Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
J Environ Sci (China) ; 108: 58-69, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465437

RESUMO

Under ultra-high cadmium (Cd) stress, large amounts of glutathione are produced in Auxenochlorella protothecoides UTEX 2341, and the lipid content increases significantly. Glutathione is the best reductant that can effectively remove Cd, but the relationship between lipid accumulation and the cellular response to Cd stress has not been ascertained. Integrating analyses of the transcriptomes and lipidomes, the mechanism of lipid accumulation to Cd tolerance were studied from the perspectives of metabolism, transcriptional regulation and protein glutathionylation. Under Cd stress, basic metabolic pathways, such as purine metabolism, translation and pre-mRNA splicing process, were inhibited, while the lipid accumulation pathway was significantly activated. Further analysis revealed that the transcription factors (TFs) and genes related to lipid accumulation were also activated. Analysis of the TF interaction sites showed that ABI5, MYB_rel and NF-YB could further regulate the expression of diacylglycerol acyltransferase through glutathionylation/deglutathionylation, which led to increase of the triacylglycerol (TAG) content. Lipidomes analysis showed that TAG could help maintain lipid homeostasis by adjusting its saturation/unsaturation levels. This study for the first time indicated that glutathione could activate TAG synthesis in microalga A. protothecoides, leading to TAG accumulation and glutathione accumulation under Cd stress. Therefore, the accumulation of TAG and glutathione can confer resistance to high Cd stress. This study provided insights into a new operation mode of TAG accumulation under heavy metal stress.


Assuntos
Cádmio , Clorófitas , Cádmio/toxicidade , Glutationa , Lipídeos , Triglicerídeos
2.
Cancer Res ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561273

RESUMO

The majority of cancers are driven by multiple genetic alterations, but how these changes collaborate during tumorigenesis remains largely unknown. To gain mechanistic insights into tumor-promoting genetic interactions among tumor suppressor genes (TSGs), we conducted combinatorial CRISPR screening coupled with single-cell transcriptomic profiling in human mammary epithelial cells. As expected, different driver-gene alterations in mammary epithelial cells influenced the repertoire of tumor suppressor alterations capable of inducing tumor formation. More surprisingly, TSG interaction networks were comprised of numerous cliques-sets of three or four genes such that each TSG within the clique showed oncogenic cooperation with all other genes in the clique. Genetic interaction profiling indicated that the predominant cooperating TSGs shared overlapping functions, rather than distinct or complementary functions. Single-cell transcriptomic profiling of CRISPR double knockouts revealed that cooperating TSGs that synergized in promoting tumorigenesis and growth factor independence showed transcriptional epistasis, whereas non-cooperating TSGs did not. These epistatic transcriptional changes, both buffering and synergistic, affected expression of oncogenic mediators and therapeutic targets, including CDK4, SRPK1 and DNMT1. Importantly, the epistatic expression alterations caused by dual inactivation of TSGs in this system, such as PTEN and TP53, were also observed in patient tumors, establishing the relevance of these findings to human breast cancer. An estimated 50% of differentially expressed genes in breast cancer are controlled by epistatic interactions. Overall, our study indicates that transcriptional epistasis is a central aspect of multigenic breast cancer progression and outlines methodologies to uncover driver gene epistatic networks in other human cancers.

