Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Nat Prod ; 84(2): 247-258, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33533247

RESUMO

Sixteen new sesquiterpene lactones (1-16) along with 13 known analogues (17-29) were isolated from the whole plants of Centipeda minima. The structures of 1-16 were delineated by the combination of NMR spectroscopic experiments, HRESIMS, single-crystal X-ray diffraction analyses, and ECD spectra. Compounds 23-26 showed potent cytotoxicity against Hela, HCT-116, and HepG2 cells with IC50 values of 0.8-2.6, 0.4-3.3, and 1.1-2.6 µM, respectively. Compounds 8, 15, and 24 exhibited significant inhibitory activity on the production of nitric oxide in the lipopolysaccharide-activated RAW 264.7 mouse macrophage cell line, with IC50 values ranging from 0.1 to 0.2 µM.

2.
J Bioinform Comput Biol ; 19(1): 2050048, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33472569

RESUMO

FASTA data sets of short reads are usually generated in tens or hundreds for a biomedical study. However, current compression of these data sets is carried out one-by-one without consideration of the inter-similarity between the data sets which can be otherwise exploited to enhance compression performance of de novo compression. We show that clustering these data sets into similar sub-groups for a group-by-group compression can greatly improve the compression performance. Our novel idea is to detect the lexicographically smallest k-mer (k-minimizer) for every read in each data set, and uses these k-mers as features and their frequencies in every data set as feature values to transform these huge data sets each into a characteristic feature vector. Unsupervised clustering algorithms are then applied to these vectors to find similar data sets and merge them. As the amount of common k-mers of similar feature values between two data sets implies an excessive proportion of overlapping reads shared between the two data sets, merging similar data sets creates immense sequence redundancy to boost the compression performance. Experiments confirm that our clustering approach can gain up to 12% improvement over several state-of-the-art algorithms in compressing reads databases consisting of 17-100 data sets (48.57-197.97[Formula: see text]GB).

3.
Brief Bioinform ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33428725

RESUMO

CRISPR/Cas9 multigene editing is an active and widely studied topic in the fields of biomedicine and biology. It involves a simultaneous participation of multiple single-guide RNAs (sgRNAs) to edit multiple target genes in a way that each gene is edited by one of these sgRNAs. There are possibly numerous sgRNA candidates capable of on-target editing on each of these genes with various efficiencies. Meanwhile, each of these sgRNA candidates may cause unwanted off-target editing at many other genes. Therefore, selection optimization of these multiple sgRNAs is demanded so as to minimize the number of sgRNAs and thus reduce the collective negative effects caused by the off-target editing. This survey reviews wet-laboratory approaches to the implementation of multigene editing and their needs of computational tools for better design. We found that though off-target editing is unavoidable during the gene editing, those disfavored cuttings by some target genes' sgRNAs can potentially become on-target editing sites for some other genes of interests. This off-to-on role conversion is beneficial to optimize the sgRNA selection in multigene editing. We present a preference cutting score to assess those beneficial off-target cutting sites, which have a few mismatches with their host genes' on-target editing sites. These potential sgRNAs can be prioritized for recommendation via ranking their on-target average cutting efficiency, the total off-target site number and their average preference cutting score. We also present case studies on cancer-associated genes to demonstrate tremendous usefulness of the new method.

