Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
BMC Plant Biol ; 21(1): 448, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615467

RESUMO

BACKGROUND: Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. RESULTS: To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10-1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10-1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10-1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10-1 promotes cell elongation. Interestingly, GhGASA10-1 was upregulated by IAA at fiber elongation stages. CONCLUSION: We propose that GhGASA10-1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10-1 in cotton fiber development.


Assuntos
Proliferação de Células/genética , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Reguladores de Crescimento de Plantas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibra de Algodão , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
2.
Stem Cell Rev Rep ; 17(6): 2124-2138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34510361

RESUMO

Autologous stem cell transplantation (ASCT) is a potentially curative therapy but requires collection of sufficient blood stem cells (PBSC). Up to 40 % of patients with multiple myeloma (MM) fail to collect an optimum number of PBSC using filgrastim only and often require costly plerixafor rescue. The nonsteroidal anti-inflammatory drug meloxicam mobilizes PBSC in mice, nonhuman primates and normal volunteers, and has the potential to attenuate mobilization-induced oxidative stress on stem cells. In a single-center study, we evaluated whether a meloxicam regimen prior to filgrastim increases collection and/or homeostasis of CD34+ cells in MM patients undergoing ASCT. Mobilization was not significantly different with meloxicam in this study; a median of 2.4 × 106 CD34+ cells/kg were collected in the first apheresis and 9.2 × 106 CD34+ cells/kg were collected overall for patients mobilized with meloxicam-filgrastim, versus 4.1 × 106 in first apheresis and 7.2 × 106/kg overall for patients mobilized with filgrastim alone. CXCR4 expression was reduced on CD34+ cells and a higher CD4+/CD8+ T-cell ratio was observed after mobilization with meloxicam-filgrastim. All patients treated with meloxicam-filgrastim underwent ASCT, with neutrophil and platelet engraftment similar to filgrastim alone. RNA sequencing of purified CD34+ cells from 22 MM patients mobilized with meloxicam-filgrastim and 10 patients mobilized with filgrastim only identified > 4,800 differentially expressed genes (FDR < 0.05). Enrichment analysis indicated significant attenuation of oxidative phosphorylation and translational activity, possibly mediated by SIRT1, suggesting meloxicam may counteract oxidative stress during PBSC collection. Our results indicate that meloxicam was a safe, low-cost supplement to filgrastim mobilization, which appeared to mitigate HSPC oxidative stress, and may represent a simple means to lessen stem cell exhaustion and enhance graft quality.

3.
Int J Biol Macromol ; 184: 967-980, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197850

RESUMO

Soil salinization is a vital factor that restricts the efficient and sustainable development of global agriculture. Studies enlightened that the C2H2 zinc finger proteins (C2H2-ZFP) were involved in regulating the stress response in plants. However, knowledge of the C2H2-ZFP subfamily C1 (ZAT; Zinc finger of Arabidopsis thaliana) in cotton is still a mystery. In this study, 47, 45, 94, and 88 ZAT genes were obtained from diploid A2, D5 and tetraploid AD1, AD2 cotton genomes, respectively. The function of hybridization and allopolyploidy in the evolutionary linkage of allotetraploid cotton was explained by the family of ZAT gene in 4 species. Duplication of gene activities indicates that the family of ZAT gene of cotton evolution was under strong purifying selection. The integration of previous transcriptome data related to NaCl stress, strongly suggests the GhZAT34 and GhZAT79 may interact with salt resistance in upland cotton. The expression level of certain ZAT genes, higher seed germination rate of transgenic Arabidopsis and gene- silenced cotton revealed that both genes were involved in the salt tolerance of upland cotton. This study may pave the substantial understandings into the role of ZATs genes in plants as well as suggest appropriate candidate genes for breeding of cotton varieties against salinity tolerance.


Assuntos
Arabidopsis/fisiologia , Gossypium/fisiologia , Tolerância ao Sal , Fatores de Transcrição/genética , Arabidopsis/genética , Dedos de Zinco CYS2-HIS2 , Diploide , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Seleção Genética , Tetraploidia , Fatores de Transcrição/química
4.
J Genet Genomics ; 48(6): 473-484, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272194

RESUMO

Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton (cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.