3.
Anal Bioanal Chem ; 413(26): 6513-6521, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476524

RESUMO

Vulgarisins are members of diterpenoids with rare 5/6/4/5 ring skeleton from Prunella vulgaris Linn. (P. vulgaris). Their molecular scaffolds comprise different hydroxylation and degree of esterification. Vulgarisins have attracted many attentions in the fields of food and medicine for their potent bioactivities. Firstly, four reference compounds were analyzed by higher-energy collisional dissociation mass spectrometry (HCD MS/MS) and the fragmentation patterns for molecular scaffold were summarized. And then, a high-performance liquid chromatography/electrospray ionization/high-resolution mass spectrometry (HPLC-ESI-HR-MS) method was adopted to investigate the P. vulgaris extracts. Finally, the proposed analysis results were successfully applied to facilitate the discovery of the vulgarisins analogues from P. vulgaris. For the four reference compounds, the sodium adduct was the predominate ion in full scan. A specific fragmentation pathway of [M+Na]+ ions leads to produce diagnostic ions of vulgarisins at m/z 325 under HCD, which was formed through consecutive-side chains lost. Twenty-three diterpenoids, including 18 vulgarisins analogues, were identified or tentatively characterized in the botanical extracts of P. vulgaris based on their elemental constituents and characteristic fragment ion profiles. Two new vulgarisins analogues in the plant were isolated and their structures were illustrated based on extensive spectroscopic analysis using 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. The HCD MS/MS method, including the profiles of the diagnostic ions induced by characteristic fragmentation, is an effective technique for the discovery of vulgarisins analogues in P. vulgaris. The expected fragmentation pattern knowledge will also facilitate the analysis of other natural products.

4.
Food Funct ; 12(20): 10023-10039, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34523644

RESUMO

Brassica rapa L. is one of the most popular traditional foods with a variety of biological activities. In this study, the petroleum ether extract of B. rapa was separated by silica gel column chromatography, and named BRPS, which was identified by LC-MS. The effects and pharmacological mechanisms of BRPS on the treatment of lung cancer were investigated both in vitro and in vivo. The results showed that BRPS significantly inhibited the proliferation of both human lung cancer A549 and mouse lung cancer LLC cells, while its toxicity to normal cells was lower than that of cancer cells. BRPS induced cell cycle arrest at the G2/M phase and significantly reduced the levels of CDK1 and CyclinB1 in A549 cells. Moreover, BRPS induced apoptosis in a dose-dependent manner, and increased the Bax/Bcl-2 ratio, while it decreased mitochondrial membrane potential, promoted the release of cytochrome c, activated caspase 9 and 3, and enhanced the degradation of PARP in A549 cells. Furthermore, the levels of reactive oxygen species (ROS) were also upregulated by BRPS and ROS inhibitor reversed BRPS-induced apoptosis. Importantly, BRPS significantly suppressed the growth of LLC cells in vivo without any obvious side effect on body weight and organs of mice, and increased the proportion of B cells, CD4+ T cells, CD8+ T cells and CD44+CD8+ T cells in the spleen. These results revealed that BRPS inhibited the growth of lung cancer cells through inducing cell cycle arrest, mitochondria-dependent apoptosis, and activating immunity of mice, and BRPS might be a potential anti-tumor functional food and promising agent for the treatment of lung cancer.

5.
Oxid Med Cell Longev ; 2021: 8882130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336116

RESUMO

Cardiac microvascular endothelial cell (CMEC) dysfunction is considered as a major contributor to the cardiovascular complications in diabetes mellitus, with oxidative stress caused by hyperglycemia playing a critical role in the progression of CMEC dysfunction. Melatonin is a kind of hormone well known for its antioxidant properties, which has potential protective effects against diabetes mellitus and its complications. However, the role of melatonin on CMEC dysfunction caused by hyperglycemia and its molecular mechanisms underlying these effects has not been clarified. Herein, we investigate the protective effects of melatonin on high glucose- (HG-) evoked oxidative stress and apoptosis in CMECs and underlying mechanisms. Our results revealed that melatonin ameliorated the injury caused by HG in primary cultured rat CMECs. Injury can be accompanied by reduced reactive oxygen species (ROS) and malondialdehyde (MDA) production, and enhanced superoxide dismutase (SOD) activity. Meanwhile, melatonin treatment significantly inhibited HG-induced CMEC apoptosis. Moreover, melatonin increased the activity of the AMPK/SIRT1 signaling axis in CMECs under HG condition, whereas administration of the AMPK inhibitor compound C or SIRT1 silencing partially abrogated the beneficial effects of melatonin. In streptozotocin- (STZ-) evoked diabetic mice, melatonin notably ameliorated cardiac dysfunction and activated the AMPK/SIRT1 signaling. In conclusion, our findings revealed that melatonin attenuates HG-induced CMEC oxidant stress, apoptosis injury, and STZ-induced cardiac dysfunction through regulating the AMPK/SIRT1 signaling pathway.

