RESUMO
The consumption of noodles with a high glycemic index (GI) can affect health, prompting the need for dietary adjustments to manage abnormal blood glucose levels. This review delves into recent progress in low GI noodles and their potential effect for human well-being. Diverse approaches, encompassing the incorporation of soluble dietary fiber, modified starches, proteins, and plant polyphenols, have shown encouraging outcomes in diminishing the GI of noodles. Furthermore, variations in processing, storage, and cooking techniques can influence the GI of noodles, yielding both positive and negative impacts on their glycemic response. Soluble dietary fiber, protein cross-linkers, and plant polyphenols play a pivotal role in reducing the GI of noodles by hindering the interaction between digestive enzymes and starch, thereby curbing enzymatic activity. Future research spotlighting ingredients, processing methodologies, and the underlying mechanisms of low GI noodles will contribute substantively to the development of functional foods boosting enhanced nutritional profiles.
Assuntos
Grão Comestível , Índice Glicêmico , Humanos , Alimento Funcional , Veículos Farmacêuticos , Polifenóis , Amido , Fibras na DietaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Mahonia bealei (Fortune) Carrière (M. bealei) is a traditional medicine widely used by the Hmong community in Guizhou. It possesses diverse biological activities and shows promise in cancer treatment; however, contemporary pharmacological research in this area is lacking. AIMS OF THE STUDY: This study aimed to investigate the effects and underlying mechanisms of M. bealei on alcoholic hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We initially employed the LC-MS/MS method to identify the compounds present in M. bealei serum. Subsequently, its potential targets were predicted using public databases. Bioinformatics and network pharmacology approaches, such as univariate Cox regression and random forest (RF) algorithms, were utilized to identify differentially expressed genes (DEGs) associated with the prognosis of alcoholic HCC. Survival curve and receiver operating characteristic (ROC) analyses were conducted using alcoholic HCC-related data from TCGA and GEO to determine the diagnostic value of the identified DEGs. Molecular docking using the CDOCKER approach based on CHARMm was performed to validate the affinity between the predictive compounds and targets. Additionally, we evaluated the impact of M. bealei on cell proliferation, migration, and conducted western blot assays. RESULTS: The LC-MS/MS approach identified 17 therapeutic components and predicted 483 component-related targets, of which 63 overlapped with alcoholic HCC targets and were considered potential therapeutic targets. GO and KEGG pathway analysis revealed significant associations between the 63 overlapping targets and alcoholic HCC progression. Through various approaches in the Cytoscape 3.9.0 software, we confirmed 9 hub genes (CDK1, CXCR4, DNMT1, ESR1, KIT, PDGFRB, SERPINE1, TOP2A, and TYMS) as core targets. TOP2A and CDK1 genes were identified as advantageous for diagnosing alcoholic HCC using univariate Cox regression, RF, survival curve, and ROC analysis. Molecular docking analysis demonstrated strong binding affinity between key bioactive components cyclamic acid, perfluoroalkyl carboxylic acid, perfluorosulfonic acid, alpha-linolenic acid, adenosine receptor antagonist (CGS 15943), and Prodigiosin and TOP2A and CDK1. In vitro experiments confirmed that M. bealei significantly suppressed cell proliferation and migration of HepG2 cells, while downregulating TOP2A and CDK1 expression. CONCLUSION: This study highlights the potential of M. bealei as a natural medicine for the treatment of alcoholic HCC. Six compounds (cyclamic acid, perfluoroalkylic carboxylic acids, perfluorosulfonic acid, alpha-linolenic acid, adenosine receptor antagonist (CGS 15943), and Prodigiosin) present in M. bealei serum may exhibit therapeutic effects against alcoholic HCC by downregulating CDK1 and TOP2A expression levels in vitro.