5.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193412

RESUMO

The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal-regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.

6.
Int J Biol Macromol ; 184: 1035-1061, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174315

RESUMO

Calmodulin (CaM) is considered as the most significant Ca2+ signaling messenger that mediate various biochemical and physiological reactions. IQ domain (IQD) proteins are plant specific CML/CaM calcium binding which are characterized by domains of 67 amino acids. 50, 50, 94, and 99 IQD genes were detected from G. arboreum (A2), G. raimondii (D5), G. barbadense (AD2) and G. hirsutum (AD1) respectively. Existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Duplication of gene events depicts that IQD gene family of cotton evolution was under strong purifying selection. G. hirsutum exhibited high level synteny. GarIQD25 exhibited high expression in stem, root, flower, ovule and fiber in G. arboreum. In G. raimondii, GraIQD03 demonstrated upregulation across stem, ovule, fiber and seed. GbaIQD11 and GbaIQD62 exhibited upregulation in fiber development in G. barbadense. GhiIQD69 recognized as main candidate genes for plant parts, floral tissues, fiber and ovule development. Promotor analysis identified cis-regulatory elements were involved in plant growth and development. Overwhelmingly, present study paves the way to better understand the evolution of cotton IQD genes and lays a foundation for future investigation of IQD in cotton.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Gossypium/genética , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Diploide , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Seleção Genética , Tetraploidia , Distribuição Tecidual
7.
Int J Biol Macromol ; 182: 1507-1527, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965497

RESUMO

Heat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G. arboreum (A2) and G. raimondii (D5), and tetraploid cottons G. barbadense (AD2) and G. hirsutum (AD1) respectively. The chromosome localization of identified HSFs revealed their random distribution on all the 13 chromosomes of A and D genomes of cotton with few regions containing HSFs in clusters. The genes structure and conserved domain analysis revealed the family-specific conservation of intron/exon organization and conserved domains in HSFs. Various abiotic stress-related cis-regulatory elements were identified from the putative promoter regions of cotton HSFs suggesting their possible role in mediating abiotic stress tolerance. The combined phylogenetic analysis of all the cotton HSFs grouped them into three subfamilies; with 145 HSFs belong to class A, 85 to class B, and 17 to class C subfamily. Moreover, a detailed analysis of HSF gene family in four species of cotton elucidated the role of allopolyploid and hybridization during evolutionary cascade of allotetraploid cotton. Comparatively, existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Phylogenetic, collinearity and multiple synteny analyses exhibited dispersed, segmental, proximal, and tandem gene duplication events in HSF gene family. Duplication of gene events suggests that HSF gene family of cotton evolution was under strong purifying selection. Expression analysis revealed that GarHSF04 were found to be actively involved in PEG and salinity tolerance in G. arboreum. GhiHSF14 upregulated in heat and downregulated in salinity whilst almost illustrated similar behavior under cold and PEG treatments and GhiHSF21 exhibited down regulation almost across all the stresses in G. hirsutum. Overwhelmingly, present study paves the way to better understand the evolution of cotton HSF TFs and lays a foundation for future investigation of HSFs in improving abiotic stress tolerance in cotton.


Assuntos
Gossypium/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Mol Cytogenet ; 14(1): 25, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971935

