Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Arch Insect Biochem Physiol ; : e21856, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34850449

RESUMO

The involvement of yellow genes y-b, y-c, y-e, and y-h in cuticle tanning has poorly been clarified. In the present paper, six putative yellow (y-y, y-b, y-c, y-e y-f, and y-h) genes were identified in Henosepilachna vigintioctopunctata. Hvy-b, Hvy-c, Hvy-e, and Hvy-h were abundantly transcribed at early larval and late pupal stages, especially in the epidermis. Accordingly, RNA interference (RNAi) experiments were performed by an injection of dsy-b, dsy-c, dsy-e, or dsy-h into the second instar larvae and 1-day-old pupae. The head capsule, scoli and strumae, and legs in the fourth-instar larvae became blacker; the blackish spots in the pupae were darkened and widened after RNAi of Hvy-b, compared with those of dsegfp-treated controls. Depletion of Hvy-b at the 1-day-old pupal stage expanded two pair of black markings on the sternum of the metathorax, and darkened the black patched on the sterna of the abdomen segments I-VI in the resultant adults. Depletion of Hvy-e caused darker pigmented adult body and elytral cuticles than those of dsegfp-introduced controls. However, there was no obvious difference in pigmentation of the black markings. Hvy-h-deficient larvae displayed dark yellow body color, whereas the body color of the dsegfp-injected control was pale yellow. There was no obvious difference in coloration of larval specific-black markings or pupal cuticle between dsHvy-h- and dsegfp-treated animals. Moreover, silence of Hvy-c at the second instar larval stage lightened black markings in the resulting larvae and pupae, but had no influence on pale yellow body color. Our results demonstrated their different roles of the four yellow genes during body pigmentation: HvY-b and HvY-c, respectively, inhibit and facilitate the coloration within dark markings, whereas HvY-e and HvY-h, respectively, repress the pigmentation in adult and larval body cuticles outside the black patches in H. vigintioctopunctata.

2.
Insect Mol Biol ; 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787941

RESUMO

Vacuolar ATPase (vATPase) is an important proton pump in insect tissues including gut and Malpighian tubule. Subunit F, one of the 16 subunits of the vATPase holoenzyme, is not well characterized. Here, we found that two HvvATPaseF isoforms were highly expressed in the hindgut and Malpighian tubules (MT) in the 28-spotted lady-beetle Henosepilachna vigintioctopunctata, an agricultural pest that feeds on Solanaceae and Cucurbitaceae. Knockdown of both HvvATPaseF variants by RNA interference (RNAi) delayed larval growth and negatively affected ecdysis and adult emergence. In the midgut, RNAi treatment resulted in the disappearance of peritrophic membrane, the reduction in the size and the impaired integrity of the gut, which was associated with sparse principle cells and an increase in TUNEL- and EdU-positive cells. Whereas the MT were opaque and the tubule lumens were full of urine in dsegfp-fed larvae, the tubules were clear and the tubule lumens were empty in the dsvATPaseF-fed larvae. HvvATPaseF knockdown was also associated with a decrease in the abundance of the fat body and the levels of glucose, trehalose, triglyceride, total soluble amino acids and proteins, and an increase in glycogen. Consistent with the known effects of sugars on chitin formation, both the expression level of a chitin biosynthesis gene and the thickness of the head capsule cuticle were reduced in the HvvATPaseF-depleted beetles. Our results demonstrated that subunit F plays an essential role in H. vigintioctopunctata development.

