RESUMO
Bisphenol A (BPA), an endocrine disruptor that is often found in a variety of environmental matrixes, poses a serious health risk. One of the most effective methods for completely degrading BPA is biological oxidation. This study used a non-blue laccase to develop an engineer Escherichia coli strain for the synthesis of biogenic manganese oxides (BMO). The recombinant strain LACREC3 was utilized for the efficient production of BMO. The LACREC3 strain developed the erratic clumps of BMO after prolonged growth with Mn2+, as shown by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS) tests. After 12 days of incubation under liquid culture conditions, a total of 51.97⯱â¯0.56% Mn-oxides were detected. The Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) experiments were further used to characterize the purified BMO. Data revealed that Mn(IV)-oxides predominated in the structure of BMO, which was amorphous and weakly crystalline. The BPA oxidation assay confirmed the high oxidation efficiency of BMO particle. BMO degraded 96.16⯱â¯0.31% of BPA in total over the course of 60â¯min. The gas chromatography and mass spectroscopy (GC-MS) identified BPA-intermediates showed that BPA might break down into less hazardous substances that were tested by Photobacterium Phosphoreum in an acute toxicity experiment. Thus, employing BMO generated by a non-blue laccase, this study introduces a new biological technique of metal-oxidation and organic-pollutant degradation.
RESUMO
Inhaling airborne pathogens may cause severe epidemics showing huge threats to indoor dwellings residents. The ventilation, environmental parameters, and human activities would affect the abundance and pathogenicity of bioaerosols in indoor. However, people know little about the indoor airborne microbes especially pathogens near the industrial park polluted with organics and heavy metals. Herein, the indoor bioaerosols' community composition, source and influencing factors near an electronic waste (e-waste) industrial park were investigated. Results showed that the average bioaerosol level in the morning was lower than evening. Bioaerosol concentration and activity in indoor (1936 CFU/m3 and 7.62 × 105 ng/m3 sodium fluorescein in average) were lower than the industrial park (4043 CFU/m3 and 7.77 × 105 ng/m3 sodium fluorescein), and higher microbial viability may be caused by other pollutants generated during e-waste dismantling process. Fluorescent biological aerosol particles occupied 17.6%-23.7% of total particles, indicating that most particles were non-biological. Bacterial communities were richer and more diverse than fungi. Furthermore, Bacillus and Cladosporium were the dominant indoor pathogens, and pathogenic fungi were more influenced by environmental factors than bacteria. SourceTracker analysis indicates that outdoor was the main source of indoor bioaerosols. The hazard quotient (<1) of airborne microbes through inhalation was negligible, but long-term exposure to pathogens could be harmful. Air purifiers could effectively remove the airborne fungi and spheroid bacteria than cylindrical bacteria, but open doors and windows would reduce the purification efficiency. This study is great important for risk assessments and control of indoor bioaerosols near industrial park.
Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Humanos , Fluoresceína , Bactérias , Fungos , Ventilação , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Aerossóis/análiseRESUMO
Mixed bromine/chlorine transformation products of tetrabromobisphenol A (ClyBrxBPAs) are mixed halogenated-type compounds recently identified in electronic waste dismantling sites. There are a lack of toxicity data on these compounds. To study their development toxicity, the proliferation toxicity was investigated using human embryonic stem cells (hESC) exposed to the lowest effective dose of two ClyBrxBPA analogues (2-chloro-2',6-dibromobisphenol A and 2,2'-dichloro-6-monobromobisphenol A). For comparison, tetrabromobisphenol A, 2,2',6-tribromobisphenol A, and bisphenol A were also assessed. It was observed that ClyBrxBPAs inhibited hESCs proliferation in a concentration-dependent manner. The cell bioaccumulation efficiency of ClyBrxBPAs was higher than that of tetrabromobisphenol A. Also, ClyBrxBPAs were more toxic than tetrabromobisphenol A, with 2,2'-dichloro-6-monobromobisphenol A exhibiting the most potent toxicity. Furthermore, flow cytometry and oxidative stress results showed that increased reactive oxygen species raised the degree of apoptosis and reduced DNA synthesis. Metabolomics analysis on the effect of ClyBrxBPAs on metabolic pathway alteration showed that ClyBrxBPAs mainly interfered with four metabolic pathways related to amino acid metabolism and biosynthesis. These results provide an initial perspective on the proliferation toxicity of ClyBrxBPAs, indicating development toxicity in children.