6.
J Am Soc Nephrol ; 32(9): 2255-2272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34341180

RESUMO

BACKGROUND: Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS: We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS: Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS: Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.

7.
Cardiovasc Ther ; 2021: 5554569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257705

RESUMO

Ginkgolide B (GB) is an active ingredient extracted from Ginkgo biloba leaves. However, the effects of GB on cardiac hypertrophy remain unclear. The study is aimed at determining whether GB could alleviate cardiac hypertrophy and exploring its underlying molecular mechanism. Rat cardiomyocyte cell line H9c2 cells were pretreated with GB and incubated with angiotensin II (Ang II) to simulate an in vitro cardiac hypertrophy model. Cell viability, cell size, hypertrophy markers, and autophagy were determined in H9c2 cells after Ang II treatment. Proteins involved in autophagy and the SIRT1 pathway were determined by western blot. Our data demonstrated that GB attenuated Ang II-induced cardiac hypertrophy and reduced the mRNA expressions of hypertrophy marker, atrial natriuretic peptide (ANP), and ß-myosin heavy chain (ß-MHC). GB further increased Ang II-induced autophagy in H9c2 cells and modulated expressions of autophagy-related proteins Beclin1 and P62. Modulation of autophagy using autophagy inhibitor 3-methyladenine (3-MA) could abrogate GB-downregulated transcription of NPPA. We then showed that GB attenuated Ang II-induced oxidative stress and reduction in SIRT1 and FoxO1 protein expression. Finally, the effect of GB on autophagy and cardiac hypertrophy could be reversed by SIRT1 inhibitor EX-527. GB inhibits Ang II-induced cardiac hypertrophy by enhancing autophagy via the SIRT1-FoxO1 signaling pathway and might be a potential agent in treating pathological cardiac hypertrophy.


Assuntos
Angiotensina II/toxicidade , Autofagia/efeitos dos fármacos , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 1/metabolismo , Animais , Fator Natriurético Atrial/genética , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Miócitos Cardíacos/patologia , Substâncias Protetoras/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transcrição Genética/efeitos dos fármacos , Miosinas Ventriculares/genética
8.
Dev Cell ; 56(15): 2237-2251.e6, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273276

RESUMO

Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGF-ß signaling, and they begin to acquire blood-retina barrier properties. Endothelial deletion of TGF-ß receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation and hemorrhagic vascular malformations. Oxygen-induced retinopathy vasculature exhibits S-like tip cells, and Alk5 deletion impedes retina revascularization. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that non-canonical-TGF-ß signaling could improve retinal revascularization and neural function in ischemic retinopathy.

9.
Mol Phylogenet Evol ; 164: 107259, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34303792

RESUMO

Convergent evolution, often viewed as the inevitable outcome of natural selection, has received special attention since the time of Darwin. Clematis is well known for its climbing habit, but it has some shrubby species, known as sect. Fruticella s.l. The shrubby Clematis species are distributed in the dry habitats of Central Asia and adjacent areas showing possible convergent evolution. In this study, we assembled the complete plastome and nuclear ribosomal DNA (nrDNA) sequences of 56 Clematis species, representing most sections and covering most of the shrubby species, to reconstruct their evolutionary histories. Using both maximum likelihood and Bayesian methods, the plastome and nrDNA datasets generated similar, but not identical, phylogenetic relationships, which are better resolved than in previous studies. Then, molecular dating, historical range reconstruction, and character optimization analyses were conducted based on this updated phylogenetic framework. All the morphological characters widely used for taxonomy were shown to have evolved multiple times. Molecular dating inferred that Clematis diverged from its sister in the mid Miocene, and all six major clades of Clematis originated during the late Miocene, with a species radiation during the Pliocene to Pleistocene. The results clearly showed that the shrubby habit evolved independently in four lineages of Clematis in Asia. We also revealed that the shrubby lineages have emerged since the very beginning of Pliocene. Asian monsoon variation in the Pliocene and glacial period fluctuation in the Pleistocene may be the driving forces for the origin and diversification of the shrubby Clematis in Central Asia and adjacent dry areas.

