and sleep disorders were 2.36 (95% CI 1.07-5.20) and 2.16 (95% CI 1.13-4.14) in females to males. The OR value of PTSD was 25.6 (95% CI 3.3-198.4) in patients with persistent symptoms to those without persistent symptoms. No significant associations were observed between fatigue syndrome or adverse mental outcomes and disease severity. Conclusions: 15-month follow-up in this study demonstrated the need of extended rehabilitation intervention for complete recovery in COVID-19 patients.

6.
Neurochem Res ; 47(7): 2064-2075, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35538293

RESUMO

Ischemic stroke is a grievous intimidation to the healthiness of sufferers. Previous studies have reported that dexmedetomidine (DEX) has a protective effect on a variety of organs. This paper aimed to explore the regulatory mechanism of DEX in ischemic stroke through miR-665/ROCK2 axis. The mice model of ischemic stroke was constructed by middle cerebral artery occlusion (MCAO). The cell model of ischemic stroke was constructed by oxygen-glucose deprivation (OGD). Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The expression of cytokines was detected by ELISA. Lactate dehydrogenase (LDH) concentration was evaluated by LDH kit. The cerebral infarct volume of MCAO mice was detected by TTC staining, and the apoptosis of brain cells was detected by TUNEL staining. The target relationship between ROCK2 and miR-665 was analyzed by dual-luciferase reporter assay. DEX contributed cell viability from 42 to 66% (1 µM) and restrained cell apoptosis from 26 to 18% in HT22 cells treated with OGD (P < 0.01). Meanwhile, DEX decreased the expression of cytokines and LDH concentration from 184 to 126% (P < 0.001). Moreover, the expression of miR-665 enhanced 2.9 times (P < 0.05) and the expression of ROCK2 (P < 0.05) and NF-κB p65 (P < 0.01) reduced 1.8 times and 2.2 times after DEX treatment in OGD induced HT22. And miR-665 knockdown attenuated the effect of DEX on inflammation damage (the levels of TNF-α, IL-1ß and IL-6 increased 1.36 times, 1.31 times, 1.43 time, respectively, and IL-10 decreased 1.68 times) and apoptosis from 17 to 25% (P < 0.01). MiR-665 directly targeted ROCK2 and regulated ROCK2 and NF-κB p65 expression (P < 0.01). Furthermore, ROCK2 overexpression inhibited the protective effect of DEX in HT22 induced by OGD (P < 0.001), while miR-665 overexpression reversed the regulatory of ROCK2 (P < 0.01). In vivo, DEX decreased cerebral infarction volume and inhibited apoptosis of brain cell (P < 0.001). DEX has a protective effect in ischemic stroke by promoting miR-665 expression to downregulate ROCK2/NF-κB axis, suggesting DEX has a beneficial effect on ischemic stroke and miR-665 is a conceivable target for the therapeutics and diagnosis of ischemic stroke.


Assuntos
Isquemia Encefálica , Dexmedetomidina , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Glucose/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Regulação para Cima , Quinases Associadas a rho/metabolismo
7.
Neurochem Int ; 157: 105340, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398187

RESUMO

INTRODUCTION: Cervical spondylotic myelopathy (CSM) is the most prevalent type of non-traumatic spinal cord injury. The pathological process of CSM is relatively complicated. Most of the chronic cervical cord compression animal models established using hydrophilic expanding polymer are single-segment compression, which was deviated from clinical practice with double-segment or multi-segment compression. This study aims to better mimic the actual clinical compression by using a new type of hydrophilic expanding polymer to establish an animal model of double-level cervical cord compression. MATERIALS AND METHODS: Progressive cord compression was done with implantation of polyvinyl alcohol-polyacrylamide hydrogel in the spinal canal at the C3-4 and C5-6 levels. Sprague-Dawley rats (n = 32) were divided into three groups: sham (no compression, n = 12) and screw compression group (n = 8), and hydrogel compression group (n = 12). Functional deficits were characterized using motor function scores, forelimb grip strength, hindlimb pain threshold, and gait analysis, while compression was imaged with magnetic resonance imaging. The apoptosis, inflammation, and demyelination were assessed by hematoxylin and eosin staining, Luxol fast blue staining, TUNEL assay, immunofluorescence staining, and Western blot analysis. RESULTS: Motor function scores for rats with cervical cord hydrogel compression were significantly decline in motor function scores, an increase in allodynia, neurons and oligodendrocytes apoptosis related to B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cleaved caspase-3, and impaired axonal conduction, as well as neuroinflammation zone related to microglia or macrophages aggregation related to the nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome activation, and activation of astrocytes, as well as oxidative stress were observed. CONCLUSION: We believe that this model utilizing compression on double-level cervical cord will allow researchers to investigate of translationally relevant therapeutic methods for CSM.