Assuntos
Células-Tronco Embrionárias Humanas , Bifenil Polibromatos , Criança , Humanos , Bromo/química , Cloro , Bifenil Polibromatos/química , Proliferação de CélulasRESUMO
The renal interstitial fibrosis contributes to the progression and deterioration of diabetic nephropathy (DN). Long noncoding RNA taurine-up-regulated gene 1 (TUG1) in kidneys may be down-regulated by hyperglycemia. We aim to explore its role in tubular fibrosis caused by high glucose and the possible target genes of TUG1. In this study, a streptozocin-induced accelerated DN mouse model and a high glucose-stimulated HK-2 cells model was established to evaluate TUG1 expression. Potential targets of TUG1 were analyzed by online tools and confirmed by luciferase assay. A rescue experiment and gene silencing assay were used to investigate whether TUG1 plays its regulation role via miR-145-5p/dual-specificity phosphatase 6 (DUSP6) in HK2 cells. The effects of TUG1 on inflammation and fibrosis in high glucose treated tubular cells were evaluated by in vitro study, as well as in vivo DN mice model through AAV-TUG1 delivery. Results showed TUG1was downregulated in HK2 cells incubated with high glucose while miR-145-5p was upregulated. Overexpression of TUG1 alleviated renal injury by suppressing inflammation and fibrosis in vivo. Overexpression of TUG1 inhibited HK-2 cell fibrosis and relieved the inflammation. A mechanism study demonstrated that TUG1 directly sponged to miR-145-5p, and DUSP6 was identified as a target downstream of miR-145-5p. In addition, miR-145-5 overexpression and DUSP6 inhibition countervailed the impacts of TUG1. Our findings revealed that TUG1 overexpression alleviates kidney injury in DN mice and decreases the inflammatory response and fibrosis of high glucose-stimulated HK-2 cells via miR-145-5p/DUSP6 axis.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Fibrose , Glucose , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Polybrominated diphenyl ethers (PBDEs) are important pollutants during dismantling activities of electronic waste (e-waste) in China due to its large production and usage. Bromophenols (BPs), which are a kind of flame retardants and diphenyl ether bond cleavage metabolites of PBDEs, are often neglected in the assessment of human exposure to e-waste. Herein, 22 PBDEs and 19 BPs were determined in paired serum, hair, and urine samples collected from workers and residents of a typical e-waste dismantling site in southern China. Both PBDE and BP congeners were more frequently detected in hair than serum and urine samples. The medians of ΣPBDEs and ΣBPs were 350 and 547 ng/g dw in hair internal (hair-In) of occupational population, respectively, which were significantly higher than non-occupational population. However, a non-significant difference was found in levels of ΣPBDEs and ΣBPs in serum and urine between occupational and non-occupational populations, suggesting that hair analysis could easily differentiate between the exposure intensities of PBDEs and BPs to populations than serum and urine analyses. Moreover, levels of BPs in hair-In were 1-2 orders of magnitude higher than those in hair external (hair-Ex), while a non-significant difference was found in the levels of PBDEs. This result indicated that BPs might have originated from endogenous contribution. Notably, as the predominant congeners, the level of 2,4,6-tribromophenol (2,4,6-TBP) in hair-In was 3-8 times higher than that of BDE-209, while level of 2,4,6-TBP in hair-Ex was 1-3 times lower than that of BDE-209. Furthermore, in vivo experiments performed on Sprague-Dawley rats following a 28-day oral treatment with BDE-209 and 2,4,6-TBP verified that endogenous accumulation of 2,4,6-TBP in hair could be attributed to the metabolism of BDE-209 and exposure to 2,4,6-TBP. In conclusion, compared with PBDEs, biomonitoring phenolic compounds or metabolites with hair could better reflect human endogenous exposure.