Assuntos
Berberis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Mahonia , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Simulação de Acoplamento Molecular , Cromatografia Líquida , Ciclamatos , Farmacologia em Rede , Prodigiosina , Ácido alfa-Linolênico , Espectrometria de Massas em Tandem , Biologia Computacional/métodosRESUMO
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
RESUMO
Background Belonging to the G-protein coupled receptor 1 family, G protein-coupled receptor 176 (GPR176) is associated with the Gz/Gx G-protein subclass and is capable of decreasing cAMP production. Methods GPR176 expression was detected by qRT-PCR, bioinformatics analysis, Western blot and immunohistochemistry, and compared with clinicopathological characteristics of breast cancer. GPR176-related genes and pathways were subjected to bioinformatic analysis. We also explored the effects of GPR176 on the phenotypes of breast cancer cells. Results Lower expression of GPR176 mRNA was seen in breast cancer than in normal tissues, but the opposite pattern was found for its protein (p < 0.05). GPR176 mRNA was associated with female sex, low T staging, non-Her-2+ subtypes, non-mutant p53 status in breast cancer (p < 0.05). GPR176 methylation was negatively correlated with its mRNA level and T staging in breast cancer, and was higher in breast cancer than normal tissues (p < 0.05). GPR176 protein expression was positively correlated with older age, small tumor size, and non-luminal-B subtype of breast cancers (p < 0.05). The differential genes of GPR176 were involved in receptor-ligand interaction, RNA maturation, and so forth (p < 0.05). GPR176-related genes were categorized into cell mobility, membrane structure, and so on (p < 0.05). GPR176 knockdown weakened the proliferation, glucose catabolism, anti-apoptosis, anti-pyroptosis, migration, invasion, and epithelial-mesenchymal transition of breast cancer cells. Conclusion These results indicate that GPR176 might be involved in the tumorigenesis and subsequent progression of breast cancer by deteriorating aggressive phenotypes. It might be utilized as a potential biomarker to indicate the aggressive behaviors and poor prognosis of breast cancer and a potential target of genetic therapy (AU)
Assuntos
Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Terapia Genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Prognóstico , FenótipoRESUMO
Heat stroke (HS) is a potentially fatal acute condition caused by an interplay of complex events including inflammation, endothelial injury, and coagulation abnormalities that make its pharmacological treatment a challenging problem. The traditional Chinese medicine Xuebijing injection (XBJ) has been shown to reduce inflammatory responses and prevent organ injuries in HS-induced mice. However, the underlying mechanism of XBJ in HS-induced brain injury remains unclear. In this study, HS-induced rat models and cell models were established to elucidate the effects and underlying mechanisms of XBJ injection on HS-induced brain injury in vivo and in vitro. The results revealed that XBJ injection improved the survival outcome of HS rats and attenuated HS-induced brain injury in a concentration-dependent manner. Subsequently, the reduction in viability and proliferation of neurons induced by HS were reversed by XBJ treatment, while the HS-induced increased ROS levels and neuron death were also inhibited by XBJ injection. Mechanistically, HS activated PARP-1/AIF signaling in vitro and in vivo, inducing the translocation of AIF from the cytoplasm to the nucleus, leading to PARP-1-dependent cell death of neurons. Additionally, we compared XBJ injection effects in young and old age rats. Results showed that XBJ also provided protective effects in HS-induced brain injury in aging rats; however, the treatment efficacy of XBJ injection at the same concentration was more significant in the young age rats. In conclusion, XBJ injection attenuates HS-induced brain injury by inhibiting oxidative stress and Parthanatos via the PARP-1/AIF signaling, which might provide a novel therapeutic strategy for HS treatment.