4.
Virus Res ; 295: 198307, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476695

RESUMO

Bats carry diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). The suspected interspecies transmission of SARSr-CoVs from bats to humans has caused two severe CoV pandemics, the SARS pandemic in 2003 and the recent COVID-19 pandemic. The receptor utilization of SARSr-CoV plays the key role in determining the host range and the interspecies transmission ability of the virus. Both SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as their receptor. Previous studies showed that WIV1 strain, the first living coronavirus isolated from bat using ACE2 as its receptor, is the prototype of SARS-CoV. The receptor-binding domain (RBD) in the spike protein (S) of SARS-CoV and WIV1 is responsible for ACE2 binding and medicates the viral entry. Comparing to SARS-CoV, WIV1 has three distinct amino acid residues (442, 472, and 487) in its RBD. This study aimed at exploring whether these three residues could alter the receptor utilization of SARSr-CoVs. We replaced the three residues in SARS-CoV (BJ01 strain) S with their counterparts in WIV1 S, and then evaluated the change of their utilization of bat, civet, and human ACE2s using a lentivirus-based pseudovirus infection system. To further validate the S-ACE2 interactions, the binding affinity between the RBDs of these S proteins and the three ACE2s were verified by flow cytometry. The results showed that the single amino acid substitution Y442S in the RBD of BJ01 S enhanced its utilization of bat ACE2 and its binding affinity to bat ACE2. On the contrary, the reverse substitution in WIV1 S (S442Y) significantly attenuated the pseudovirus utilization of bat, civet and human ACE2s for cell entry, and reduced its binding affinity with the three ACE2s. These results suggest that the S442 is critical for WIV1 adapting to bats as its natural hosts. These findings will enhance our understanding of host adaptations and cross-species infections of coronaviruses, contributing to the prediction and prevention of coronavirus epidemics.


Assuntos
/fisiologia , Quirópteros/virologia , Especificidade de Hospedeiro , Glicoproteína da Espícula de Coronavírus/química , Animais , Sítios de Ligação , Células Cultivadas , Humanos , Internalização do Vírus , Viverridae/virologia
6.
Clin Cancer Res ; 27(5): 1438-1451, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310889

RESUMO

PURPOSE: TERT gene rearrangement with transcriptional superenhancers leads to TERT overexpression and neuroblastoma. No targeted therapy is available for clinical trials in patients with TERT-rearranged neuroblastoma. EXPERIMENTAL DESIGN: Anticancer agents exerting the best synergistic anticancer effects with BET bromodomain inhibitors were identified by screening an FDA-approved oncology drug library. The synergistic effects of the BET bromodomain inhibitor OTX015 and the proteasome inhibitor carfilzomib were examined by immunoblot and flow cytometry analysis. The anticancer efficacy of OTX015 and carfilzomib combination therapy was investigated in mice xenografted with TERT-rearranged neuroblastoma cell lines or patient-derived xenograft (PDX) tumor cells, and the role of TERT reduction in the anticancer efficacy was examined through rescue experiments in mice. RESULTS: The BET bromodomain protein BRD4 promoted TERT-rearranged neuroblastoma cell proliferation through upregulating TERT expression. Screening of an approved oncology drug library identified the proteasome inhibitor carfilzomib as the agent exerting the best synergistic anticancer effects with BET bromodomain inhibitors including OTX015. OTX015 and carfilzomib synergistically reduced TERT protein expression, induced endoplasmic reticulum stress, and induced TERT-rearranged neuroblastoma cell apoptosis which was blocked by TERT overexpression and endoplasmic reticulum stress antagonists. In mice xenografted with TERT-rearranged neuroblastoma cell lines or PDX tumor cells, OTX015 and carfilzomib synergistically blocked TERT expression, induced tumor cell apoptosis, suppressed tumor progression, and improved mouse survival, which was largely reversed by forced TERT overexpression. CONCLUSIONS: OTX015 and carfilzomib combination therapy is likely to be translated into the first clinical trial of a targeted therapy in patients with TERT-rearranged neuroblastoma.