Assuntos
Resíduo Eletrônico , Retardadores de Chama , Ratos , Animais , Humanos , Éteres Difenil Halogenados/análise , Monitoramento Ambiental , Resíduo Eletrônico/análise , Ratos Sprague-Dawley , China , Cabelo/química , Retardadores de Chama/análiseRESUMO
Pathogenic microbes with antibiotic resistance can thrive on municipal solid waste as nutrients and be aerosolized and transported to vicinities during waste disposal processes. However, the characterization of pathogenic bioaerosols and assessment of their exposure risks are lacking. Herein, particle size, concentration, activity, antibiotic resistance, and pathogenicity of airborne microorganisms were assessed in different sectors of a typical landfill. Results showed that active sector in downwind direction has the highest bioaerosol level (1234 CFU/m3), while residential area has the highest activity (14.82 mg/L). Botanical deodorizer from mist cannon can effectively remove bioaerosol. Most bioaerosols can be inhaled into respiratory system till bronchi with sizes ranging from 2.1-3.3 and 3.3-4.7 µm. Pathogenic bacteria (Bacilli, Bacillus, and Burkholderia-Paraburkholderia) and allergenic fungi (Aspergillus, Cladosporium, and Curvularia) prevailed in landfill. Although high abundance of microbial volatile organic compounds (mVOCs) producing bioaerosols were detected, these mVOCs contributed little to odor issues in landfill. Notably, surrounding areas have higher levels of antibiotic-resistance genes (ARGs) than inner landfill with tetC, acrB, acrF, mdtF, and bacA as dominant ones. Most ARGs were significantly correlated with bacterial community, while environmental parameters mainly influenced fungal prevalence. These findings can assist in reducing and preventing respiratory allergy or infection risks in occupational environments relating to waste management.
Assuntos
Antibacterianos , Bacillus , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos , Instalações de Eliminação de Resíduos , Microbiologia do Ar , Monitoramento AmbientalRESUMO
BACKGROUND: Cyclin D1 overexpression may contribute to development of various cancers, including breast cancer, and thus may serve as a key cancer diagnostic marker and therapeutic target. In our previous study, we generated a cyclin D1-specific single-chain variable fragment antibody (ADκ) from a human semi-synthetic single-chain variable fragment library. ADκ specifically interacted with recombinant and endogenous cyclin D1 proteins through an unknown molecular basis to inhibit HepG2 cell growth and proliferation. RESULTS: Here, using phage display and in silico protein structure modeling methods combined with cyclin D1 mutational analysis, key residues that bind to ADκ were identified. Notably, residue K112 within the cyclin box was required for cyclin D1-ADκ binding. In order to elucidate the molecular mechanism underlying ADκ anti-tumor effects, a cyclin D1-specific nuclear localization signal-containing intrabody (NLS-ADκ) was constructed. When expressed within cells, NLS-ADκ interacted specifically with cyclin D1 to significantly inhibit cell proliferation, induce G1-phase arrest, and trigger apoptosis of MCF-7 and MDA-MB-231 breast cancer cells. Moreover, the NLS-ADκ-cyclin D1 interaction blocked binding of cyclin D1 to CDK4 and inhibited RB protein phosphorylation, resulting in altered expression of downstream cell proliferation-related target genes. CONCLUSION: We identified amino acid residues in cyclin D1 that may play key roles in the ADκ-cyclin D1 interaction. A nuclear localization antibody against cyclin D1 (NLS-ADκ) was constructed and successfully expressed in breast cancer cells. NLS-ADκ exerted tumor suppressor effects via blocking the binding of CDK4 to cyclin D1 and inhibiting phosphorylation of RB. The results presented here demonstrate anti-tumor potential of intrabody-based cyclin D1-targeted breast cancer therapy.
RESUMO
Municipal solid waste (MSW) landfills, constituting the third largest anthropogenic sources of bioaerosols, are suspected to be one of the major contributors to adverse health outcomes. A regional modeling of aerosol trajectories based on wind-tunnel observations and on-site monitoring was newly-developed to uncover the impacts of a typical MSW landfill on ambient bioaerosol pollution. Results showed that the horizontal diffusion velocity of bioaerosols reached 4.33 times higher than the vertical velocity under surface calm winds. On-site monitoring revealed that the concentrations of particulate matter (PM) with a diameter of 10 µm were 3.05 times higher than those of PM1.0 in the 2.8-km downwind residential regions near the MSW landfill. With the increase in PM concentration, higher-abundance microorganisms were detected. A number of cultivable bacterial species (Micrococcus endophyticus, Micrococcus flavus, Bacillus sporothermodurans, Salmonella entericaserovar typhi, Rhodococcus hoagie, Blastococcups) and fungal species (Aspergillus niger, Penicillium, Microascus cirrosus, Cochliobolus, Stemphylium vesicarium) were identified in these bioaerosols. Furthermore, distinguished by transmission electron microscopy, a longer-range transported microorganism (E. coli) clinging onto suspended PM was observed, signifying higher exposure risks. Human health risk assessments demonstrate that the residents and occupational workers in the vicinity of MSW landfill endured atmospheric diffusion-induced bioaerosol exposure risks due to open dumping activities in MSW landfill. This study clearly indicates bioaerosol pollution from landfills, and people particularly living nearby the MSW facilities, must decrease outdoor activities during dusty days.
Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Humanos , Resíduos Sólidos/análise , Escherichia coli , Instalações de Eliminação de Resíduos , Material Particulado , Bactérias , Eliminação de Resíduos/métodosRESUMO
Human immunodeficiency virus (HIV) sexual transmission among men who have sex with men (MSM) has increased markedly in Beijing, China in the past decade. Pre-exposure prophylaxis (PrEP) is a highly efficacious biomedical prevention strategy that remarkably reduces HIV-transmission risk. This study examined PrEP awareness among MSM and the factors influencing it. From April to July 2021, respondent-driven sampling was used to conduct a cross-sectional survey among MSM in Beijing, China. Demographic, behavior, and awareness data regarding PrEP were collected. The factors influencing PrEP awareness were assessed using univariate and multivariable logistic regression. In total, 608 eligible responders were included in the study. Among the respondents, 27.9% had PrEP awareness, 3.3% had taken PrEP, and 57.9% expressed interest in receiving PrEP, if required. Greater odds of PrEP awareness were associated with higher education level (adjusted odds ratio [aOR] 3.525, 95% confidence interval [CI] 2.013-6.173, P < 0.0001), greater HIV-related knowledge (aOR 3.605, 95% CI 2.229-5.829, P < 0.0001), HIV testing (aOR 2.647, 95% CI 1.463-4.788, P = 0.0013), and sexually transmitted infections (aOR 2.064, 95% CI 1.189-3.584, P = 0.0101). Lower odds of PrEP awareness were associated with higher stigma score (aOR 0.729, 95% CI 0.591-0.897, P = 0.0029). The findings indicate sub-optimal awareness and low utilization of PrEP in Beijing and highlight PrEP inequities among MSM with stigma. Strengthening the training of peer educators in disseminating PrEP knowledge and reducing stigma are critical for improving PrEP awareness.
Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Pequim/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , HIV , Estudos Transversais , China/epidemiologia , Conhecimentos, Atitudes e Prática em SaúdeRESUMO
Cell lysis is a key step for studying the structure and function of proteins in cells and an important intermediate step in drug screening, cancer diagnosis, and genome analysis. The current cell lysis methods still suffer from limitations, such as the need for large instruments, a long and time-consuming process, a large sample volume, chemical reagent contamination, and their unsuitability for the small amount of bacteria lysis required for point-of-care testing (POCT) devices. Therefore, a fast, chemical-free, portable, and non-invasive device needs to be developed. In the present study, we designed an integrated microfluidic chip to achieve E. coli lysis by applying an alternating current (AC) electric field and investigated the effects of voltage, frequency, and flow rate on the lysis. The results showed that the lysis efficiency of the bacteria was increased with a higher voltage, lower frequency, and lower flow rate. When the voltage was at 10 Vp-p, the lysis efficiency was close to 100%. The study provided a simple, rapid, reagent-free, and high-efficiency cleavage method for biology and biomedical applications involving bacteria lysis.