10.
Nat Commun ; 12(1): 4019, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188043

RESUMO

The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53-HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A/p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Neoplasias Colorretais/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Perda de Heterozigosidade/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HCT116 , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteína Supressora de Tumor p53/genética
11.
Aging (Albany NY) ; 13(12): 16577-16599, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34175839

RESUMO

Since the imbalance of gene expression has been demonstrated to tightly related to breast cancer (BRCA) genesis and growth, common genes expressed of BRCA were screened to explore the essence in-between. In current work, most common differentially expressed genes (DEGs) in various subtypes of BRCA were identified. Functional enrichment analysis illustrated the driving factor of deactivation of the cell cycle and the oocyte meiosis, which critically triggers the development of BRCA. Herein, we constructed a 12-gene prognostic risk model relative to differential gene expression. Subsequently, the K-M curves, analysis on time-ROC curve and Cox regression were performed to assess this risk model by determining the respective prognostic value, and the prediction performance were ascertained for both training and validation cohorts. In addition, multivariate Cox regression was analysed to reveal the independence between risk score and prognostic stage, and the accuracy and sensitivity of prognosis are particularly improved after clinical indicators are included into the analysis. In summary, this study offers novel insights into the imbalance of gene expression within BRCA, and highlights 12 selected genes associated with patient prognosis. The risk model can help individualize treatment for patients at different risks, and propose precise strategies and treatments for BRCA therapy.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Bases de Dados Genéticas , Feminino , Ontologia Genética , Humanos , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , Mapas de Interação de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Análise de Sobrevida
12.
Nanotechnology ; 32(38)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34077916

RESUMO

Ion bombardment (IB) is a promising nanofabrication technique for producing nanoripples. A critical issue that restricts the application of IB is the limited quality of IB-induced nanoripples. Photoresist (PR) and antireflection coating (ARC) are of technological relevance for lithographic exposure processes. Moreover, to improve the quality of IB-induced self-organized nanoripples, in this study, a PR/ARC bilayer was bombarded at an incidence angle of 50°. The surface normalized defect density and power spectral density, obtained via scanning atomic force microscopy, indicate the superiority of the PR/ARC bilayer nanoripples over those of single PR or ARC layers. The growth mechanism of the improved nanoripples, deciphered via the temporal evolution of the morphology, involves the following processes: (i) formation of a well-grown IB-induced nanoripple prepattern on the PR, (ii) transfer of nanoripples from the PR to the ARC, forming an initial ARC nanoripple morphology for subsequent IB, and (iii) conversion of the initial nonuniform ARC nanoripples into uniform nanoripples. In this unique method, the angle of ion-incidence should be chosen so that ripples form on both PR and ARC films. Overall, this method facilitates nanoripple improvement, including prepattern fabrication for guiding nanoripple growth and sustainable nanoripple development via a single IB. Thus, the unique method presented in this study can aid in advancing academic research and also has potential applications in the field of IB-induced nanoripples.

