Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
Adv Mater ; : e2105254, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34622509

RESUMO

Prevention of metastatic and local-regional recurrence of cancer after surgery remains difficult. Targeting postsurgical premetastatic niche and microresiduals presents an excellent prospective opportunity but is often challenged by poor therapeutic delivery into minimal residual tumors. Here, an enzymatically transformable polymer-based nanotherapeutic approach is presented that exploits matrix metalloproteinase (MMP) overactivation in tumor-associated tissues to guide the codelivery of colchicine (microtubule-disrupting and anti-inflammatory agent) and marimastat (MMP inhibitor). The dePEGylation of polymersomes catalyzed by MMPs not only exposes the guanidine moiety to improve tissue/cell-targeting/retention to increase bioavailability, but also differentially releases marimastat and colchicine to engage their extracellular (MMPs) and intracellular (microtubules) targets of action, respectively. In primary tumors/overt metastases, the vasculature-specific targeting of nanotherapeutics can function synchronously with the enhanced permeability and retention effect to deter malignant progression of metastatic breast cancer. After the surgical removal of large primary tumors, nanotherapeutic agents are localized in the premetastatic niche and at the site of the postsurgical wound, disrupting the premetastatic microenvironment and eliminating microresiduals, which radically reduces metastatic and local-regional recurrence. The findings suggest that nanotherapeutics can safely widen the therapeutic window to resuscitate colchicine and MMP inhibitors for other inflammatory disorders.

2.
J Control Release ; 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34662586

RESUMO

Combination chemo-immunotherapy of cancers has attracted great attention due to its significant synergistic antitumor effect. The response rates and therapeutic efficacy of immunotherapy can be enhanced significantly after proper combination with chemotherapy. However, chemo-immunotherapy is frequently limited by severe immune-related adverse events and systemic side toxicity. In this report, efficient nanofactory-directed enzyme prodrug chemo-immunotherapy is demonstrated based on enzyme-loaded tumor-dilatable polymersomes with optimized membrane cross-linking density. Upon intravenous injection of the nanofactories, they can passively accumulate at the tumor site. The tumor pH-responsive nanofactories can swell from ~100 nm to ~200 nm under the trigger of tumor acidity, leading to prolonged retention of up to one week inside tumor tissues. Simultaneously, the membrane permeability of the nanofactories has improved significantly, which allows hydrophilic small molecules to pass across the membranes while keeping the enzymes in the inner cavities. Subsequently, the non-toxic prodrug mixtures of chemo-immunotherapy are administrated three times within 6 days, which are in situ activated by the nanofactories selectively at tumor sites. Activated chemotherapeutic drugs kill cancer cells and generate tumor-associated antigens to promote the maturation of dendritic cells. Activated indoleamine 2, 3-dioxygenase 1 inhibitors reverse the immunosuppressive tumor microenvironment. Finally, primary tumors can be effectively suppressed while causing minimal systemic toxicity. The distant tumors that are established after treatment can also be inhibited completely via activation of antitumor immunity in mice. Thus, the tumor-dilatable polymersome nanofactories with long-term intratumoral retention offer a promising paradigm for enhanced enzyme prodrug chemo-immunotherapy.

3.
Invest Radiol ; 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34652291

RESUMO

OBJECTIVES: Three-dimensional (3D) H-scan is a new ultrasound (US) technique that images the relative size of acoustic scatterers. The goal of this research was to evaluate use of 3D H-scan US imaging for monitoring early breast cancer response to neoadjuvant therapy using a preclinical murine model of breast cancer. MATERIALS AND METHODS: Preclinical studies were conducted using luciferase-positive breast cancer-bearing mice (n = 40). Anesthetized animals underwent US imaging at baseline before administration with an apoptosis-inducing drug or a saline control. Image data were acquired using a US scanner equipped with a volumetric transducer following either a shorter- or longer-term protocol. The later included bioluminescent imaging to quantify tumor cell viability. At termination, tumors were excised for ex vivo analysis. RESULTS: In vivo results showed that 3D H-scan US imaging is considerably more sensitive to tumor changes after apoptosis-inducing drug therapy as compared with traditional B-scan US. Although there was no difference at baseline (P > 0.99), H-scan US results from treated tumors exhibited progressive decreases in image intensity (up to 62.2% by day 3) that had a significant linear correlation with cancer cell nuclear size (R2 > 0.51, P < 0.001). Results were validated by histological data and a secondary longitudinal study with survival as the primary end point. DISCUSSION: Experimental results demonstrate that noninvasive 3D H-scan US imaging can detect an early breast tumor response to apoptosis-inducing drug therapy. Local in vivo H-scan US image intensity correlated with cancer cell nuclear size, which is one of the first observable changes of a cancer cell undergoing apoptosis and confirmed using histological techniques. Early imaging results seem to provide prognostic insight on longer-term tumor response. Overall, 3D H-scan US imaging is a promising technique that visualizes the entire tumor and detects breast cancer response at an early stage of therapy.