RESUMO
INTRODUCTION: Prolonged intensive care unit (ICU) stay is common in serious patients undergoing cardiac surgery. Prolonged ICU stay is associated with increased mortality and worse prognosis. This study was conducted to determine the risk factors for prolonged ICU stay after cardiac surgery for infective endocarditis (IE) and we try to decrease the operative risk of mortality and morbidity of cardiac surgery for IE. METHODS: The retrospective study of patients with IE undergoing cardiac surgery between January 2006 and November 2022 at our hospital was performed. RESULTS: 896 patients undergoing cardiac surgery were divided into group of ICU stayâ ≤â 3d (nâ =â 416) and group p of ICU stayâ >â 3d (nâ =â 480). There were 48 operative deaths (5.4%). Univariable and multivariable analyses showed that factors are associated with prolonged ICU stay following cardiac surgery for IE, including male (Pâ <â .001), age (Pâ <â .001), weight (Pâ =â .009), vegetation length (Pâ <â .001), paravalvular leak (Pâ <â .001), aortic cross-clamp time (Pâ <â .001), cardiopulmonary bypass (CPB) time (Pâ <â .001), mechanical ventilation time (Pâ <â .001), hospitalized time postoperative (Pâ =â .032), creatinine of serum before surgery (Pâ <â .001), creatinine of serum 24h after surgery (Pâ =â .005), creatinine of serum 48h after surgery (Pâ <â .001), fluid balance on operation day (Pâ <â .001), postoperative acute kidney injury (Pâ <â .001), left ventricular end diastolic dimension (LVEDD) preoperative (Pâ <â .001), LVEDD postoperative (Pâ <â .001), chest drainage (Pâ =â .032), frozen plasma (Pâ =â .016), preoperative aortic insufficiency (Pâ <â .001), and packed red cells (Pâ <â .001). CONCLUSIONS: In our study, shortness of ICU stay and optimization of pre-, peri-, and postoperative factors that can shorten ICU stay, therefore, contribute to a better postoperative outcome and leads to lower rates of mortality and morbidity.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Endocardite Bacteriana , Endocardite , Humanos , Masculino , Creatinina , Estudos Retrospectivos , Endocardite/cirurgia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Fatores de Risco , Unidades de Terapia IntensivaRESUMO
The escalating misuse and excessive utilization of antibiotics have led to the widespread dissemination of drug-resistant bacteria, posing a significant global healthcare crisis. Of particular concern is the increasing prevalence of multi-drug resistant (MDR) opportunistic pathogens in Intensive Care Units (ICUs), which presents a severe threat to public health and contributes to substantial morbidity and mortality. Among them, MDR ESKAPE pathogens account for the vast majority of these opportunistic pathogens. This comprehensive review provides a meticulous analysis of the current prevalence landscape of MDR opportunistic pathogens in ICUs, especially in ESKAPE pathogens, illuminating their resistance mechanisms against commonly employed first-line antibiotics, including polymyxins, carbapenems, and tigecycline. Furthermore, this review explores innovative strategies aimed at preventing and controlling the emergence and spread of resistance. By emphasizing the urgent need for robust measures to combat nosocomial infections caused by MDR opportunistic pathogens in ICUs, this study serves as an invaluable reference for future investigations in the field of antibiotic resistance.
RESUMO
Aortic dissection (AD) is a potentially fatal cardiovascular emergency caused by separation of different layers of aortic wall. However, because of limited time window available for clinical research, there is an urgent need for an ideal animal research model. In recent years, the incidence of AD complicated by atherosclerosis has increased with improvements of living standards and changes of eating habits. Accordingly, considering multiple risk factors, we successfully and efficiently established a novel AD model through a high-fat diet combined with chronic angiotensin II (AngII) infusion. Compared with traditional chemical induction model using AngII and ß-aminopropionitrile, our model is more clinically relevant for atherosclerosis-related AD. Moreover, infiltration of neutrophils and apoptosis of vascular smooth muscle cells in AD tissues were more significant. In addition to enriching the existing models, the novel model may be a long-term useful tool for more in-depth investigation of AD mechanisms and preclinical therapeutic developments.
RESUMO
Sodium-ion batteries are a promising substitute for lithium batteries due to the abundant resources and low cost of sodium. Herein, honeycomb-shaped MoSe2 /reduced graphene oxide (rGO) composite materials are synthesized from graphene oxide (GO) and MoSe2 through a one-step solvothermal process. Experiments show that the 3D honeycomb structure provides excellent electrolyte penetration while alleviating the volume change during electrochemical cycling. An anode prepared with MoSe2 /rGO composites exhibits significantly improved sodium-ion storage properties, where a large reversible capacity of 215 mAh g-1 is obtained after 2700 cycles at the current density of 30.0 A g-1 or after 5900 cycles at 8.0 A g-1 . When such an anode is paired with Na3 V2 (PO4 )3 to form a full cell, a reversible specific capacity of 107.5 mAh g-1 can be retained after 1000 cycles at the current of 1.0 A g-1 . Transmission electron microscopy, X-ray photoelectron spectroscopy and in situ X-ray diffraction (XRD) characterization reveal the reversible storage reaction of Na ions in the MoSe2 /rGO composites. The significantly enhanced sodium storage capacity is attributed to the unique honeycomb microstructure and the use of ether-based electrolytes. This study illustrates that combining rGO with ether-based electrolytes has tremendous potential in constructing high-performance sodium-ion batteries.