RESUMO
Heavy metal pollution related to non-ferrous metal smelting may pose a significant threat to human health. This study analyzed 58 surface soils collected from a representative non-ferrous metal smelting area to screen potentially hazardous heavy metals and evaluate their health risk in the studied area. The findings demonstrated that human activity had contributed to the pollution degrees of Cu, Cd, As, Zn, and Pb in the surrounding area of a non-ferrous metal smelting plant (NMSP). Cu, Cd, As, Zn, Pb, Ni, and Co pollution within the NMSP was serious. Combining the spatial distribution and Spearman correlations with principal component analysis (PCA), the primary sources of Cd, As, Pb, and Zn in surrounding areas were related to non-ferrous metal smelting and transportation activities. High non-cancer (THI = 4.76) and cancer risks (TCR = 2.99 × 10-4) were found for adults in the NMSP. Moreover, heavy metals in the surrounding areas posed a potential cancer risk to children (TCR = 3.62 × 10-6) and adults (TCR = 1.27 × 10-5). The significant contributions of As, Pb, and Cd to health risks requires special attention. The construction of a heavy metal pollution management system will benefit from the current study for the non-ferrous metal smelting industry.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Cádmio , Chumbo , Monitoramento Ambiental , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Receptores de Antígenos de Linfócitos T , ChinaRESUMO
Coking industry has been considered as important source of volatile organic compounds (VOCs) emissions. However, few studies have emphasized the occurrence and adverse effects of VOCs from coking wastewater treatment processes. In this research, pollution profiles of both air and water phase VOCs in a typical coking wastewater treatment plant were investigated in terms of distribution characteristics, air-water exchange, ozone formation potential (OFP) and associated human health risks. Thirty VOCs were detected in the air phase, in which benzene and naphthalene were found to be the major VOCs with total contribution of 87.81 %. Nineteen VOCs were detected in the water phase, in which benzene, naphthalene and toluene contribute most to total VOCs with total contribution of 75.1 %. The regulating tank (RT) was the major source of VOCs, and the emission rate of total VOCs from all unites was 2711.03 g/d with annual emission of 0.99 t. The emission factor was estimated to be 1.36 g VOCs/m3 wastewater. The air-water exchange was assessed using the Fugacity model, and water-to-air volatilization was predominant based on the net flux of air-water exchange. OFP evaluated by emission factor indicated that the total OFP in RT was the highest (1.52 g O3/m3 wastewater), and toluene contributed 41.8 % of the total OFP, followed by naphthalene accounting for 38.7 % The total carcinogenic risks were in the range of 8.60 × 10-6 to 2.18 × 10-3, in which the RT exceeded the significant risk threshold (>1 × 10-4). The non-carcinogenic risks of hazard quotient value in RT also exceeded the risk threshold (>1), and naphthalene was the major contributor accounting for 79.02 %. These results not only provided comprehensive knowledge on pollution profiles and environmental risks of VOCs during coking wastewater treatment processes, but also facilitated the implement of VOCs regulation and occupational health protection strategies in coking industries.
Assuntos
Poluentes Atmosféricos , Coque , Ozônio , Compostos Orgânicos Voláteis , Purificação da Água , Humanos , Águas Residuárias , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Ozônio/análise , Benzeno , Monitoramento Ambiental/métodos , Medição de Risco , Naftalenos , Carcinógenos , Tolueno , ChinaRESUMO
Temperature-responsive nanomicelles with aggregation induced emission (AIE) property were prepared by the host-guest complexation of ferrocene functionalized tetraphenyl (TPE-Fc) and ß-cyclodextrin-poly (N-isopropylacrylamide) (ß-CD-(PNIPAM)7). The AIE chromophore TPE-Fc bound to the hydrophobic cavity of cyclodextrin serves as the core of micelles, and temperature sensitive PNIPAM serves as the shell to give the micelles good solubility. The size of the nanomicelles is about 100 nm. At the excitation wavelength of 340 nm, the strongest fluorescent emission peak was 421 nm. The introduction of cyclodextrin star polymer increased the fluorescence intensity of nanomicelles, thus improving the recognition of probe to Fe3+ and Fe2+. The fluorescent probe can quickly detect Fe3+ and Fe2+ in water within 5 min even in the presence of various interfering ions. The detection limits of Fe3+ and Fe2+ were 1.04 µM and 0.78 µM, respectively in the range of 10-90 µM. The formation of complex between the probe and Fe3+/Fe2+ was supported by Job's plot. The probe was successfully applied to the detection of Fe3+and Fe2+ in actual water sample with a good recovery. In addition, a possible sensing mechanism for the interaction of iron ions with amide bond groups of nanomicelles was proposed.