13.
Chin Med J (Engl) ; 134(13): 1561-1568, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133350

RESUMO

BACKGROUND: Delivery room resuscitation assists preterm infants, especially extremely preterm infants (EPI) and extremely low birth weight infants (ELBWI), in breathing support, while it potentially exerts a negative impact on the lungs and outcomes of preterm infants. This study aimed to assess delivery room resuscitation and discharge outcomes of EPI and ELBWI in China. METHODS: The clinical data of EPI (gestational age [GA] <28 weeks) and ELBWI (birth weight [BW] <1000 g), admitted within 72 h of birth in 33 neonatal intensive care units from five provinces and cities in North China between 2017 and 2018, were analyzed. The primary outcomes were delivery room resuscitation and risk factors for delivery room intubation (DRI). The secondary outcomes were survival rates, incidence of bronchopulmonary dysplasia (BPD), and risk factors for BPD. RESULTS: A cohort of 952 preterm infants were enrolled. The incidence of DRI, chest compressions, and administration of epinephrine was 55.9% (532/952), 12.5% (119/952), and 7.0% (67/952), respectively. Multivariate analysis revealed that the risk factors for DRI were GA <28 weeks (odds ratio [OR], 3.147; 95% confidence interval [CI], 2.082-4.755), BW <1000 g (OR, 2.240; 95% CI, 1.606-3.125), and antepartum infection (OR, 1.429; 95% CI, 1.044-1.956). The survival rate was 65.9% (627/952) and was dependent on GA. The rate of BPD was 29.3% (181/627). Multivariate analysis showed that the risk factors for BPD were male (OR, 1.603; 95% CI, 1.061-2.424), DRI (OR, 2.094; 95% CI, 1.328-3.303), respiratory distress syndrome exposed to ≥2 doses of pulmonary surfactants (PS; OR, 2.700; 95% CI, 1.679-4.343), and mechanical ventilation ≥7 days (OR, 4.358; 95% CI, 2.777-6.837). However, a larger BW (OR, 0.998; 95% CI, 0.996-0.999), antenatal steroid (OR, 0.577; 95% CI, 0.379-0.880), and PS use in the delivery room (OR, 0.273; 95% CI, 0.160-0.467) were preventive factors for BPD (all P < 0.05). CONCLUSION: Improving delivery room resuscitation and management of respiratory complications are imperative during early management of the health of EPI and ELBWI.


Assuntos
Displasia Broncopulmonar , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Peso ao Nascer , China/epidemiologia , Salas de Parto , Feminino , Idade Gestacional , Humanos , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Masculino , Gravidez
14.
Cell Death Dis ; 12(6): 525, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34023861

RESUMO

While pregnancy is known to reduce a woman's life-long risk of breast cancer, clinical data suggest that it can specifically promote HER2 (human EGF receptor 2)-positive breast cancer subtype (HER2+ BC). HER2+ BC, characterized by amplification of HER2, comprises about 20% of all sporadic breast cancers and is more aggressive than hormone receptor-positive breast cancer (the majority of cases). Consistently with human data, pregnancy strongly promotes HER2+ BC in genetic mouse models. One proposed mechanism of this is post-pregnancy accumulation of PIMECs (pregnancy-identified mammary epithelial cells), tumor-initiating cells for HER2+ BC in mice. We previously showed that p63, a homologue of the tumor suppressor p53, is required to maintain the post-pregnancy number of PIMECs and thereby promotes HER2+ BC. Here we set to test whether p63 also affects the intrinsic tumorigenic properties of PIMECs. To this end, we FACS-sorted YFP-labeled PIMECs from p63+/-;ErbB2 and control p63+/+;ErbB2 females and injected their equal amounts into immunodeficient recipients. To our surprise, p63+/- PIMECs showed increased, rather than decreased, tumorigenic capacity in vivo, i.e., significantly accelerated tumor onset and tumor growth, as well as increased self-renewal in mammosphere assays and proliferation in vitro and in vivo. The underlying mechanism of these phenotypes seems to be a specific reduction of the tumor suppressor TAp63 isoform in p63+/- luminal cells, including PIMECs, with concomitant aberrant upregulation of the oncogenic ΔNp63 isoform, as determined by qRT-PCR and scRNA-seq analyses. In addition, scRNA-seq revealed upregulation of several cancer-associated (Il-4/Il-13, Hsf1/HSP), oncogenic (TGFß, NGF, FGF, MAPK) and self-renewal (Wnt, Notch) pathways in p63+/-;ErbB2 luminal cells and PIMECs per se. Altogether, these data reveal a complex role of p63 in PIMECs and pregnancy-associated HER2+ BC: maintaining the amount of PIMECs while suppressing their intrinsic tumorigenic capacity.


Assuntos
Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/fisiologia , Gravidez/fisiologia , Transativadores/fisiologia , Animais , Mama/patologia , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Genes erbB-2 , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Transativadores/genética
15.
Drug Discov Today ; 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34023495

RESUMO

Macrodomains are evolutionarily conserved structural elements. Many macrodomains feature as binding modules of ADP-ribose, thus participating in the recognition and removal of mono- and poly-ADP-ribosylation. Macrodomains are involved in the regulation of a variety of physiological processes and represent valuable therapeutic targets. Moreover, as part of the nonstructural proteins of certain viruses, macrodomains are also pivotal for viral replication and pathogenesis. Thus, targeting viral macrodomains with inhibitors is considered to be a promising antiviral intervention. In this review, we summarize our current understanding of human and viral macrodomains that are related to mono-ADP-ribosylation, with emphasis on the search for inhibitors. The advances summarized here will be helpful for the design of macrodomain-specific agents for therapeutic and diagnostic applications.