RESUMO

BACKGROUND: Although a few studies have investigated a possible association between maternal age and fetal sex chromosome aneuploidies (SCAs), most of these studies were limited to advanced maternal age (AMA) women and the results were conflicting. This study aimed to investigate the correlation between maternal age and common fetal SCAs (including 45,X, 47,XXY, 47,XXX and 47,XYY) in pregnant women of different ages that not only limited to AMA women. We retrospectively investigated a 8-year experience of prenatal diagnosis for fetal chromosome aberrations by second-trimester amniocentesis at a university teaching hospital in China. 20,409 amniotic fluid specimens collected at 19-22+6 gestational weeks were included in this study. The women were categorized into five age groups (≤ 23, 24-28, 29-33, 34-38, 39+ years) based on maternal age at the time of amniocentesis and entered as a categorical variable in all samples. The correlation between fetal SCAs and maternal age was determined using the logistic regression analysis. A chi-square test was performed to compare the incidence of fetal SCAs among age groups. RESULTS: A total of 179 cases of fetal SCAs were detected, and the incidence was 8.77‰ (about 1/114). The incidence of fetal SCAs increased significantly with advancing maternal age (SE, 0.014; odds ratio, 1.044; P = 0.002). Specifically, the incidence of 45,X (SE, 0.037; odds ratio, 0.916; P = 0.017) and 47,XXY (SE, 0.024; odds ratio, 1.127; P = 0.000) had significant correlation with maternal age, while the incidence of 47,XXX and 47,XYY had no correlation with maternal age (P = 0.473; P = 0.272, respectively). The incidence of fetal SCAs was also significantly different among age groups (χ2 = 10.197, P = 0.037 < 0.05), from 5.81 per 1000 fetuses at the 24-28 years to 10.92 per 1000 at the 39+ years. CONCLUSIONS: Maternal age was ascertained to be a strong risk factor for fetal SCAs.

9.
Planta ; 253(5): 95, 2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33839967

RESUMO

MAIN CONCLUSION: The significant number loci and candidate genes of root color in Gossypium arboreum are identified and provide a theoretical basis of root color for cotton. A stimulating phenomenon was observed on the 4th day of sowing in the root color of some G. arboreum accessions that turned red. To disclose the genetic mechanisms of root color formation via genome and transcript levels, we identified the significant number of SNPs and candidate genes that are related to root color through genome-wide association study (GWAS) and RNAseq analysis in G. arboreum. Initially, 215 no. of G. arboreum accessions was collected, and the colors of root on the 4th, 6th and 9th day of germination were recorded. The GWAS demonstrated that 225 significant SNPs and 47 candidate genes have been identified totally. The strongest signal SNP A04_91824 could greatly distinguish the root color with most "C" allele accessions have displayed white and "T" allele accessions displayed red. RNAseq was performed on accessions having the white and red root, and results revealed that 12 and 138 DEGs were detected on 2nd and 4th day, respectively. ACD6, UFGT, and LYM2 were the most related genes of root color, later, verified by qRT-PCR. The mature zone of red and the white roots was observed by the histological section method, and results shown that cells were more closely arranged in the white root, and both average cell length and cell width were longer in the red root. This study will be helpful to cotton breeders for utilization of several elite genes and related SNPs related to root color, in addition to find linkage with economically important traits of interests.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Cor , Perfilação da Expressão Gênica , Gossypium/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
J Pediatr Surg ; 56(6): 1220-1225, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33745738

RESUMO

INTRODUCTION: Necrotizing enterocolitis (NEC) remains a devastating disease that affects the gastrointestinal tract of the preterm infant. Volatile organic compounds (VOCs) have emerged as a non-invasive biomarker in many diseases. We hypothesized that fecal VOC profiles would be significantly different between control and NEC pups in a NEC mouse model. METHODS: Experimental NEC was induced in five-day-old mice. Breastfed and formula-fed control groups were also studied. After four days, pups were euthanized and intestines were H&E stained and blindly scored. Stool microbiome analysis was performed via 16S rRNA sequencing. VOC analysis was assessed by the CyranoseⓇ 320 eNose device and p<0.05 was significant. RESULTS: NEC pups had severe intestinal injury when compared to controls. Microbiome analysis showed that both control groups had significantly higher microbial diversity and relative abundance of Lactobacillus than NEC, and lower relative abundance of Escherichia. Fecal VOC profile for NEC pups was significantly different from controls. CONCLUSIONS: Experimental NEC was associated with intestinal dysbiosis. Fecal VOC analysis by the CyranoseⓇ 320 eNose device can discriminate NEC pups from both breastfed and formula-fed controls. Further research is warranted to establish whether fecal VOCs can be used as a biomarker or predictive algorithm to diagnose NEC.