3.
Front Physiol ; 12: 739800, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658924

RESUMO

To avoid potential harm during pupation, the Colorado potato beetle Leptinotarsa decemlineata lives in two different habitats throughout its developmental excursion, with the larva and adult settling on potato plants and the pupa in soil. Potato plants and agricultural soil contain a specific subset of aromatics. In the present study, we intended to determine whether the stage-specific bacterial flora plays a role in the catabolism of aromatics in L. decemlineata. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the operational taxonomic units (OTUs) obtained by sequencing of culture-independent 16S rRNA region enriched a group of bacterial genes involved in the elimination of mono- and polycyclic aromatics at the pupal stage compared with those at the larval and adult periods. Consistently, metabolome analysis revealed that dozens of monoaromatics such as styrene, benzoates, and phenols, polycyclic aromatics, for instance, naphthalene and steroids, were more abundant in the pupal sample. Moreover, a total of seven active pathways were uncovered in the pupal specimen. These ways were associated with the biodegradation of benzoate, 4-methoxybenzoate, fluorobenzoates, styrene, vanillin, benzamide, and naphthalene. In addition, the metabolomic profiles and the catabolism abilities were significantly different in the pupae where their bacteria were removed by a mixture of three antibiotics. Therefore, our data suggested the stage-dependent alterations in bacterial breakdown of aromatics in L. decemlineata.

4.
Insects ; 12(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680704

RESUMO

The vATPase holoenzyme consists of two functional subcomplexes, the cytoplasmic (peripheral) V1 and the membrane-embedded V0. Both V1 and V0 sectors contain eight subunits, with stoichiometry of A3B3CDE3FG3H in V1 and ac8c'c"def(Voa1p) in V0 respectively. However, the function of G subunit has not been characterized in any non-Drosophilid insect species. In the present paper, we uncovered that HvvATPaseG was actively transcribed from embryo to adult in a Coleopteran pest Henosepilachna vigintioctopunctata. Its mRNA levels peaked in larval hindgut and Malpighian tubules. RNA interference (RNAi)-mediated knockdown of HvvATPaseG significantly reduced larval feeding, affected chitin biosynthesis, destroyed midgut integrity, damaged midgut peritrophic membrane, and retarded larval growth. The function of Malpighian tubules was damaged, the contents of glucose, trehalose, lipid, total soluble amino acids and protein were lowered and the fat bodies were lessened in the HvvATPaseG RNAi larvae, compared with those in the PBS- and dsegfp-fed beetles. In contrast, the amount of glycogen was dramatically increased in the HvvATPaseG depletion ladybirds. As a result, the development was arrested, pupation was inhibited and adult emergence was impaired in the HvvATPaseG hypomorphs. Our results demonstrated that G subunit plays a critical role during larval development in H. vigintioctopunctata.

5.
Pest Manag Sci ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34523212

RESUMO

BACKGROUND: Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) diphosphorylase (UAP) catalyzes the formation of UDP-GlcNAc, the precursor for the production of chitin in ectodermally derived epidermal cells and midgut, for GlcNAcylation of proteins and for generation of glycosyl-phosphatidyl-inositol anchors in all tissues in Drosophila melanogaster. RESULTS: Here, we identified a putative HvUAP gene in Henosepilachna vigintioctopunctata. Knockdown of HvUAP at the second-, third- and fourth-instar stages impaired larval development. Most resultant HvUAP hypomorphs showed arrested development at the third-, fourth-instar larval or prepupal stages, and became paralyzed, depending on the age when treated. Some HvUAP-silenced larvae had weak and soft scoli. A portion of HvUAP-depleted beetles formed misshapen pupae. No HvUAP RNA interference pupae successfully emerged as adults. Dissection and microscopic observation revealed that knockdown of HvUAP affected gut growth and food ingestion, reduced cuticle thickness, and negatively affected the formation of newly generated cuticle layers during ecdysis. Furthermore, HvUAP deficiency inhibited development of the tracheal respiratory system and thinned tracheal taenidia. CONCLUSION: The phenotypical defects in HvUAP hypomorphs suggest that HvUAP is involved in the production of chitin. Moreover, our findings will enable the development of a double-stranded RNA-based pesticide to control H. vigintioctopunctata.