7.
Sci Rep ; 10(1): 16307, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004915

RESUMO

Studies on the risk factors for intrahepatic cholestasis of pregnancy (ICP) in a population-based cohort are lacking. We assess the prevalence and risk factors of ICP in a Chinese population. In this study, a cohort study was conducted that included 12,200 eligible pregnant women. The overall incidence of ICP in this cohort was 6.06%. With increasing maternal age, the incidence of ICP decreased in women younger than 30 years of age but increased in those older than 30. With increasing pre-pregnancy BMI, the incidence of ICP decreased if the pre-pregnancy BMI was less than 23 kg/m2 but increased if it was 23 kg/m2 or higher. Further analysis showed that the risk of ICP increased when maternal age was < 25 years (Adjusted RR 2.01; 95% CI 1.64-2.47) or ≥ 35 years (Adjusted RR 1.34; 95% CI 1.02-1.76). Furthermore, an increased risk of ICP was associated with pre-pregnancy underweight (adjusted RR 1.27; 95% CI 1.04-1.56), inadequate gestational weight gain (GWG) (adjusted RR 1.58; 95% CI 1.28-1.96), lower maternal education (adjusted RR 2.96; 95% CI 2.35-3.74), multiparity (adjusted RR 1.54; 95% CI 1.23-1.93), and twin/multiple pregnancies (adjusted RR 2.12; 95% CI 1.25-3.58). Maternal age (< 25 or ≥ 35 years), underweight, inadequate GWG, lower maternal education, multiparity, and twin/multiple pregnancies were identified as risk factors of ICP.

8.
Bioinformatics ; 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063094

RESUMO

MOTIVATION: Infection with strains of different subtypes and the subsequent crossover reading between the two strands of genomic RNAs by host cells' reverse transcriptase are the main causes of the vast HIV-1 sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms (CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is an emerging new subtype and if so, how to accurately identify the new components of the genetic source. RESULTS: We introduce a multi-label learning algorithm for the complete prediction of multiple sources of a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and position features of the sequences are both extracted to capture signature patterns of pure subtypes and CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy (reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong predictions are actually incomplete predictions, very close to the complete set of genuine labels. AVAILABILITY: https://github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction. CONTACT: yuzuguo@aliyun.com;jinyan.li@uts.edu.au. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Bioinformatics ; 36(18): 4675-4681, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33118018

RESUMO

MOTIVATION: A maximal match between two genomes is a contiguous non-extendable sub-sequence common in the two genomes. DNA bases mutate very often from the genome of one individual to another. When a mutation occurs in a maximal match, it breaks the maximal match into shorter match segments. The coding cost using these broken segments for reference-based genome compression is much higher than that of using the maximal match which is allowed to contain mutations. RESULTS: We present memRGC, a novel reference-based genome compression algorithm that leverages mutation-containing matches (MCMs) for genome encoding. MemRGC detects maximal matches between two genomes using a coprime double-window k-mer sampling search scheme, the method then extends these matches to cover mismatches (mutations) and their neighbouring maximal matches to form long and MCMs. Experiments reveal that memRGC boosts the compression performance by an average of 27% in reference-based genome compression. MemRGC is also better than the best state-of-the-art methods on all of the benchmark datasets, sometimes better by 50%. Moreover, memRGC uses much less memory and de-compression resources, while providing comparable compression speed. These advantages are of significant benefits to genome data storage and transmission. AVAILABILITY AND IMPLEMENTATION: https://github.com/yuansliu/memRGC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Brief Bioinform ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33073843

RESUMO

Single-cell mRNA sequencing has been adopted as a powerful technique for understanding gene expression profiles at the single-cell level. However, challenges remain due to factors such as the inefficiency of mRNA molecular capture, technical noises and separate sequencing of cells in different batches. Normalization methods have been developed to ensure a relatively accurate analysis. This work presents a survey on 10 tools specifically designed for single-cell mRNA sequencing data preprocessing steps, among which 6 tools are used for dropout normalization and 4 tools are for batch effect correction. In this survey, we outline the main methodology for each of these tools, and we also compare these tools to evaluate their normalization performance on datasets which are simulated under the constraints of dropout inefficiency, batch effect or their combined effects. We found that Saver and Baynorm performed better than other methods in dropout normalization, in most cases. Beer and Batchelor performed better in the batch effect normalization, and the Saver-Beer tool combination and the Baynorm-Beer combination performed better in the mixed dropout-and-batch effect normalization. Over-normalization is a common issue occurred to these dropout normalization tools that is worth of future investigation. For the batch normalization tools, the capability of retaining heterogeneity between different groups of cells after normalization can be another direction for future improvement.