Assuntos
Enterocolite Necrosante , Microbiota , Compostos Orgânicos Voláteis , Animais , Enterocolite Necrosante/diagnóstico , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Camundongos , RNA Ribossômico 16S
11.
Pediatr Res ; 89(6): 1373-1379, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32920604

RESUMO

Necrotizing enterocolitis (NEC) is a devastating condition affecting up to 5% of neonatal intensive care unit (NICU) admissions. Risk factors include preterm delivery, low birth weight, and antibiotic use. The pathogenesis is characterized by a combination of intestinal ischemia, necrosis of the bowel, reperfusion injury, and sepsis typically resulting in surgical resection of afflicted bowel. Targeted medical therapy remains elusive. Chondroitin sulfate (CS) holds the potential to prevent the onset of NEC through its anti-inflammatory properties and protective effect on the gut microbiome. The purpose of this review is to outline the many properties of CS to highlight its potential use in high-risk infants and attenuate the severity of NEC. The purpose of this review is to (1) discuss the interaction of CS with the infant microbiome, (2) review the anti-inflammatory properties of CS, and (3) postulate on the potential role of CS in preventing NEC. IMPACT: NEC is a costly medical burden in the United States. Breast milk is the best preventative measure for NEC, but not all infants in the NICU have access to breast milk. Novel therapies and diagnostic tools are needed for NEC. CS may be a potential therapy for NEC due to its potent anti-inflammatory properties. CS could be added to the formula in an attempt to mitigate breast milk disparities.

12.
Shock ; 55(3): 301-310, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826807

RESUMO

ABSTRACT: The development of new vasculature plays a significant role in a number of chronic disease states, including neoplasm growth, peripheral arterial disease, and coronary artery disease, among many others. Traumatic injury and hemorrhage, however, is an immediate, often dramatic pathophysiologic insult that can also necessitate neovascularization to promote healing. Traditional understanding of angiogenesis involved resident endothelial cells branching outward from localized niches in the periphery. Additionally, there are a small number of circulating endothelial progenitor cells that participate directly in the process of neovessel formation. The bone marrow stores a relatively small number of so-called pro-angiogenic hematopoietic progenitor cells-that is, progenitor cells of a hematopoietic potential that differentiate into key structural cells and stimulate or otherwise support local cell growth/differentiation at the site of angiogenesis. Following injury, a number of cytokines and intercellular processes are activated or modulated to promote development of new vasculature. These processes initiate and maintain a robust response to vascular insult, allowing new vessels to canalize and anastomose and provide timely oxygen delivering to healing tissue. Ultimately as we better understand the key players in the process of angiogenesis we can look to develop novel techniques to promote healing following injury.

13.
Theor Appl Genet ; 133(12): 3273-3285, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32844253

RESUMO

KEY MESSAGE: Three extensive eco-haplotypes associated with population differentiation and environmental adaptability in Upland cotton were identified, with A06_85658585, A08_43734499 and A06_113104285 considered the eco-loci for environmental adaptability. Population divergence is suggested to be the primary force driving the evolution of environmental adaptability in various species. Chromosome inversion increases reproductive isolation between subspecies and accelerates population divergence to adapt to new environments. Although modern cultivated Upland cotton (Gossypium hirsutum L.) has spread worldwide, the noticeable phenotypic differences still existed among cultivars grown in different areas. In recent years, the long-distance migration of cotton cultivation areas throughout China has demanded that breeders better understand the genetic basis of environmental adaptability in Upland cotton. Here, we integrated the genotypes of 419 diverse accessions, long-term environment-associated variables (EAVs) and environment-associated traits (EATs) to evaluate subgroup differentiation and identify adaptive loci in Upland cotton. Two highly divergent genomic regions were found on chromosomes A06 and A08, which likely caused by extensive chromosome inversions. The subgroups could be geographically classified based on distinct haplotypes in the divergent regions. A genome-wide association study (GWAS) also confirmed that loci located in these regions were significantly associated with environmental adaptability in Upland cotton. Our study first revealed the cause of population divergence in Upland cotton, as well as the consequences of variation in its environmental adaptability. These findings provide new insights into the genetic basis of environmental adaptability in Upland cotton, which could accelerate the development of molecular markers for adaptation to climate change in future cotton breeding.