RESUMO
Occupational workers and residents near petrochemical industry facilities are exposed to multiple contaminants on a daily basis. However, little is known about the co-exposure effects of different pollutants based on biotransformation. The study examined benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon related to the petrochemical industry, to investigate changes in toxicity and co-exposure mechanism associated with different monoaromatic hydrocarbons (MAHs). A central composite design method was used to simulate site co-exposure scenarios to reveal biotransformation of BaP when co-exposed with benzene, toluene, chlorobenzene, or nitrobenzene in microsome systems. BaP metabolism depended on MAH concentration, and association of MAH with microsome concentration/incubation time. Particularly, MAH co-exposure negatively affected BaP glucuronidation, an important phase â ¡ detoxification process. BaP metabolite intensities decreased to 43%-80% for OH-BaP-G, and 32%-71% for diOH-BaP-G in co-exposure system with MAHs, compared with control group. Furthermore, glucuronidation was affected by competitive and time-dependent inhibition. Co-exposure significantly decreased gene expression of UGT 1A10 and BCRP/ABCG2 in HepG2 cells, which are involved in BaP detoxification through metabolism and transmembrane transportation. Therefore, human co-exposure to multiple contaminants may deteriorate toxic effects of these chemicals by disturbing metabolic pathways. This study provides a reference for assessing toxic effects and co-exposure risks of pollutants.
Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/toxicidade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Ambientais/toxicidade , ToluenoRESUMO
Organosulfate (OSA) nanoparticles, as secondary organic aerosol (SOA) compositions, are ubiquitous in urban and rural environments. Hence, we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations. The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ions (CBs), which engage in the subsequent esterification or oligomerization reactions to form OSAs/organosulfites (OSIs) or dimers. The kinetic results reveal that dehydration to form CBs for BOL and DOL reaction systems is the rate-limiting step. Subsequently, about 18% of CBs occur via oligomerization to dimers, which are difficult to further oligomerize because all reactive sites are occupied. The rate constant of BOL reaction system is one order of magnitude larger than that of DOL reaction system, implying that relative short-chain alcohols are more prone to contribute OSAs/OSIs than long-chain alcohols. Our results reveal that typical long-chain alcohols contribute SOA formation via esterification rather than oligomerization because OSA/OSI produced by esterification engages in nanoparticle growth through enhancing hygroscopicity.
Assuntos
Álcoois , Álcoois Graxos , Aerossóis , Butanóis , Polímeros , 1-ButanolRESUMO
The coking industry can generate large amounts of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, which may negatively impact the environment and human health. In this study, soils nearby a typical coking plant were sampled to assess the impact of coke production on the surrounding residential areas and human health. The mean concentration of PAHs and their derivatives in residential area soils nearby the coke plant was 4270 ng/g dw, which was 1 order of magnitude higher than that observed in areas far from the coke plant and approximately 4 times lower than that revealed the coke plant. In addition, the results showed that coking processing area was the most contaminant area of the coke plant (mean: 74.4 µg/g dw), where was also the main source of pollutants in residential areas. In terms of vertical soils in coking plant, the maximum levels of chemicals (mean: 205 µg/g dw) were presented at the leakage of underground pipelines, where were much higher than those in surface soils, and decreased with the increase of depth. The analysis of variance (ANOVA) results showed obvious differences in the concentrations of 6-nitrochrysene between the plant, residential areas and control areas. Meanwhile, 6-nitrochrysene had potential cancer risk (CR) for human in the coking site. Thus, 6-nitrochrysene was the most noteworthy PAH derivatives. Furthermore, the CR (mean: 5.94 × 10-5) and toxic equivalent quantities (TEQs) (mean: 14.8 µg·TEQ/g) of PAHs and their derivatives was assessed in this study. This finding suggested that PAHs and their derivatives especially those extremely toxic chemicals (Nitro-PAHs (NPAHs) and Br/Cl-PAHs (XPAHs)) might pose a potential health risk to residents nearby the coke plant. The current study provides further insights into the pollution characteristics of PAHs and their derivatives in coke plants and potential risks to the workers and surrounding residents.