Assuntos
Medula Cervical , Compressão da Medula Espinal , Doenças da Medula Espinal , Animais , Apoptose/fisiologia , Medula Cervical/patologia , Hidrogéis/farmacologia , /patologia , Polímeros , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/cirurgia , Doenças da Medula Espinal/complicações , Doenças da Medula Espinal/metabolismo , Doenças da Medula Espinal/patologia , Doenças da Medula Espinal/cirurgia
8.
Cell Biol Toxicol ; 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35028790

RESUMO

Cervical spondylotic myelopathy (CSM) is a clinically symptomatic entity arising from the spinal cord compression by degenerative diseases. Although endoplasmic reticulum (ER) stress has been commonly observed in several neurodegenerative diseases, the relationship between ER stress and CSM remains unknown. Shikonin is known to protect PC12 by inhibiting apoptosis in vitro. This study hypothesised that ER stress was vital in neuronal apoptosis in CSM. Shikonin might inhibit such responses by regulating ER stress through the protein kinase-like ER kinase-eukaryotic translation initiation factor 2 α-subunit-C/EBP homologous protein (PERK-eIF2α-CHOP) signalling pathway. Thus, the aim of this study was evaluating the neuroprotective effect of shikonin in rats with double-level chronic cervical cord compression, as well as primary rat cortical neurons with glutamate-induced neurotoxicity. The result showed that ER stress-related upregulation of PERK-eIF2α-CHOP resulted in rat neuronal apoptosis after chronic cervical cord compression; then, shikonin promoted motor recovery and inhibited neuronal apoptosis by attenuating PERK-eIF2α-CHOP and prevented Bax translocation from cytoplasm to mitochondrion induced by CHOP of neurons in rats with chronic compression. Also, it was found that shikonin could protect rat primary cortical neuron against glutamate toxicity by regulating ER stress through the PERK-eIF2α-CHOP pathway in vitro. In conclusion, shikonin might inhibit neuronal apoptosis by regulating ER stress through attenuating the activation of PERK-eIF2α-CHOP.

9.
J Ginseng Res ; 46(1): 11-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35058723

RESUMO

Spinal cord injury (SCI) is defined as damage to the spinal cord that temporarily or permanently changes its function. There is no definite treatment established for neurological complete injury patients. This study investigated the effect of ginseng extract and ginsenosides on neurological recovery and antioxidant efficacies in rat models following SCI and explore the appropriate dosage. Searches were done on PubMed, Embase, and Chinese databases, and animal studies matches the inclusion criteria were selected. Pair-wise meta-analysis and subgroup analysis were performed. Ten studies were included, and the overall methodological qualities were low quality. The result showed ginseng extract and ginsenosides significantly improve neurological function, through the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale (pooled MD = 4.40; 95% CI = 3.92 to 4.88; p < 0.00001), significantly decrease malondialdehyde (MDA) (n = 290; pooled MD = -2.19; 95% CI = -3.16 to -1.22; p < 0.0001) and increase superoxide dismutase (SOD) levels (n = 290; pooled MD = 2.14; 95% CI = 1.45 to 2.83; p < 0.00001). Both low (<25 mg/kg) and high dosage (≥25 mg/kg) showed significant improvement in the motor function recovery in SCI rats. Collectively, this review suggests ginseng extract and ginsenosides has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials and applications.