6.
J Am Chem Soc ; 143(33): 13382-13392, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34376050

RESUMO

The construction of carbon-heteroatom bonds is one of the most active areas of research in organic chemistry because the function of organic molecules is often derived from the presence of heteroatoms. Although considerable advances have recently been achieved in radical-involved catalytic asymmetric C-N bond formation, there has been little progress in the corresponding C-O bond-forming processes. Here, we describe a photoinduced copper-catalyzed cross-coupling of readily available oxime esters and 1,3-dienes to generate diversely substituted allylic esters with high regio- and enantioselectivity (>75 examples; up to 95% ee). The reaction proceeds at room temperature under excitation by purple light-emitting diodes (LEDs) and features the use of a single, earth-abundant copper-based chiral catalyst as both the photoredox catalyst for radical generation and the source of asymmetric induction in C-O coupling. Combined experimental and density functional theory (DFT) computational studies suggest the formation of π-allylcopper complexes from redox-active oxime esters as bifunctional reagents and 1,3-dienes through a radical-polar crossover process.

7.
Pestic Biochem Physiol ; 178: 104934, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446203

RESUMO

Chitin synthase (CHS) plays a critical role in chitin synthesis and excretion. In most insects, CHSs have been segregated into 1 and 2 classes. CHS1 is responsible for chitin production in the ectodermally-derived epidermal cells. CHS2 is dedicated to chitin biosynthesis in the midgut peritrophic matrix (PM). Henosepilachna vigintioctopunctata is a serious pest of Solanaceae and Cucurbitaceae plants. In this study, we identified HvCHS1 and HvCHS2. We found that HvCHS1 was abundantly transcribed in the larval tracheae and epidermis, whereas HvCHS2 was mainly expressed in the guts. Escherichia coli HT115 expressed double stranded RNAs targeting HvCHS1 and HvCHS2 (dsCHS1 and dsCHS2) were used to immerse potato foliage and the treated leaves were provided to the newly-molted fourth- and third-instar larvae. Ingestion of dsCHS1 by the fourth-instar larvae significantly diminished the target mRNA level and had slight influence on the expression of HvCHS2. In contrast, consumption of dsCHS2 significantly lowered the target mRNA level but triggered the transcription of HvCHS1. Knockdown of HvCHS1, rather than HvCHS2, arrested larval development and impaired larva-pupa-adult transition. A large proportion of HvCHS1 hypomorphs became stunting prepupae, deformed pupae or misshapen adults. Moreover, knockdown of HvCHS1 damaged gut integrity, decreased cuticle thickness, and delayed the formation of newly-generated cuticle layer during ecdysis. Furthermore, depletion of HvCHS1 inhibited the development of trachea system and thinned tracheal taenidia. Ingestion of dsCHS1 at the third-instar stage caused similar but severe negative effects. Our results demonstrated that HvCHS1 is responsible for chitin biosynthesis during ecdysis. Moreover, HvCHS1 is a potential amenable target gene and young larvae are more susceptible to dsRNA.


Assuntos
Quitina Sintase , Besouros , Animais , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Muda/genética , Pupa/metabolismo , Interferência de RNA
8.
Eur J Drug Metab Pharmacokinet ; 46(5): 637-643, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34275127

RESUMO

BACKGROUND AND OBJECTIVES: Vancomycin is one of the most commonly used antibiotics for intra-articular (IA) infusion in the treatment of prosthetic joint infection (PJI). This study aimed to preliminarily investigate the serum and synovial vancomycin concentrations in patients with PJI after IA infusion. METHODS: In total, 16 patients who developed PJI were enrolled in this study; 14 of the patients were treated with IA infusion of vancomycin postoperatively, while the other 2 patients received intravenous (IV) infusion of vancomycin alone. Chemiluminescent immunoassay assay (CLIA) and high-performance liquid chromatography (HPLC) were used to determine the serum and synovial vancomycin concentrations, respectively. RESULTS: Administration of vancomycin 0.5 g once daily (qd) IA maintained a high vancomycin trough concentration in synovial fluid before the next IA dose, regardless of whether it was given in combination with IV administration. The combination vancomycin 0.5 g qd IA + vancomycin 1 g every 12 h (q12h) IV yielded relatively good trough concentrations of vancomycin in both serum and synovial fluid. The mean trough serum vancomycin concentration of patients who used vancomycin 1 g q12h IV therapy was above 10 µg/mL; however, no vancomycin was detected in their synovial fluid. CONCLUSIONS: The rational use of IA vancomycin infusion may help to achieve effective therapeutic concentrations of vancomycin in the serum and synovial fluid of patients with PJI.