4.
Int J Biol Macromol ; 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634336

RESUMO

Cell-based therapy is a promising technology for intractable diseases and health care applications, in which cryopreservation has become an essential procedure to realize the production of therapeutic cells. Ice recrystallization is the major factor that affects the post-thaw viability of cells. As a typical series of biomacromolecules with ice recrystallization inhibition (IRI) activity, antifreeze proteins (AFPs) have been employed in cell cryopreservation. Meanwhile, synthesized materials with IRI activity have emerged in the name of biomimetics of AFPs to expand their availability and practicality. However, fabrication of AFPs mimetics is in a chaotic period. There remains little commonality among different AFPs mimetics, then it is difficult to set guidelines on their design. With no doubt, a comprehensive understanding on the antifreezing mechanism of AFPs in molecular level will enable us to rebuild the function of AFPs, and provide convenience to clarify the relationship between structure and function of these early stage biomimetics. In this review, we would discuss those previously reported biomimetics to summarize their structure characteristics concerning the IRI activity and attempt to develop a roadmap for guiding the design of novel AFPs mimetics.

5.
J Interv Cardiol ; 2021: 4091888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621141

RESUMO

Background: Transcatheter closure of aneurysmal perimembranous ventricular septal defect (pmVSD), pmVSD near the aortic valve, and intracristal VSD (icVSD) with symmetrical or asymmetrical ventricular septal defect occluders still presents significant challenges. We report our experience with transcatheter closure of pmVSD and icVSD using Amplatzer duct occluder II (ADO II) in children. Method: We retrospectively analyzed all children, who presented to our hospital consecutively between March 2014 and June 2020 for attempted transcatheter closure of pmVSD or icVSD with the ADO II device. Standard safety and last-follow-up outcomes were assessed and compared. Results: In total, 41 patients underwent transcatheter closure of VSD with the ADO II (28 in pmVSD and 13 in icVSD groups) with a median age of 3.5 years (total range: 0.9 to 12 years) and median weight of 15.0 kg (total range: 10.0 to 43.0 kg). Implantation was successful in 40/41 patients (97.5%, 27/28 in pmVSD group, 13/13 in icVSD group). One patient with mild aortic valve prolapse in pmVSD group developed new-onset moderate aortic regurgitation after a 4/4 mm ADO II was deployed; however, this resolved after the device was retrieved and successfully replaced with a 5 mm zero eccentric VSD occluder. There was no procedure-related mortality. After a median follow-up of six months (total range: 6 to 72 months), complete closure rates were 85.1% and 76.9% among pmVSD and icVSD groups, respectively. In the pmVSD group, one case of new-onset moderate tricuspid regurgitation was observed at six months, and there was one case of severe tricuspid regurgitation that had progressed from mild tricuspid regurgitation at 12 months. No serious complications were noted in the icVSD group. Conclusion: ADO II provides a safe and reproducible alternative for the closure of perimembranous and intracristal ventricular septal defects with a diameter less than 5 mm in young children.