10.
Biol Trace Elem Res ; 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35094234

RESUMO

This study investigated that the effect of nano-selenium (nano-Se) addition preventing prehierarchical follicular atresia induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se in vitro. The results revealed that Hg could significantly reduce laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition partially reversed the reductions. Besides, Hg significantly induced the deposition of Hg in prehierarchical follicles (P < 0.05) and prehierarchical follicular atresia (P < 0.05), whereas nano-Se addition could alleviate these toxicities in vitro. In addition, Hg exposure could significantly reduce cell viability (P < 0.05) and induce pyknotic nucleus in prehierarchical granulosa cells, while nano-Se addition reversed these effects. The levels of follicle-stimulating hormone (P < 0.05), luteinizing hormone (P < 0.05), progesterone (P < 0.05), and estradiol (P < 0.05) were significantly decreased after Hg exposure in vitro. However, nano-Se addition reversed the decreases of sex hormone levels. Furthermore, Hg exposure significantly increased the gene expressions of CHOP (P < 0.05), PERK (P < 0.05), ATF4 (P < 0.05), ATF6 (P < 0.05), ASK1 (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), caspase-9 (P < 0.05), caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se addition reversed these increases of gene expressions in vitro. In summary, this study provides that Hg can induce prehierarchical follicular atresia, whereas nano-Se addition can ameliorate it, and elucidates an important role of ER stress in nano-Se alleviating prehierarchical follicular atresia induced by Hg in laying hens.

11.
Nat Prod Res ; 36(1): 237-245, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32524880

RESUMO

A new chromone glycoside, 8-O-ß-D-Glucopyranosyl-2-methylchromone (1), together with eight known compounds (2-9) were isolated from the Tibetan medicine plant of Swertia punicea. All compounds of this plant were reported for the first time. The structures of these metabolites were elucidated by analysis of their HR-ESI-MS, 1D and 2D NMR spectroscopic data and comparison with data reported in the literature. In vitro test, all compounds were evaluated for their anti-inflammatory activity through the determination of nitric oxide production. Compounds 1-2 were evaluated for cytotoxic activities against three human cancer cell lines (HeLa, MDA-MB-231 and A375) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. Furthermore, the chemotaxonomic significance of these compounds has also been described.


Assuntos
Swertia , Cromonas , Glicosídeos/farmacologia , Humanos , Medicina Tradicional Tibetana , Estrutura Molecular
12.
Anim Dis ; 1(1): 27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778887

RESUMO

Porcine epidemic diarrhea virus (PEDV), as the main causative pathogen of viral diarrhea in pigs, has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry. Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease. In this study, a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label. Under optimal conditions, the newly developed latex bead-based lateral flow immunoassay (LBs-LFIA) attained a limit of detection (LOD) as low as 103.60 TCID50/mL and no cross-reactivity with other related swine viruses. To solve swine feces impurity interference, by adding a filtration unit design of LFIA without an additional pretreatment procedure, the LBs-LFIA gave good agreement (92.59%) with RT-PCR results in the analysis of clinical swine fecal samples (n = 108), which was more accurate than previously reported colloidal gold LFIA (74.07%) and fluorescent LFIA (86.67%). Moreover, LBs-LFIA showed sufficient accuracy (coefficient of variance [CV] < 15%) and stable (room temperature storage life > 56 days) performance for PEDV detection, which is promising for on-site analysis and user-driven testing in pig production system. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s44149-021-00029-1.