Assuntos
Adaptação Fisiológica , Variação Genética , Genética Populacional , Genoma de Planta , Gossypium/genética , Haplótipos , Locos de Características Quantitativas , Mapeamento Cromossômico , Meio Ambiente , Estudo de Associação Genômica Ampla , Genótipo , Gossypium/classificação , Gossypium/crescimento & desenvolvimento , Fenótipo
14.
Stem Cell Reports ; 15(2): 358-373, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735825

RESUMO

Ionizing radiation exposure results in acute and delayed bone marrow suppression. Treatment of mice with 16,16-dimethyl prostaglandin E2 (dmPGE2) prior to lethal ionizing radiation (IR) facilitates survival, but the cellular and molecular mechanisms are unclear. In this study we show that dmPGE2 attenuates loss and enhances recovery of bone marrow cellularity, corresponding to a less severe hematopoietic stem cell nadir, and significantly preserves long-term repopulation capacity and progenitor cell function. Mechanistically, dmPGE2 suppressed hematopoietic stem cell (HSC) proliferation through 24 h post IR, which correlated with fewer DNA double-strand breaks and attenuation of apoptosis, mitochondrial compromise, oxidative stress, and senescence. RNA sequencing of HSCs at 1 h and 24 h post IR identified a predominant interference with IR-induced p53-downstream gene expression at 1 h, and confirmed the suppression of IR-induced cell-cycle genes at 24 h. These data identify mechanisms of dmPGE2 radioprotection and its potential role as a medical countermeasure against radiation exposure.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Radiação Ionizante , Protetores contra Radiação/farmacologia , Animais , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Redes Reguladoras de Genes/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Genética/efeitos dos fármacos , Transcrição Genética/efeitos da radiação
15.
Asian J Androl ; 22(6): 642-648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362598

RESUMO

Chromosomal abnormalities and Y chromosome microdeletions are considered to be the two more common genetic causes of spermatogenic failure. However, the relationship between chromosomal aberrations and Y chromosome microdeletions is still unclear. This study was to investigate the incidence and characteristics of chromosomal aberrations and Y chromosome microdeletions in infertile men, and to explore whether there was a correlation between the two genetic defects of spermatogenic failure. A 7-year retrospective study was conducted on 5465 infertile men with nonobstructive azoospermia or oligozoospermia. Karyotype analysis of peripheral blood lymphocytes was performed by standard G-banding techniques. Y chromosome microdeletions were screened by multiplex PCR amplification with six specific sequence-tagged site (STS) markers. Among the 5465 infertile men analyzed, 371 (6.8%) had Y chromosome microdeletions and the prevalence of microdeletions in azoospermia was 10.5% (259/2474) and in severe oligozoospermia was 6.3% (107/1705). A total of 4003 (73.2%) infertile men underwent karyotyping; 370 (9.2%) had chromosomal abnormalities and 222 (5.5%) had chromosomal polymorphisms. Karyotype analysis was performed on 272 (73.3%) patients with Y chromosome microdeletions and 77 (28.3%) had chromosomal aberrations, all of which involved sex chromosomes but not autosomes. There was a significant difference in the frequency of chromosomal abnormalities between men with and without Y chromosome microdeletions (P< 0.05).


Assuntos
Azoospermia/genética , Oligospermia/genética , Adolescente , Adulto , Azoospermia/etiologia , Deleção Cromossômica , Cromossomos Humanos Y/genética , Humanos , Infertilidade Masculina/genética , Cariotipagem , Masculino , Pessoa de Meia-Idade , Oligospermia/etiologia , Estudos Retrospectivos , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Adulto Jovem
16.
Elife ; 92020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32043969

RESUMO

The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs - Etv1, Etv 4, and Etv 5 - in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Cristalino/crescimento & desenvolvimento , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/fisiologia , Animais , Cristalinas/metabolismo , Células Epiteliais/fisiologia , Proteína Jagged-1/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Proto-Oncogênicas c-maf/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Plants (Basel) ; 9(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968683

RESUMO

The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.