RESUMO
OBJECTIVE: To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification. METHODS: Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway. RESULTS: The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway. CONCLUSION: Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
RESUMO
Sinapic acid (SA) is ubiquitously distributed in the plant kingdom as a free organic acid and more frequently as a biosynthetic pioneer for SA derivatives, e.g., SA esters. Broad biological and pharmacological activities have been disclosed for SA. Because of the metabolism lability property, metabolites instead of the parent compound should be the primary forms after oral treatment of SA, and those metabolites should also be rapidly observed from SA following administration of SA derivative. Hence, the metabolites might provide a primary contribution to the pharmacological properties of SA; however, the metabolite profile remains unclear. Here, our efforts were devoted to addressing this issue through deploying online energy-resolved mass spectrometry (ER-MS) to accomplish isomer identification which is the key issue hindering metabolite identification, notably those conjugated metabolites. After recording breakdown graphs of concerned fragment ions with online ER-MS, the positive correlations between optimal collision energy (OCE) and bond dissociation energy (BDE) were applied to assign candidate structures to isomeric signals. Moreover, in vitro metabolism with liver cellular subfractions, UV-triggered cis-/trans-configuration transformation, and wet-chemistry hydrogenation were carried out to justify the structures. As a result, sixteen metabolites (M1-M16) were found and confirmatively identified in rat plasma and urine following SA administration, and sulfation, glucuronidation, demethylation, reduction, and dihydroxylation served as the primary metabolic channels. Noteworthily, greater distribution occurred for sulfation and glucuronidation products while inferior distributions were observed for phase I metabolites, and the half-life (T1/2) of most metabolites was greater than that of SA. This study provides a comprehensive insight into the metabolic fate of SA. More importantly, the fortification of online ER-MS and quantum structure calculation to the conventional LC-MS program is eligible to achieve unambiguous identification of isomeric metabolites.
RESUMO
This study presents a novel method for producing acicular aragonite using argon oxygen decarburization (AOD) slag while controlling the reaction temperature, reaction time, stirring speed, and the magnesium-tocalcium stoichiometric ratio. This approach provides steel plants with an opportunity to decrease their CO2 emissions and promote efficient resource utilization and CO2 storage through the production of high-quality value-added products. The experimental results showed that reaction temperature was the most significant factor affecting the carbonation efficiency of AOD slag, followed by reaction time, stirring speed, CO2 partial pressure, and the liquid-to-solid ratio (L/S). The study also found that elevated temperature and prolonged reaction duration favored the preferential precipitation of aragonite. Additionally, raising the temperature and the magnesium-tocalcium stoichiometric ratio was shown to enhance the formation of aragonite, affecting its crystal growth orientation and dimensions. The optimal combination of reaction parameters for the preparation of acicular aragonite was found to be the reaction time of 8 h, the magnesium-tocalcium stoichiometric ratio of 0.8, the reaction temperature of 120 °C, and the stirring speed of 200 r·min-1. Under these conditions, the resulting acicular aragonite exhibited excellent overall uniformity, a large aspect ratio, and a smooth crystal surface, with a content of 91.49 %, a single crystal length ranging from 9.86 to 32.6 µm, and a diameter ranging from 0.63 to 2.15 µm. This study provides valuable insights into the efficient production of acicular aragonite from steel slag while reducing CO2 emissions and promoting the sustainable use of resources.
RESUMO
OBJECTIVES: To improve the understanding of the clinical phenotypes and genetic characteristics of nephronophthisis (NPHP) and related syndromes in children. METHODS: A retrospective analysis was performed on the medical data of eight children with NPHP and related syndromes who were diagnosed and treated in the Department of Pediatrics of the Second Hospital of Hebei Medical University, from January 2018 to November 2022. The clinical characteristics and genetic testing results were analyzed. RESULTS: Among these eight children, there were five boys and three girls, with an age of onset ranging from 15 months to 12 years. All 8 children exhibited different degrees of renal function abnormalities when they attended the hospital. Among the eight children, two had the initial symptom of delayed development, two had the initial symptom of anemia, and two were found to have abnormal renal function during physical examination. The extrarenal manifestations included cardiovascular abnormalities in two children, skeletal dysplasia in two children, liver dysfunction in one child, retinitis pigmentosa in one child, and visceral translocation in one child. All eight children had renal structural changes on ultrasound, and four children had mild to moderate proteinuria based on routine urine test. Of all eight children, five had NPHP1 gene mutations and one each had a gene mutation in the NPHP3, IFT140, and TTC21B genes, and four new mutation sites were discovered. CONCLUSIONS: Children with NPHP and related syndromes often have the initial symptom of delayed development or anemia, and some children also have extrarenal manifestations. NPHP and related syndromes should be considered for children with unexplained renal dysfunction, and high-throughput sequencing may help to make a confirmed diagnosis.