6.
Comput Math Methods Med ; 2021: 6985008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671417

RESUMO

Swine influenza viruses (SIVs) can unforeseeably cross the species barriers and directly infect humans, which pose huge challenges for public health and trigger pandemic risk at irregular intervals. Computational tools are needed to predict infection phenotype and early pandemic risk of SIVs. For this purpose, we propose a feature representation algorithm to predict cross-species infection of SIVs. We built a high-quality dataset of 1902 viruses. A feature representation learning scheme was applied to learn feature representations from 64 well-trained random forest models with multiple feature descriptors of mutant amino acid in the viral proteins, including compositional information, position-specific information, and physicochemical properties. Class and probabilistic information were integrated into the feature representations, and redundant features were removed by feature space optimization. High performance was achieved using 20 informative features and 22 probabilistic information. The proposed method will facilitate SIV characterization of transmission phenotype.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34667102

RESUMO

OBJECTIVE: Elucidate the core clinical and genetic characteristics and identify the phenotypic variation between different regions and genotypes of fatal familial insomnia (FFI). METHODS: A worldwide large sample of FFI patients from our case series and literature review diagnosed by genetic testing were collected. The prevalence of clinical symptoms and genetic profile were obtained, and then the phenotypic comparison between Asians versus non-Asians and 129Met/Met versus 129Met/Val were conducted. RESULTS: In total, 131 cases were identified. The age of onset was 47.51±12.53 (range 17-76) years, 106 patients died and disease duration was 13.20±9.04 (range 2-48) months. Insomnia (87.0%) and rapidly progressive dementia (RPD; 83.2%) occurred with the highest frequency. Hypertension (33.6%) was considered to be an objective indicator of autonomic dysfunction. Genotype frequency at codon 129 was Met/Met (84.7%) and Met/Val (15.3%), and allele frequency was Met (92.4%) and Val (7.6%).129 Met was a risk factor (OR: 3.728, 95% CI: 2.194 to 6.333, p=0.000) for FFI in the non-Asian population. Comparison of Asians and non-Asians revealed clinical symptoms and genetic background to show some differences (p<0.05). In the comparison of 129 polymorphisms, a longer disease duration was found in the 129 MV group, with alleviation of some clinical symptoms (p<0.05). After considering survival probability, significant differences in survival time between genotypes remained (p<0.0001). CONCLUSIONS: Insomnia, RPD and hypertension are representative key clinical presentations of FFI. Phenotypic variations in genotypes and geographic regions were documented. Prion protein gene 129 Met was considered to be a risk factor for FFI in the non-Asian population, and 129 polymorphisms could modify survival duration.

8.
Analyst ; 146(20): 6306-6314, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34550117

RESUMO

Reliable and cost-effective quantification of RNA modifications at a specific gene locus is essential to elucidate the pathogenic mechanism encoded by RNA epigenetics. Current methods to quantify N6-methyladenosine (m6A) at specific sites can hardly satisfy the requirement of clinical application because epigenetic information is easily lost through polymerase chain reaction (PCR) assay or other isothermal amplification methods unless tedious pretreatment is applied. Herein, we propose a simple xeno nucleic acid (XNA) as a blocker probe to mediate the methylation specific reverse transcription quantitative polymerase chain reaction (MsRT-qPCR) assay to directly magnify the minor differences between epigenetic bases and unmodified bases in RNA. Strand displacement reactions selectively initiated between the reverse transcription primer (RT-primer) and the XNA probe at the m6A template given the affinity differences between the blocker probes and the m6A-modified RNA (m6A-RNA) and unmodified RNA (A-RNA). Thus, preferential amplification of m6A-RNA was allowed. Integration of a well-established oligo-modified Fe3O4@UiO-66-NH4 allowed purification of mRNA and lncRNA from cellular total RNA samples and greatly reduced the non-specific interference of m6A detection in real samples. Multiple specific sites of m6A in mRNA and lncRNA samples are also successfully quantified. The XNA probe-based m6A assay required only common and available lab equipment and materials, which can be applied in m6A-related fundamental studies and clinical diagnosis.


Assuntos
Adenosina , RNA Longo não Codificante , Adenosina/análogos & derivados , Metilação , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real
9.
Front Oncol ; 11: 690658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527574