11.
BMC Genomics ; 21(1): 627, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917152

RESUMO

BACKGROUND: DNA N4-methylcytosine (4mC) is a critical epigenetic modification and has various roles in the restriction-modification system. Due to the high cost of experimental laboratory detection, computational methods using sequence characteristics and machine learning algorithms have been explored to identify 4mC sites from DNA sequences. However, state-of-the-art methods have limited performance because of the lack of effective sequence features and the ad hoc choice of learning algorithms to cope with this problem. This paper is aimed to propose new sequence feature space and a machine learning algorithm with feature selection scheme to address the problem. RESULTS: The feature importance score distributions in datasets of six species are firstly reported and analyzed. Then the impact of the feature selection on model performance is evaluated by independent testing on benchmark datasets, where ACC and MCC measurements on the performance after feature selection increase by 2.3% to 9.7% and 0.05 to 0.19, respectively. The proposed method is compared with three state-of-the-art predictors using independent test and 10-fold cross-validations, and our method outperforms in all datasets, especially improving the ACC by 3.02% to 7.89% and MCC by 0.06 to 0.15 in the independent test. Two detailed case studies by the proposed method have confirmed the excellent overall performance and correctly identified 24 of 26 4mC sites from the C.elegans gene, and 126 out of 137 4mC sites from the D.melanogaster gene. CONCLUSIONS: The results show that the proposed feature space and learning algorithm with feature selection can improve the performance of DNA 4mC prediction on the benchmark datasets. The two case studies prove the effectiveness of our method in practical situations.

12.
Front Pharmacol ; 11: 1137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792958

RESUMO

Hypersplenism and thrombocytopenia are common complications of liver cirrhosis or thalassemia, but current treatment strategies are limited. This study aimed to evaluate the efficacy and safety of thalidomide in the treatment of hypersplenism and thrombocytopenia in patients with liver cirrhosis or thalassemia. A total of 31 patients with hepatic cirrhosis (n=19) or thalassemia (n=12) diagnosed with hypersplenism and thrombocytopenia (platelet count [PLT] <100×109/L) were included in this prospective cohort study between January 2015 and May 2017. Patients were treated with thalidomide (150-200 mg/d) plus conventional therapy. Spleen length, PLT, leukocyte count (WBC), absolute neutrophil count (ANC), and hemoglobin level (Hb) were measured at baseline, 3, 6, and 12 months. Any adverse events were noted. All of the 31 patients were showed a progressive increase PLT during the 12-month follow-up, and similar results were obtained when subgroup analyses were performed based on the primary disease (cirrhosis or thalassemia). WBC, ANC, and Hb also increased progressively during the 12-month follow-up. Spleen length decreased progressively during the follow-up. No serious adverse events occurred. Thalidomide is a potential treatment for thrombocytopenia caused by hypersplenism in patients with cirrhosis or thalassemia.