9.
Bull Entomol Res ; : 1-10, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112278

RESUMO

Henosepilachna vigintioctopunctata is one of the most serious insect pests to a large number of nightshades and cucurbits. RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) offers a reduced risk approach to control the beetle. Identification of amenable target genes and determination of appropriate life stage for dsRNA treatment are two critical steps in order to improve RNAi efficiency. In the present paper, we identified three vATPase genes, namely HvvATPaseC, HvvATPaseE and HvvATPaseH. We found that the three transcripts were widely expressed in the eggs, first- to fourth-instar larvae, prepupae, pupae and adults. They were abundantly transcribed in the hindgut and Malpighian tubules, in contrast to the epidermis and fat body. Three days' ingestion of dsvATPaseC, dsvATPaseE and dsvATPaseH by the fourth-instar larvae significantly decreased corresponding transcript level by 90.1, 88.9 and 97.2%, greatly reduced larval fresh weight by 28.0, 29.9 and 28.0%, and caused 66.7, 100 and 78.7% larval lethality respectively. Comparably, 3 days' exposure of the third-instar larvae to dsvATPaseC significantly reduced HvvATPaseC mRNA level by 89.5%, decreased approximately 80% of the larval fresh weight, and killed 100% of the treated larvae. Therefore, the three vATPase genes, especially HvvATPaseE, are potential amenable target genes and young larvae are more susceptible to dsRNA. Our findings will enable the development of the dsRNA-based pesticide to control H. vigintioctopunctata.

10.
Amino Acids ; 53(7): 1091-1104, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089391

RESUMO

Kynurenine pathway is critically important to catabolize tryptophan, to produce eye chromes, and to protect nervous system in insects. However, several issues related to tryptophan degradation remain to be clarified. In the present paper, we identified three genes (karmoisin, vermilion and cardinal) involved in kynurenine pathway in Henosepilachna vigintioctopunctata. The karmoisin and cardinal were highly expressed in the pupae and adults having compound eyes. Consistently, high-performance liquid chromatography result showed that three ommochrome peaks were present in adult heads rather than bodies (thoraces, legs, wings and abdomens). RNA interference (RNAi)-aided knockdown of vermilion caused accumulation of tryptophan in both adult heads and bodies, disappearance of ommochromes in the heads and a complete loss of eye color in both pupae and adults. Depletion of cardinal brought about excess of 3-hydroxykynurenine and insufficient ommochromes in the heads and decolored eyes. RNAi of karmoisin resulted in a decrease in ommochromes in the heads, and a partial loss of eye color. Moreover, a portion of karmoisin-, vermilion- or cardinal-silenced adults exhibited negative phototaxis, whereas control beetles showed positive phototaxis. Furthermore, dysfunctions of tryptophan catabolism impaired climbing ability. Our findings clearly illustrated several issues related to kynurenine pathway and provided a new insight into the physiological importance of tryptophan catabolism in H. vigintioctopunctata.