RESUMO
Cyclohexane, a typical volatile organic compound (VOC), poses high risks to the environment and humans. Herein, synthesized PdAg/Fe2O3 catalysts exhibited exceptional catalytic performance for cyclohexane combustion at lower temperatures (50% mineralization temperature (T50) of 199 °C, 90% mineralization temperature (T90) of 315 °C) than Pd/Fe2O3 (T50 of 262 °C, T90 of 335 °C) and Fe2O3 (T50 of 305 °C, T90 of 360 °C). In addition, PdAg/Fe2O3 displayed enhanced stability by alloying Ag with Pd. The redox and acidity of the PdAg/Fe2O3 were studied by XPS, H2-TPR, and NH3-TPD. In situ diffuse reflectance infrared Fourier transform spectroscopy and proton-transfer-reaction time-of-flight mass spectrometry were applied to identify the intermediates formed on the catalyst surface and in the tail gas during oxidation, respectively. Results suggested that loading PdAg onto Fe2O3 significantly enhanced the adsorption and activation of oxygen and cyclohexane, oxidative dehydrogenation of cyclohexane to benzene, and catalytic cracking of cyclohexane to olefins at low temperatures. This in-depth study will benefit the design and application of efficient catalysts for the effective combustion of VOCs at low temperatures.
RESUMO
Despite the growing concern raised by organic pollutants from the petrochemical industry to the surrounding soils, the heavy metal (HM) pollution in these soils remains understudied. This study investigated the levels, potential sources, and human-health risks of 12 HMs in soils inside and in surrounding areas of a petrochemical complex. Generally, the levels of 12 HMs in all soil samples were lower than the national standard of China, except for the Cd in one surrounding soil sample. Approximately 40.9% and 98.1% of soils around and inside the petrochemical complex, respectively, were at slightly contaminated levels. The HM pollution in 94.4% of soils inside and 32% of soils in surrounding areas were mainly affected by petrochemical production. Human-health risk showed that although As posed an acceptable cancer risk for adults both in and around the complex, high cancer risk for surrounding children from As was observed. Moreover, around the complex, Cr, Cd, and Pb posed acceptable cancer risks for children, while Cd posed an acceptable cancer risk for adults. The spatial distribution of the health risks decreased with increasing distance from the complex. Overall, our results demonstrate that it is essential to minimize human exposure to HMs originating from the petrochemical industry, especially As, Cr, Cd, and Pb.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Cádmio , Chumbo , Medição de Risco , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , China/epidemiologiaRESUMO
Familial non-syndromic unilateral hearing loss (NS-UHL) is rare and its genetic etiology has not been clearly elucidated. This study aimed to identify the genetic cause of NS-UHL in a three-generation Chinese family. Detailed medical history consultation and clinical examination were conducted. Further, whole-exome sequencing (WES) was performed to identify the genetic etiology of the proband, and the variant was verified by Sanger sequencing. A novel missense mutation, c.533G>C (p.Arg178Thr), in the SIX homeobox 1 gene (SIX1) was identified in four patients and co-segregated with NS-UHL in a three-generation Chinese family as a dominant trait. Using bioinformatics analyses, we show that this novel mutation is pathogenic and affects the structure of SIX1 protein. These data suggest that mutations in SIX1 gene are associated with NS-UHL. Our study added the NS-UHL phenotype associated with SIX1, and thereby improving the genetic counseling provided to individuals with SIX1 mutations.
RESUMO
The ubiquitous presence of synthetic musks is causing serious concern due to the species produced from their transformation and environmental impacts. In this study, tonalide was selected as a representative synthetic musk to evaluate the transformation mechanism and pathway in water under ultraviolet (UV) irradiation. The results showed that tonalide could undergo rapid photochemical degradation through a new pivotal bi-radical, which acts as the initial active species. The bi-radicals with a typical absorption peak at 340â¯nm was observed by in-situ laser flash photolysis technology, and the absolute decay rate constant was obtained as 3.61⯱â¯0.01â¯×â¯109â¯M-1â¯s-1 with the life-time of 83.3â¯ns. The photochemical degradation by-products of tonalide were also identified by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, and the precise structures of key by-products have been validated by our preparative synthesized standard samples confirmed by nuclear magnetic resonance. Thus, the mechanism of tonalide photochemical degradation, continuous photoenolization of the bi-radicals and followed cycloaddition reaction with O2, was proposed as the predominant pathway. The main degradation by-product, photoenol which has a higher bioconcentration than that of tonalide, was found to form from the bi-radicals photoenolization. This study is the first work to propose a new bi-radical as the photoenol precursors during photochemical degradation of tonalide in water.