16.
Yonsei Med J ; 62(6): 545-554, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34027642

RESUMO

PURPOSE: Ventilator-induced lung injury (VILI) is a serious complication of mechanical ventilation (MV) that increases morbidity and mortality of patients receiving ventilator treatment. This study aimed to reveal the molecular mechanism of sodium houttuyfonate (SH) on VILI. MATERIALS AND METHODS: The male mice VILI model was established by high tidal volume ventilation. The cell model was established by performing cell stretch (CS) experiments on murine respiratory epithelial cells MLE-15. In addition, the JNK activator Anisomycin and JNK inhibitor SP600125 were used on VILI mice and CS-treated cells. RESULTS: VILI modeling damaged the structural integrity, increased apoptosis and wet-to-dry (W/D) ratio, enhanced the levels of inflammatory factors, reactive oxygen species (ROS) and malonaldehyde (MDA), and activated JNK pathway in lung tissues. SH gavage alleviated lung injury, decreased apoptosis and W/D ratio, and reduced levels of inflammatory factors, ROS and MDA, and p-JNK/JNK expression of lung tissues in VILI mice. However, activation of JNK wiped the protective effect of SH on VILI. Contrary results were found in experiments with JNK inhibitor SP600125. CONCLUSION: SH relieved VILI by inhibiting the ROS-mediated JNK pathway.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica , Alcanos , Animais , Humanos , Inflamação/tratamento farmacológico , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Sulfitos
17.
Sheng Wu Gong Cheng Xue Bao ; 37(4): 1120-1130, 2021 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-33973429

RESUMO

As the demand for high-performance computing continues to grow, traditional computing models are facing unprecedented challenges. Among the many emerging computing technologies, DNA computing has attracted much attention due to its low energy consumption and parallelism. The DNA circuit, which is the basis for DNA computing, is an important technology for the regulation and processing of the molecular information. This review highlights the basic principles of DNA computing, summarizes the latest research progress, and concludes with a discussion of the challenges of DNA computing. Such integrated molecular computing systems are expected to be widely used in the fields of aerospace, information security and defense system.


Assuntos
DNA , DNA/genética
18.
J Vet Sci ; 22(3): e30, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33908204

RESUMO

BACKGROUND: New-generation adjuvants for foot-and-mouth disease virus (FMDV) vaccines can improve the efficacy of existing vaccines. Chinese medicinal herb polysaccharide possesses better promoting effects. OBJECTIVES: In this study, the aqueous extract from Artemisia rupestris L. (AEAR), an immunoregulatory crude polysaccharide, was utilized as the adjuvant of inactivated FMDV vaccine to explore their immune regulation roles. METHODS: The mice in each group were subcutaneously injected with different vaccine formulations containing inactivated FMDV antigen adjuvanted with three doses (low, medium, and high) of AEAR or AEAR with ISA-206 adjuvant for 2 times respectively in 1 and 14 days. The variations of antibody level, lymphocyte count, and cytokine secretion in 14 to 42 days after first vaccination were monitored. Then cytotoxic T lymphocyte (CTL) response and antibody duration were measured after the second vaccination. RESULTS: AEAR significantly induced FMDV-specific antibody titers and lymphocyte activation. AEAR at a medium dose stimulated Th1/Th2-type response through interleukin-4 and interferon-γ secreted by CD4⁺ T cells. Effective T lymphocyte counts were significantly elevated by AEAR. Importantly, the efficient CTL response was remarkably provoked by AEAR. Furthermore, AEAR at a low dose and ISA-206 adjuvant also synergistically promoted immune responses more significantly in immunized mice than those injected with only ISA-206 adjuvant and the stable antibody duration without body weight loss was 6 months. CONCLUSIONS: These findings suggested that AEAR had potential utility as a polysaccharide adjuvant for FMDV vaccines.