11.
J Insect Physiol ; 132: 104266, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126099

RESUMO

Forkhead box O (FoxO) protein, a major downstream transcription factor of insulin/insulin-like growth factor signaling/target of rapamycin pathway (IIS/TOR), is involved in the regulation of larval growth and the determination of organ size. FoxO also interacts with 20-hydroxyecdysone (20E) and juvenile hormone (JH) signal transduction pathways, and hence is critical for larval development in holometabolans. However, whether FoxO plays a critical role during larval metamorphosis needs to be further determined in Leptinotarsa decemlineata. We found that 20E stimulated the expression of LdFoxO. RNA interference (RNAi)-aided knockdown of LdFoxO at the third-instar stage repressed 20E signaling and reduced larval weight. Although the resultant larvae survived through the third-fourth instar ecdysis, around 70% of the LdFoxO depleted moribund beetles developmentally arrested at prepupae stage. These LdFoxO depleted beetles were completely wrapped in the larval exuviae, gradually darkened and finally died. Moreover, approximately 12% of the LdFoxO RNAi beetles died as pharate adults. Ingestion of either 20E or JH by the LdFoxO depletion beetles excessively rescued the corresponding hormonal signals, but could not alleviate larval performance and restore defective phenotypes. Therefore, FoxO plays an important role in regulation of larval-pupal-adult transformation in L. decemlineata, in addition to mediation of IIS/TOR pathway and stimulation of ecdysteroidogenesis.


Assuntos
Besouros , Fatores de Transcrição Forkhead , Metamorfose Biológica/genética , Animais , Besouros/embriologia , Besouros/genética , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Ecdisterona/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Muda/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Interferência de RNA , Transdução de Sinais
12.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1673-1680, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34042361

RESUMO

Using DC3 high-resolution dendrometer and Granier-type thermal dissipation probes, we measured stem diameter micro-variations and xylem sap flow of two typical forestation species, Quercus liaotungensis and Robinia pseudoacacia, for a growing season in the loess hilly region of China. The main environmental factors (soil water content, solar radiation, air temperature and relative humidity) were monitored. The linkage between diameter micro-variations and transpiration water use were analyzed with respect to their responses to environmental factors. The results showed that the variations in stem diameter and sap flux density of both species had obvious diurnal rhythms. The maximum daily shrinkage was positively correlated with daily sap flux density. The micro-variation of stem diameter at the daily scale was affected by transpiration during the day. The maximum daily shrinkage of stem diameter was positively correlated and well fitted with transpiration driving factors (solar radiation, vapor pressure deficit, and the integrated variable VT). The difference in slopes of regression curves suggested that the daily variation of stem diameter in Q. liaotungensis was greater and more sensitive to meteorological factors than that in R. pseudoacacia. The sap flux densities of both tree species were higher during the period with relatively higher soil water content than that with lower soil water content. The difference of maximum daily diameter shrinkage between different soil water conditions was statistically significant in Q. liaotungensis, but not in R. pseudoacacia. These differences may be related to water use strategies, including transpiration regulation and stem water replenishment.


Assuntos
Transpiração Vegetal , Robinia , China , Estações do Ano , Solo , Árvores , Água/análise
13.
Pestic Biochem Physiol ; 175: 104838, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993963

RESUMO

Crustacean cardioactive peptide (CCAP), a highly conserved amidated neuropeptide, stimulates feeding in Drosophila melanogaster and Periplaneta americana, and regulates pupa-adult transition in Tribolium castaneum and Manduca sexta. In the present paper, we intended to address whether CCAP plays the dual roles in the Colorado potato beetle Leptinotarsa decemlineata. We found that the levels of Ldccap were high in the dissected samples of brain-corpora cardiaca-corpora allata complex and ventral nerve cord, midgut and hindgut in the final (fourth)-instar larvae. A pulse of 20-hydroxyecdysone triggered the expression of Ldccap in the central nervous system but decreased the transcription in the midgut. In contrast, juvenile hormone intensified the expression of Ldccap in the midgut. RNA interference (RNAi)-aided knockdown of Ldccap at the penultimate instar stage inhibited foliage consumption, reduced the contents of trehalose and chitin, and lowered the mRNA levels of two chitin biosynthesis genes (LdUAP1 and LdChSAb). Moreover, around 70% of the Ldccap RNAi larvae remained as prepupae, completely wrapped in the old larval exuviae, and finally died. The remaining RNAi beetles continually developed to severely-deformed adults: most having wrinkled and smaller elytra and hindwings, and shortened legs. Therefore, CCAP plays three distinct roles, stimulating feeding in foraging larval stage, regulating ecdysis, and facilitating wing expansion and appendage elongation in a coleopteran. In addition, Ldccap can be used as a potential target gene for developing novel management strategies against this coleopteran pest.