13.
Transbound Emerg Dis ; 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32794346

RESUMO

Coronavirus (CoV) pandemics have become a huge threat to the public health worldwide in the recent decades. Typically, severe acute respiratory syndrome CoV (SARS-CoV) caused SARS pandemic in 2003 and SARS-CoV-2 caused the ongoing COVID-19 pandemic. Both viruses are most likely originated from bats. Thus, direct or indirect inter-species transmission from bats to humans is required for the viruses to cause pandemics. Receptor utilization is a key factor determining the host range of viruses which is critical to the inter-species transmission. Angiotensin-converting enzyme 2 (ACE2) is the receptor of both SARS-CoV and SARS-CoV-2, but only ACE2s of certain animals can be utilized by the viruses. Here, we employed pseudovirus cell-entry assay to evaluate the receptor-utilizing capability of ACE2s of 20 animals by the two viruses and found that SARS-CoV-2 utilized less ACE2s than SARS-CoV, indicating a narrower host range of SARS-CoV-2. Especially, SARS-CoV-2 tended not to use murine or non-mammal ACE2s. Meanwhile, pangolin-CoV, another SARS-related coronavirus highly homologous to SARS-CoV-2 in its genome, yet showed similar ACE2 utilization profile with SARS-CoV rather than SARS-CoV-2. Nevertheless, the actual susceptibility of these animals to the coronaviruses should be further verified by in vivo studies. To clarify the mechanism underlying the receptor utilization, we compared the amino acid sequences of the 20 ACE2s and found 5 amino acid residues potentially critical for ACE2 utilization, including the N-terminal 20th and 42nd amino acid residues that might determine the different receptor utilization of SARS-CoV, SARS-CoV-2 and pangolin-CoV. Our studies enhance the understanding of receptor utilization of pandemic coronaviruses, potentially contributing to the virus tracing, intermediate host screening and epidemic prevention for pathogenic coronaviruses.

14.
Opt Express ; 28(15): 21845-21853, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752456

RESUMO

We demonstrate the thermal bleaching effect on a photodarkened thulium-doped fiber (TDF) in detail. The bleaching effect on visible transmission initiates at 250 °C and a complete recovery is achieved at 550 °C. Prior to the recovery, a post-irradiation heat-induced spectral loss is observed. It indicates that an intermediate energy state is generated in the TDF under exposure to near-infrared (NIR) radiation, exhibiting the spectral attenuation in visible (VIS) and NIR region as driven by color center after thermal activation. And, with thermal treatment, the bleached TDF shows a partial photodarkening (PD) resistance when it is subject to photoirradiation again. In addition, the temperature-dependent spectral broadening and red shift that may distort the measured decay curve of excess loss is observed and discussed.

15.
Virus Res ; 286: 198074, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32589897

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus causing the pandemic of severe pneumonia (Coronavirus Disease 2019, COVID-19). SARS-CoV-2 is highly pathogenic in human, having posed immeasurable public health challenges to the world. Innate immune response is critical for the host defense against viral infection and the dysregulation of the host innate immune responses probably aggravates SARS-CoV-2 infection, contributing to the high morbidity and lethality of COVID-19. It has been reported that some coronavirus proteins play an important role in modulating innate immunity of the host, but few studies have been conducted on SARS-CoV-2. In this study, we screened the viral proteins of SARS-CoV-2 and found that the viral ORF6, ORF8 and nucleocapsid proteins were potential inhibitors of type I interferon signaling pathway, a key component for antiviral response of host innate immune. All the three proteins showed strong inhibition on type I interferon (IFN-ß) and NF-κB-responsive promoter, further examination revealed that these proteins were able to inhibit the interferon-stimulated response element (ISRE) after infection with Sendai virus, while only ORF6 and ORF8 proteins were able to inhibit the ISRE after treatment with interferon beta. These findings would be helpful for the further study of the detailed signaling pathway and unveil the key molecular player that may be targeted.


Assuntos
Betacoronavirus/genética , Interações Hospedeiro-Patógeno/genética , Interferon beta/genética , NF-kappa B/genética , Proteínas do Nucleocapsídeo/genética , Proteínas Virais/genética , Betacoronavirus/imunologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon beta/imunologia , Luciferases/genética , Luciferases/metabolismo , NF-kappa B/imunologia , Proteínas do Nucleocapsídeo/imunologia , Fosfoproteínas , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Elementos de Resposta , Vírus Sendai/genética , Vírus Sendai/imunologia , Transdução de Sinais , Transfecção/métodos , Proteínas Virais/imunologia
16.
Opt Lett ; 45(9): 2534-2537, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356809

RESUMO

We demonstrate the rapid photodarkening (PD) phenomenon in Tm-doped fiber (TDF) core pumped by a laser at 1080 nm and the bleaching effect of deuterium (${{\rm D}_2}$D2) on PD TDF. By ${{\rm D}_2}$D2 loading for seven days, the PD-induced excess loss (PIEL) in the visible (VIS) and near-infrared (NIR) region have been largely eliminated, and no degradation was observed within 30 days. PD resistance of the ${{\rm D}_2}$D2 pretreated TDF has been investigated as well. The formation of color centers based on defects and precursors in the silica matrix and the mechanism of ${{\rm D}_2}$D2 bleaching are discussed.