Assuntos
Artemisia/química , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Vacinas Virais/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Distribuição Aleatória , Vacinas de Produtos Inativados/farmacologia
19.
J Control Release ; 334: 153-163, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33894302

RESUMO

Human serum albumin (HSA), a versatile protein carrier for endogenous and exogenous compounds, is a proven macromolecule to form nanoparticles for drug delivery. To render HSA carrier specificity toward tumors, we designed a recombinant HSA protein fused with Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1, which targets to matriptase, a type II transmembrane serine protease overexpressed on tumor cell surface. The carrier was thus named matriptase targeting carrier (MTC). In this study, we showed that MTC displayed the same inhibitory potency as the KD1 againast matriptase, demonstrating the HSA fusion did not affect the KD1 targeting potency. For tumor optical imaging and ablation, MTC was prepared as nanoparticle drug carrier by a novel method via denaturation and refolding to incorporate photosensitizer, CPZ. This matriptase targeting nanoparticles, CPZ:MTC@NPs, showed high specificity and cytotoxicity for matriptase-overexpressing cancer cells in vitro. In tumor-bearing mice, CPZ:MTC@NPs demonstrated selective accumulation and high retention in matriptase-overexpressing tumor. Under illumination, the nanoparticles significantly reduced tumor volumes (79.6%) as compared to saline control. These findings showed that this supramolecular nanocarrier, a new type of tumor targeting self-assembly nanoparticle, had potential as a highly efficient tumor targeting drug carrier for imaging and therapy.


Assuntos
Portadores de Fármacos , Neoplasias , Serina Endopeptidases , Animais , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes , Proteínas Recombinantes , Albumina Sérica Humana
20.
World J Gastroenterol ; 27(14): 1465-1482, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33911468

RESUMO

BACKGROUND: Integrative multi-omic approaches have been increasingly applied to discovery and functional studies of complex human diseases. Short-term preoperative antibiotics have been adopted to reduce site infections in colorectal cancer (CRC) resections. We hypothesize that the antibiotics will impact analysis of multi-omic datasets generated from resection samples to investigate biological CRC risk factors. AIM: To assess the impact of preoperative antibiotics and other variables on integrated microbiome and human transcriptomic data generated from archived CRC resection samples. METHODS: Genomic DNA (gDNA) and RNA were extracted from prospectively collected 51 pairs of frozen sporadic CRC tumor and adjacent non-tumor mucosal samples from 50 CRC patients archived at a single medical center from 2010-2020. The 16S rRNA gene sequencing (V3V4 region, paired end, 300 bp) and confirmatory quantitative polymerase chain reaction (qPCR) assays were conducted on gDNA. RNA sequencing (IPE, 125 bp) was performed on parallel tumor and non-tumor RNA samples with RNA Integrity Numbers scores ≥ 6. RESULTS: PERMANOVA detected significant effects of tumor vs nontumor histology (P = 0.002) and antibiotics (P = 0.001) on microbial ß-diversity, but CRC tumor location (left vs right), diabetes mellitus vs not diabetic and Black/African Ancestry (AA) vs not Black/AA, did not reach significance. Linear mixed models detected significant tumor vs nontumor histology*antibiotics interaction terms for 14 genus level taxa. QPCR confirmed increased Fusobacterium abundance in tumor vs nontumor groups, and detected significantly reduced bacterial load in the (+)antibiotics group. Principal coordinate analysis of the transcriptomic data showed a clear separation between tumor and nontumor samples. Differentially expressed genes obtained from separate analyses of tumor and nontumor samples, are presented for the antibiotics, CRC location, diabetes and Black/AA race groups. CONCLUSION: Recent adoption of additional preoperative antibiotics as standard of care, has a measurable impact on -omics analysis of resected specimens. This study still confirmed increased Fusobacterium nucleatum in tumor.


Assuntos
Neoplasias Colorretais , Microbiota , Antibacterianos/uso terapêutico , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Humanos , RNA Ribossômico 16S/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...