Assuntos
Besouros , Neuropeptídeos , Animais , Besouros/genética , Drosophila melanogaster , Proteínas de Insetos/genética , Larva , Muda , Neuropeptídeos/genética
14.
Ther Adv Chronic Dis ; 12: 20406223211007369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995992

RESUMO

Background: Accumulating evidence has demonstrated that bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) can be used effectively to transfer drugs and biomolecules to target lesions. Meanwhile, BMSCs have been reported to be beneficial in the treatment of rheumatoid arthritis (RA). In this study, we employ gain- and loss-of-function experiments to determine how BMSCs-derived EVs alleviate RA in vitro and in vivo. Methods: We isolated EVs from BMSCs and characterized them by transmission electron microscopy and western blot analysis. The regulatory relationship between miR-21 and TET1 was predicted by bioinformatics analysis and validated by dual luciferase assay. Next, we utilized bisulfite sequencing PCR to decipher how TET1 promoted KLF4 transcription. Then, we established an RA mouse model and determined the role of miR-21 in RA progression. Functional assays were used to validate the role the miR-21-TET1-KLF4 regulatory axis in controlling mouse fibroblast-like synoviocytes (mFLS) cell proliferation and inflammatory cytokines secretion in vitro. Results: RT-qPCR results revealed that miR-21 was highly expressed in BMSCs-derived EVs, and confirmed that BMSCs-derived EVs transferred miR-21 into mFLS cells. Bioinformatic analysis predicted that TET1 was the directly downstream target of miR-21, which was further validated by dual luciferase assay. TET1 promoted KLF4 promoter methylation to increase its expression. Collectively, BMSCs-derived EVs relieved RA by delivering miR-21, while the exosomal miR-21 alleviated RA through targeting the TET1/KLF4 regulatory axis. Conclusion: miR-21 from BMSCs-derived EVs suppresses KLF4 to relive RA by targeting TET1.

15.
J Clin Endocrinol Metab ; 106(9): 2738-2753, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-33758937

RESUMO

CONTEXT: Regulatory T cell (Treg) dysfunction plays an important role in the development and progression of Graves' disease (GD). Programmed cell death 1 (PD-1) prompts FoxP3 in Treg expression and enhances the suppressive activity of Tregs. Whether abnormal expression of PD-1 contributes to the breakdown of Tregs and the role of thyroid hormone in the PD-1 expression of Tregs in GD remain substantially undefined. OBJECTIVE: To evaluate the role of PD-1 in Treg function and triiodothyronine (T3) in PD-1 expression in patients with GD and mice treated with T3. METHODS: We recruited 30 patients with GD and 30 healthy donors. PD-1 expression in Tregs and Treg function were determined. To evaluate the effects of thyroid hormone on PD-1 expression in Tregs, we used T3 for the treatment of human peripheral blood mononuclear cells (PBMCs). We then treated mice with T3 to confirm the effect of thyroid hormone on PD-1 expression in Tregs and Tregs function in vivo. RESULTS: PD-1 expression in Tregs and the suppressive function of Tregs significantly decreased in patients with GD. T3 reduced PD-1 expression in human Tregs in a concentration- and time-dependent manner in vitro. High levels of circulating T3 reduced PD-1 expression in Tregs, impaired Treg function, and disrupted T-helper cell (Th1 and Th2) balance in mice treated with T3. CONCLUSION: Treg dysfunction in GD patients might be due to downregulation of PD-1 expression in Tregs induced by high levels of serum T3.


Assuntos
Doença de Graves/imunologia , Receptor de Morte Celular Programada 1/fisiologia , Linfócitos T Reguladores/fisiologia , Hormônios Tireóideos/fisiologia , Adulto , Animais , Antígeno B7-H1/sangue , Feminino , Doença de Graves/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estado Nutricional , Receptor de Morte Celular Programada 1/sangue , Linfócitos T Reguladores/química , Células Th1/imunologia , Células Th2/imunologia
16.
Arch Insect Biochem Physiol ; 107(1): e21782, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33724519

RESUMO

In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.