13.
Clin Transl Med ; 11(11): e635, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841685

RESUMO

BACKGROUND: Aberrant TAK1 (transforming growth factor ß-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS: In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS: GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Mitocondriais/farmacologia , Metástase Neoplásica/tratamento farmacológico , Carcinoma Hepatocelular/fisiopatologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/fisiopatologia , MAP Quinase Quinase Quinases/uso terapêutico , Proteínas Mitocondriais/uso terapêutico , Metástase Neoplásica/prevenção & controle , Proteínas Repressoras/farmacologia , Proteínas Repressoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/farmacologia , Ubiquitina-Proteína Ligases/uso terapêutico
14.
Int J Gen Med ; 14: 8097-8108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795516

RESUMO

Coronavirus disease 2019 (COVID-19) has been circulating in many countries around the world, characterized by long incubation period, strong infectivity, strong variability, high population susceptibility and diversified transmission methods. Its causative agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared with adult patients, the clinical manifestations of COVID-19 in children are often dominated by mild or asymptomatic infections, but children are also important virus carriers and play an important role in the transmission of the virus. In addition, some children will show excessive inflammatory response and experience serious complications such as multisystem inflammatory syndrome in children (MIS-C). At present, the research on COVID-19 in children is still imperfect. This article will review epidemiological characteristics, the mechanism of action, variant characteristics, clinical manifestations, auxiliary examinations and treatment of children with COVID-19, in order to provide help for the diagnosis, treatment and research of children with COVID-19.

15.
J Nanobiotechnology ; 19(1): 273, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496881

RESUMO

The control of contagious or refractory diseases requires early, rapid diagnostic assays that are simple, fast, and easy-to-use. Here, easy-to-implement CRISPR/Cas12a-based diagnostic platform through Raman transducer generated by Raman enhancement effect, term as SERS-CRISPR (S-CRISPR), are described. The S-CRISPR uses high-activity noble metallic nanoscopic materials to increase the sensitivity in the detection of nucleic acids, without amplification. This amplification-free platform, which can be performed within 30-40 min of incubation time, is then used for detection of SARS-CoV-2 derived nucleic acids in RNA extracts obtained from nasopharyngeal swab specimens (n = 112). Compared with the quantitative reverse transcription polymerase chain reaction (RT-qPCR), the sensitivity and specificity of S-CRISPR reaches 87.50% and 100%, respectively. In general, the S-CRISPR can rapidly identify the RNA of SARS-CoV-2 RNA without amplification and is a potential strategy for nucleic acid point of care test (POCT).


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise Espectral Raman , COVID-19/diagnóstico , COVID-19/virologia , Regulação Fúngica da Expressão Gênica , Genes Virais , Humanos , RNA Viral/análise , Sensibilidade e Especificidade
16.
Ann Palliat Med ; 10(10): 10253-10275, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34498478

RESUMO

BACKGROUND: Shenqisherong pill (SQSRP) has been used clinically to treat cervical spondylotic myelopathy (CSM) with satisfactory results; however, its active ingredients and mechanisms are unclear. The present study aimed to explore the active ingredients and molecular mechanisms of SQSRP against CSM using network pharmacology and molecular docking. METHODS: The compounds in SQSRP were obtained from public databases and related literature, and oral bioavailability (≥30%) and drug-likeness (≥0.18) were screened using absorption, distribution, metabolism, and excretion (ADME) criteria. Compounds-related and CSM-related target genes were identified using public databases, and the overlapping genes between compounds and CSM target genes were identified using a Venn diagram. Cytoscape and STRING were used to construct, visualize, and analyze the interaction network between these overlapping targets. Gene Ontology (GO) and KEGG pathway enrichment analysis of overlapping targets used Omicshare tools and constructed a compound-overlapping targets network, target-pathway network, and compound-target-pathway network using Cytoscape. Finally, molecular docking software was used to verify the targets. RESULTS: A total of 447 compounds in SQSRP were identified, and ADME screening identified 96 compounds as potentially active ingredients. A total of 249 compound-related genes and 280 CSM-related genes were identified using public databases, and 53 overlapping genes were identified. The results of compound targets and protein-protein interaction network analysis showed that the pharmacological effects of SQSRP against CSM involved 56 compounds and 53 genes. The results of GO and KEGG pathway enrichment analysis suggested that the therapeutic effects of SQSRP against CSM were exerted by reducing inflammation, inhibiting apoptosis, and protecting neurons. The molecular mechanisms may be strongly associated with PI3K-Akt, MAPK, IL-17, and TNF, which might be pivotal signaling pathways. CONCLUSIONS: The active ingredients and mechanisms of SQSRP against CSM were investigated using network pharmacology. The findings proved that the pill could treat CSM through multi-component, multi-target, and multi-pathway synergy and provide a theoretical basis for the subsequent extraction of active ingredients from SQSRP.