17.
New Phytol ; 228(2): 570-585, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32473605

RESUMO

Plant organellar RNA editing is a distinct type of post-transcriptional RNA modification that is critical for plant development. We showed previously that the RNA editing factor SlORRM4 is required for mitochondrial function and fruit ripening in tomato (Solanum lycopersicum). However, a comprehensive atlas of the RNA editing mediated by SlORRM4 is lacking. We observed that SlORRM4 is targeted to both chloroplasts and mitochondria, and its knockout results in pale-green leaves and delayed fruit ripening. Using high-throughput sequencing, we identified 12 chloroplast editing sites and 336 mitochondrial editing sites controlled by SlORRM4, accounting for 23% of chloroplast sites in leaves and 61% of mitochondrial sites in fruits, respectively. Analysis of native RNA immunoprecipitation sequencing revealed that SlORRM4 binds to 31 RNA targets; 19 of these targets contain SlORRM4-dependent editing sites. Large-scale analysis of putative SlORRM4-interacting proteins identified SlRIP1b, a RIP/MORF protein. Moreover, functional characterization demonstrated that SlRIP1b is involved in tomato fruit ripening. Our results indicate that SlORRM4 binds to RNA targets and interacts with SlRIP1b to broadly affect RNA editing in tomato organelles. These results provide insights into the molecular and functional diversity of RNA editing factors in higher plants.

18.
Opt Lett ; 45(7): 1635-1638, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235961

RESUMO

We report on an all-fiber mode-locked repetition-rate-switch pulse operation in a Yb-doped fiber laser based on a polarization rotation vector soliton. The polarization controller (PC) in a fiber loop and a polarization-dependent isolator at the output port are incorporated into the laser resonator at the switch of the repetition rate. By adjusting the PC in the cavity, the mode locking can be switched between the fundamental repetition rate and half of it with a tiny pulse width change. Also, the halved pulse exhibits unique properties: a huge promotion in energy and peak power. To the best of our knowledge, this is the first all-fiber seed source with a passive switch of the repetition rate based on a vector soliton.

19.
Virol Sin ; 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236817

RESUMO

Porcine adenoviruses (PAdVs) are classified into three species, PAdV-A, PAdV-B, and PAdV-C. The genomes of PAdV-A and PAdV-C have been well characterized. However, the genome of PAdV-B has never been completely sequenced, and the epidemiology of PAdV-B remains unclear. In our study, we have identified a novel strain of PAdV-B, named PAdV-B-HNU1, in porcine samples collected in China by viral metagenomic assay and general PCR. The genome of PAdV-B-HNU1 is 31,743 bp in length and highly similar to that of California sea lion adenovirus 1 (C. sea lion AdV-1), which contains typical mastadenoviral structures and some unique regions at the carboxy-terminal end. Especially, PAdV-B-HNU1 harbors a dUTPase coding region not clustering with other mastadenoviruses except for C. sea lion AdV-1 and a fiber coding region homologous with galectin 4 and 9 of animals. However, the variance of GC contents between PAdV-B-HNU1 (55%) and C. sea lion AdV-1 (36%) indicates their differential evolutionary paths. Further epidemiologic study revealed a high positive rate (51.7%) of PAdV-B-HNU1 in porcine lymph samples, but low positive rates of 10.2% and 16.1% in oral swabs and rectal swabs, respectively. In conclusion, this study characterized a novel representative genome of a lymphotropic PAdV-B with unique evolutionary origin, which contributes to the taxonomical and pathogenic studies of PAdVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...