Assuntos
Besouros/microbiologia , Microbiota , Pupa/microbiologia , Animais , Bactérias/classificação , Besouros/fisiologia , Ecossistema , Genes Bacterianos , Larva/microbiologia , Larva/fisiologia , Metagenômica/métodos , Metamorfose Biológica , Microbiota/genética , Pupa/fisiologia , RNA Ribossômico 16S/genética
17.
Sci Rep ; 11(1): 3157, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542475

RESUMO

Aridity and heat are significant environmental stressors that affect sheep adaptation and adaptability, thus influencing immunity, growth, reproduction, production performance, and profitability. The aim of this study was to profile mRNA expression levels in the spleen of indigenous Kazakh sheep breed for comparative analysis with the exotic Suffolk breed. Spleen histomorphology was observed in indigenous Kazakh sheep and exotic Suffolk sheep raised in Xinjiang China. Transcriptome sequencing of spleen tissue from the two breeds were performed via Illumina high-throughput sequencing technology and validated by RT-qPCR. Blood cytokine and IgG levels differed between the two breeds and IgG and IL-1ß were significantly higher in Kazakh sheep than in Suffolk sheep (p < 0.05), though spleen tissue morphology was the same. A total of 52.04 Gb clean reads were obtained and the clean reads were assembled into 67,271 unigenes using bioinformatics analysis. Profiling analysis of differential gene expression showed that 1158 differentially expressed genes were found when comparing Suffolk with Kazakh sheep, including 246 up-regulated genes and 912 down-regulated genes. Utilizing gene ontology annotation and pathway analysis, 21 immune- responsive genes were identified as spleen-specific genes associated with adaptive traits and were significantly enriched in hematopoietic cell lineage, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, and in the intestinal immune network for IgA production. Four pathways and up-regulated genes associated with immune responses in indigenous sheep played indispensable and promoting roles in arid and hot environments. Overall, this study provides valuable transcriptome data on the immunological mechanisms related to adaptive traits in indigenous and exotic sheep and offers a foundation for research into adaptive evolution.


Assuntos
Adaptação Fisiológica/imunologia , Imunidade Adaptativa , Fatores de Coagulação Sanguínea/imunologia , Proteínas do Sistema Complemento/imunologia , Baço/imunologia , Transcriptoma/imunologia , Adaptação Fisiológica/genética , Animais , Fatores de Coagulação Sanguínea/genética , Proteínas do Sistema Complemento/genética , Secas , Células Eritroides/citologia , Células Eritroides/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Imunidade Inata , Imunoglobulina A/biossíntese , Imunoglobulina A/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Masculino , Anotação de Sequência Molecular , Reprodução/genética , Reprodução/imunologia , Carneiro Doméstico , Baço/citologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia
18.
Plant Dis ; : PDIS08201819RE, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33560882

RESUMO

Blackleg of oilseed rape is a damaging invasive disease caused by the species complex Leptosphaeria maculans (Lm)/L. biglobosa (Lb), which is composed of at least two and seven phylogenetic subclades, respectively. Generally, Lm is more virulent than Lb, but under certain conditions, Lb can cause a significant yield loss in oilseed rape. Lb 'brassicae' (Lbb) has been found to be the causal agent for blackleg of oilseed rape in China, whereas Lm and Lb 'canadensis' (Lbc) were frequently detected in imported seeds of oilseed rape, posing a risk of spread into China. To monitor the blackleg-pathogen populations, a diagnostic tool based on loop-mediated isothermal amplification (LAMP) was developed using a 615-bp-long DNA sequence from Lbb that was derived from a randomly amplified polymorphic DNA assay. The LAMP was optimized for temperature and time, and tested for specificity and sensitivity using the DNA extracted from Lbb, Lbc, Lm, and 10 other fungi. The results showed that the optimal temperature and time were 65°C and 40 min, respectively. The LAMP primer set was specific to Lbb and highly sensitive as it detected the Lbb DNA as low as 132 fg per reaction. The LAMP assay was validated using the DNA extracted from mycelia and conidia of a well-characterized Lbb isolate, and its utility was evaluated using the DNA extracted from leaves, stems, pods, and seeds of oilseed rape. The LAMP assay developed herein will help for monitoring populations of the blackleg pathogens in China and in developing strategies for management of the blackleg disease.