Assuntos
Medicamentos de Ervas Chinesas , Doenças da Medula Espinal , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
17.
IEEE Trans Cybern ; PP2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343103

RESUMO

For stochastic quantum systems with measurement feedback, this article proposes a rapid switching control scheme based on state space partition and realizes the rapid stabilization of an eigenstate of an observable operator. Meanwhile, we apply the proposed scheme to the preparation of typical entangled states in multiqubit systems. In view of the convergence obstacle caused by the symmetric structure of the state space, especially in the case with degenerate observable operators, we first partition the state space into a subset containing the target state and its complement to distinguish the target state from its antipodal points, and then design the corresponding control laws in these two subsets, respectively, by using different Lyapunov functions. The interaction Hamiltonians are also constructed to drive the system state to the desired subset first, and further to the target state. In particular, the control law designed in the undesired subset guarantees the strictly monotonic descent of the corresponding Lyapunov function, which makes the system trajectory switch between the two subsets at most twice and has the potential to speed up the convergence process. We also prove the stability of the closed-loop system with the proposed switching control law based on the stochastic Lyapunov stability theory. By applying the proposed switching control scheme to a three-qubit system, we achieve the preparation of a GHZ state and a W state.\enlargethispage-8pt.

18.
J Vis Exp ; (172)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279506

RESUMO

As a severe progressive degenerative disease, cervical spondylotic myelopathy (CSM) has a poor prognosis and is associated with physical pain, stiffness, motor or sensory dysfunction, and a high risk of spinal cord injury and acroparalysis. Thus, therapeutic strategies that promote efficient spinal cord regeneration in this chronic and progressive disease are urgently needed. Effective and reproducible animal spinal cord compression models are required to understand the complex biological mechanism underlying CSM. Most spinal cord injury models reflect acute and structural destructive conditions, whereas animal models of CSM present a chronic compression in the spinal cord. This paper presents a protocol to generate a rat spinal cord compression model, which was further evaluated by assessing the behavioral score and observing the compressed spinal cord region. The behavioral assessments showed decreased monitor motor disability, including joint movements, stepping ability, coordination, trunk stability, and limb muscle strength. Hematoxylin and eosin (H&E) staining and immunostaining revealed considerable neuronal apoptosis in the compressed region of the spinal cord.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Compressão da Medula Espinal , Espondilose , Animais , Apoptose , Vértebras Cervicais , Humanos , Ratos , Medula Espinal , Compressão da Medula Espinal/etiologia
19.
Pediatr Investig ; 5(2): 130-135, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34179710

RESUMO

IMPORTANCE: Pediatric hypervascular primary airway tumors are progressive, fatal lesions with a low incidence, and the disease is often more serious than that in adults. OBJECTIVE: To evaluate the clinical efficacy and safety of interventional therapeutic bronchoscopy combined with conservative treatment and bronchial arterial embolization in children with primary airway tumors. METHODS: We retrospectively analyzed the clinical data of four pediatric patients with hypervascular primary airway tumor between 2017 and 2019 at Beijing Children's Hospital. RESULTS: Two patients were low-grade bronchial mucoepidermoid carcinoma, one patient was pleomorphic adenoma, and one was bronchial leiomyoma. Interventional therapeutic bronchoscopy combined with bronchial arterial embolization was used for treatment (all four patients received general anesthesia). The tumors were safely resected in all patients via interventional bronchoscopy. There were no severe complications related to the procedures. All patients were followed up for 5-12 months, and one low-grade bronchial mucoepidermoid carcinoma recurred. INTERPRETATION: Interventional therapeutic bronchoscopy combined with bronchial arterial embolization appears to be a safe and efficient therapeutic method associated with less trauma and fewer complications, including no serious adverse events, in children with hypervascular primary airway tumors without bronchus wall infiltration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...