18.
Dev Neurosci ; 42(5-6): 159-169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33657559

RESUMO

Ninjurin1 (Ninj1) is a double-transmembrane cell surface protein that could promote nerve regeneration in the process of the peripheral nervous system injury and repairment. Nonetheless, the accurate function of Ninj1 in the central nervous system and outside the nervous system is not completely clear. According to the recent studies, we found that Ninj1 is also aberrantly expressed in various pathophysiological processes in vivo, including inflammation, tumorigenesis, and vascular, bone, and muscle homeostasis. These findings suggest that Ninj1 may play an influential role during these pathophysiological processes. Our review summarizes the diverse roles of Ninj1 in multiple pathophysiological processes inside and outside the nervous system. Ninj1 should be considered as an important and novel therapeutic target in certain diseases, such as inflammatory diseases and ischemic diseases. Our study provided a better understanding of Ninj1 in different pathophysiological processes and thereby provided the theoretical support for further research.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Fatores de Crescimento Neural/fisiologia , Animais , Humanos
19.
Front Genet ; 10: 1086, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781162

RESUMO

Skewed X-chromosome inactivation (XCI) plays an important role in the phenotypic heterogeneity of X-linked disorders. However, the role of skewed XCI in XCI-escaping gene SHOX regulation is unclear. Here, we focused on a heterozygous deletion of SHOX gene enhancer with clinical heterogeneity. Using SNP array, we detected that the female proband with Leri-Weill dyschondrosteosis (LWD) carried an 857 kb deletion on Xp22.3 (encompassing SHOX enhancer) and a 5,707 kb large-fragment deletion on Xq25q26. XCI analysis revealed that the X-chromosome with the Xq25q26 large-fragment deletion was completely inactivated, which forced the complete activation of the other X-chromosome carrying SHOX enhancer deletion. While the Xp22.3 deletion locates on the escaping XCI region, under the combined action of skewed XCI and escaping XCI, transcription of SHOX gene was mainly from the activated X-chromosome with SHOX enhancer defect, involving in the formation of LWD phenotype. Interestingly, this SHOX enhancer deletion was inherited from her healthy mother, who also demonstrated completely skewed XCI. However, the X-chromosome with SHOX enhancer deletion was inactivated, and the normal X-chromosome was activated. Combing with escaping XCI, her phenotype was almost normal. In summary, this study was a rare report of SHOX gene enhancer deletion in a family with clinical heterogeneity due to skewed inactivation of different X-chromosomes, which can help in the genetic counseling and prenatal diagnosis of disorders in females with SHOX defect.

20.
J Zhejiang Univ Sci B ; 20(9): 753-765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379145

RESUMO

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the DMD gene. The aim of this study is to identify pathogenic DMD variants in probands and reduce the risk of recurrence of the disease in affected families. Variations in 100 unrelated DMD/BMD patients were detected by multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). Pathogenic variants in DMD were successfully identified in all cases, and 11 of them were novel. The most common mutations were intragenic deletions (69%), with two hotspots located in the 5' end (exons 2-19) and the central of the DMD gene (exons 45-55), while point mutations were observed in 22% patients. Further, c.1149+1G>A and c.1150-2A>G were confirmed by hybrid minigene splicing assay (HMSA). This two splice site mutations would lead to two aberrant DMD isoforms which give rise to severely truncated protein. Therefore, the clinical use of MLPA, NGS, and HMSA is an effective strategy to identify variants. Importantly, eight embryos were terminated pregnancies according to prenatal diagnosis and a healthy boy was successfully delivered by preimplantation genetic diagnosis (PGD). Early and accurate genetic diagnosis is essential for prenatal diagnosis/PGD to reduce the risk of recurrence of DMD in affected families.


Assuntos
Processamento Alternativo , Sítios de Ligação , Variação Genética , Distrofia Muscular de Duchenne/genética , Biópsia , Creatina Quinase/sangue , Éxons , Saúde da Família , Feminino , Deleção de Genes , Duplicação Gênica , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mães , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...