19.
Insect Sci ; 28(2): 419-429, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32162469

RESUMO

Henosepilachna vigintioctopunctata is a serious insect pest which attacks a large number of nightshades and cucurbits in Asian countries, Brazil and Australia. Prolonged application of traditional pesticides has caused environmental pollution and exerted deleterious effects on human health. Finding new approaches with high target specificity and low environmental contamination has become an urgent task. RNA interference (RNAi) induced by double-stranded RNA (dsRNA) is expected to be applicable to managing this pest. Here we evaluated the effects of Escherichia coli-expressed dsRNAs targeting ecdysone receptor (EcR) gene via dietary delivery in laboratory and foliar spraying in a greenhouse. The target transcript was successfully knocked down when the 4th-instar larvae had fed on potato foliage dipped with dsEcR in a laboratory bioassay. Around 85% of the HvEcR RNAi larvae remained as prepupae or became abnormal pupae, and failed to emerge into adults. Ingestion of dsEcR-immersed foliage by the 3rd-instar larvae effectuated a comparable RNAi response and brought about more severe defects: all the resultant larvae arrested development, remained as prepupae and finally died. For assay in the greenhouse, a dsEcR-contained E. coli suspension was directly sprayed to the foliage of greenhouse-growing potato plants and the 3rd- and 4th-instar larvae were transferred to the leaves. High RNAi efficacy was obtained and identical RNAi phenotypes were observed in treated larvae. In addition, spraying dsEcR reduced leaf damage. Our results indicate a possibility of practical application of dsEcR as an environmentally friendly RNA pesticide to control H. vigintioctopunctata larvae.


Assuntos
Besouros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Interferência de RNA , Receptores de Esteroides/genética , Animais , Besouros/genética , Besouros/metabolismo , Escherichia coli , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Microrganismos Geneticamente Modificados , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Receptores de Esteroides/metabolismo
20.
Ther Adv Chronic Dis ; 11: 2040622320974833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294147

RESUMO

Background: Chronic exposure to excess glucocorticoids is frequently associated with a specific cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has beneficial effects as it aids in the reduction of heart failure and cardiovascular mortality in hospitalized patients. The aim of this study was to investigate the effects of empagliflozin on chronic hypercortisolism-induced myocardial fibrosis and myocardial dysfunction in mice. Methods: Male C57BL/6J mice (6 weeks old) were randomized to control, corticosterone (CORT), and empagliflozin + CORT groups. After 4 weeks of administration, heart structure and function were evaluated by echocardiography, and peripheral blood and tissue samples were collected. Expressions of Ccl2, Itgax, Mrc1, and Adgre1 mRNA in heart tissue were evaluated by RT-PCR, and signal transducer and activator of transcription 3 (STAT3) and Toll-like receptor 4 (TLR4) protein expression were analyzed by Western blotting. Results: Empagliflozin effectively reduced body weight, liver triglyceride, visceral adipose volume, and uric acid in CORT-treated mice. Left ventricular hypertrophy and cardiac dysfunction were improved significantly, phosphorylated STAT3 and TLR4 were alleviated, and macrophage infiltration in the myocardium was inhibited after administration of empagliflozin in CORT-treated mice. Conclusion: Empagliflozin has beneficial effects on specific cardiomyopathy associated with CORT, and the results provide new evidence that empagliflozin might be a potential drug for the prevention of this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...