Assuntos
Doenças Renais Císticas , Criança , Humanos , Estudos Retrospectivos , Síndrome , Doenças Renais Císticas/genética , Mutação , FenótipoRESUMO
Background: T helper 17 (Th17) cells and regulatory T cells (Treg) are known to play a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Improving the balance between Treg and Th17 cells can be a promising new therapeutic target in SLE patients. Vitamin D has a significant impact on the immune inflammatory process and the immune cells involved in this process. The purpose of this study is to investigate the relationship between Th17, Treg, cytokines, and serum 25 hydroxyvitamin D [25(OH)D] in patients with initial-onset childhood SLE. Methods: A total of 82 children aged <18 years with initial-onset SLE were included, as well as 60 healthy subjects during the same period at the Pediatrics Department of the Second Hospital of Hebei Medical University. The chemiluminescence method was performed to detect serum 25(OH)D levels. Flow cytometry was used to evaluate Treg and Th17 cells. An enzyme-linked immunosorbent assay kit was used to evaluate plasma interleukin (IL)-23, IL-17, IL-10, IL-6, and tumor necrosis factor alpha (TNF-α) concentrations. Result: The serum 25(OH)D levels in patients with initial-onset childhood SLE were significantly lower than those in the healthy controls. The proportion of lupus nephritis (LN) was higher in the vitamin D insufficiency group (71.4%) compared with the vitamin D sufficiency group (30.3%) (p < 0.05). The SLE disease activity index (SLEDAI) was higher in the vitamin D insufficiency group (median = 14) than that in the vitamin D sufficiency group (median = 9) (p < 0.05).The 25(OH)D level was positively correlated with the Treg ratio (r = 0.337, p = 0.002), and it was negatively correlated with the Th17 cell ratio (r = -0.370, p = 0.001). The serum 25(OH)D level had a negative correlation with IL-23 (r = -0.589, p < 0.001), IL-17(r = -0.351, p = 0.001), TNF-α (r = -0.283, p = 0.01), IL-6 (r = -0.392, p < 0.001), and IL-10 (r = -0.313, p = 0.004) levels. Conclusion: The serum 25(OH)D levels decreased in patients with initial-onset childhood SLE. There was a negative correlation between the serum 25(OH)D levels and SLEDAI. The serum 25(OH)D levels in patients with initial-onset childhood SLE were negatively correlated with the Th17 ratio and related cytokines, while positively correlated with the Treg ratio.
RESUMO
Circ_UBAP2 is extensively engaged in regulating the development of various malignancies, containing osteosarcoma (OS). However, its biological significance and function are not fully understood. In this study, we found that circ_UBAP2 and HMGA1 levels were up-regulated, and miR-370-3p and miR-665 expressions were decreased in osteosarcoma tissues. Inhibition of circ_UBAP2 or HMGA1 expression in OS cells, cell viability, invasion and migration abilitities were notably hindered, and cell apoptosis abilities were increased. Bioinformatics analysis predicted that miR-665 and miR-370-3p were the downstream targets of circ_UBAP2, and the dual luciferase experiment demonstrated the correlation between them. In addition, inhibition of miR-665 and miR-370-3p expression could significantly reverse the impact of knocking down circ_UBAP2 on OS cells. HMGA1 was discovered to become the downstream target of both miR-665 and miR-370-3p. It was shown that over-expression of miR-665 or miR-370-3p notably stimulated the cell growth, invasion, and migration of osteosarcoma cells, while hindered cell apoptosis. Nevertheless, this effect could be reversed by concurrent over-expression of HMGA1. Our data strongly prove that circ_UBAP2 makes a vital impact on promoting the proliferation, invasion as well as migration of osteosarcoma cells via down-regulating the level of miR-665 and miR-370-3p, and later up-regulating the level of HMGA1. In conclusion, circ_UBAP2 is upregulated in osteosarcoma, and it competitively adsorbs miR-370-3p and miR-665, resulting in up-regulation of HMGA1, thus promoting OS development.
RESUMO
Influenza virus infection can cause kidney damage. However, the link between influenza infection and disease is still unclear. The purpose of this study was to analyze the relationship between heterophilic epitopes on H5N1 hemagglutinin (HA) and disease. The monoclonal antibody (mAb) against H5N1 was prepared, mAbs binding to human kidney tissue were screened, and the reactivities of mAbs with five different subtypes of influenza virus were detected. Design and synthesize the peptides according to the common amino acid sequence of these antigens, and analyze the distribution of the epitope on the crystal structure of HA. Immunological methods were used to detect whether the heterophilic epitopes could induce the production of antibodies that cross-react with kidney tissue. The results showed that H5-30â¯mAâ¯b binding to human kidney tissue recognized the heterophilic epitope 191-LVLWGIHHP-199 on the head of HA. The key amino acid were V192, L193, W194 and I196, which were highly conserved in human and avian influenza virus HA. The heterophilic epitope could induce mice to produce different mAbs binding to kidney tissue. Such heterophilic antibodies were also detected in the serum of the patients. It can provide materials for the mechanism of renal diseases caused by influenza virus infection.
RESUMO
Steviol glycosides possess Bola-form amphiphilic structure, which can solubilize hydrophobic phytochemicals and exert physical modification to the hydrophilic matrix. However, the effect of steviol glycosides on the starch hydrogel is still unclear. Herein, the physicochemical properties, in vitro digestibility, and release behavior of starch hydrogel in the presence of steviol glycosides were investigated. The results showed that the addition of steviol glycosides promoted the gelatinization and gelation of starch, and endowed the starch hydrogel with softer texture, larger volume, and higher water holding capacity. The hydrophobic curcumin was well integrated into hydrogel by steviol glycosides, providing the gel with improved colour brilliance. The introduction of steviol glycosides hardly affected the digestibility of starch gel, but it promoted the release rate of curcumin. Notably, this release behavior was pH dependent, which tended to target the alkaline intestine. This work provided some theoretical supports for the development of sugar-free starchy foods.
RESUMO
Temporomandibular joint (TMJ) osteoarthritis (OA) is a common type of TMJ disorders causing pain and dysfunction in the jaw and surrounding tissues. The causes for TMJ OA are unknown and the underlying mechanism remains to be identified. In this study, we generated genetically-modified mice deficient of two homologous microRNAs, miR-204 and miR-211, both of which were confirmed by in situ hybridization to be expressed in multiple TMJ tissues, including condylar cartilage, articular eminence, and TMJ disc. Importantly, the loss-of-function of miR-204 and miR-211 caused an age-dependent progressive OA-like phenotype, including cartilage degradation and abnormal subchondral bone remodeling. Mechanistically, the TMJ joint deficient of the two microRNAs demonstrated a significant accumulation of RUNX2, a protein directly targeted by miR-204/-211, and upregulations of ß-catenin, suggesting a disrupted balance between osteogenesis and chondrogenesis in the TMJ, which may underlie TMJ OA. Moreover, the TMJ with miR-204/-211 loss-of-function displayed an aberrant alteration in both collagen component and cartilage-degrading enzymes and exhibited exacerbated orofacial allodynia, corroborating the degenerative and painful nature of TMJ OA. Together, our results establish a key role of miR-204/-211 in maintaining the osteochondral homeostasis of the TMJ and counteracting OA pathogenesis through repressing the pro-osteogenic factors including RUNX2 and ß-catenin.
RESUMO
A novel, copper(II)-catalyzed cascade Csp2-P/C-C bond formation in o-haloaryl isothiocyanates with organophosphorus esters has been developed under mild conditions. A series of benzo[d]thiazol-2-ylphosphonates were synthesized in moderate to good yields. Different from the traditional method of obtaining these scaffolds with radical reactions, the method proposed allows accessing them via ionic reactions and has the advantages of easy access to raw materials and simple operation. Finally, we carried out a gram-scale experiment to further demonstrate the scalability of this strategy in the efficient synthesis of benzo[d]thiazol-2-ylphosphonates.