RESUMO

Background: Loco-regional recurrences (LRR) following breast-conserving surgery (BCS) remain a heterogeneous class of disease that has significant variation in its biological behavior and prognosis. Methods: To delineate the spatiotemporal patterns of LRR after BCS, we analyzed the data of 4325 patients treated with BCS from 2006 to 2016. Clinico-pathological and treatment specific factors were analyzed using the Cox proportional hazards model to identify factors predictive for LRR events. Recurrence patterns were scrutinized based on recurrence type and recurrence-free interval (RFI). Annual recurrence rates (ARR) were compared according to recurrence type and molecular subtype. Results: With a median follow-up of 66 months, 120 (2.8%) LRRs were recorded as the first site of failure. Age, pathologic stage, and molecular subtype were identified as predictors of LRR. The major recurrence type was ipsilateral breast tumor recurrence, which mainly (83.6%) occurred ≤5y post surgery. In the overall population, ARR curves showed that relapse peaked in the first 2.5 years. Patients with regional nodal recurrence, shorter RFI, and synchronous distant metastasis were associated with a poorer prognosis. HER2-positive disease had a higher rate of LRR events, more likely to have in-breast recurrence, and had an earlier relapse peak in the first 2 years after surgery. Conclusions: LRR risk following BCS is generally low in Chinese ethnicity. Different recurrence patterns after BCS were related to distinct clinical outcomes. Management of LRR should be largely individualized and tailored to the extent of disease, the molecular profile of the recurrence, and to baseline clinical variables.

10.
J Control Release ; 339: 130-142, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34560158

RESUMO

The inherent hypoxic microenvironment of solid tumors has an important influence on tumor growth, distant metastasis, and invasiveness. The heterogeneous distribution of hypoxic regions inside tumors limits the therapeutic efficacy of O2-assisted therapeutic strategy (e.g. photodynamic therapy (PDT)). On the other hand, the hypoxia-activable prodrugs cannot work effectively in the regions with enough O2 concentration. To address the issues, we prepare a block copolymer polyprodrug consisting of polyethylene glycol (PEG) and copolymerized segments of nitroimidazole-linked camptothecin (CPT) methacrylate and 5,10,15,20-tetraphenylporphyrin (TPP)-containing methacrylate monomers for complementary photodynamic-chemotherapy. The polyprodrug can self-assemble into polymeric micelles in aqueous solution with suitable size and high stability. After intravenous injection, the polyprodrug micelles show tumor accumulation. Followed by light irradiation (650 nm) at tumor sites, TPP moieties induce singlet oxygen (1O2) production in the oxygen-rich area to exert PDT and cause transformation of the oxygen-rich areas into hypoxia. Simultaneously, in the hypoxic areas, the hypoxia-responsive polyprodrugs can be activated to release free CPT due to the cleavage of nitroimidazole linkages. The polyprodrug micelles with the segments for PDT and hypoxia-activable CPT efficiently suppress the growth of HeLa tumors. The well-defined polyprodrug amphiphiles offer an effective strategy to overcome the disadvantages of single treatment of PDT or hypoxia-responsive prodrugs for complementary photodynamic-chemotherapy of cancers.

11.
Dalton Trans ; 50(39): 14038-14043, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34549225

RESUMO

A new heavy metal oxychloride, RbPb8O4Cl9, has been synthesized by a high-temperature solution method. The compound crystallizes in the centrosymmetric space group P4/n (no. 85) and exhibits a three-dimensional (3D) framework constructed from [PbO3Cl3], [PbOCl5] and [RbCl8] polyhedra. RbPb8O4Cl9 is an indirect band gap compound with an experimental band gap of 3.66 eV. The first-principles calculations indicate that the band gap mainly originated from the interaction of Pb 6p, O 2p and Cl 2p states. Meanwhile, the calculated birefringence of RbPb8O4Cl9 is about 0.012 at 1064 nm. The compound is the first alkali metal lead oxyhalide, which enriches the structural diversity of oxyhalides and provides an insight for the exploration of new functional materials.

12.
Biosens Bioelectron ; 194: 113625, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534950

RESUMO

N6-methyladenosine (m6A) is the most abundant post-transcriptional modification in RNA and has important implications in physiological processes and tumor development. However, sensitive and specific quantification of locus-specific m6A modification levels remains a challenging task. In the present work, a novel m6A-sensitive DNAzyme was utilized to directly detect m6A by coupling with a three-way junction-mediated isothermal exponential CRISPR amplification reaction for the first time. This method was built on the fact that the binding arm of the DNAzyme bound to the specific site and its core structure catalyzed the selective cleavage of unmodified adenine instead of methylated adenines. Subsequently, the intact RNA was identified by the proximity effect of the three-way junction. Enormous amounts of single-stranded DNA products were generated through a combination of SDA and EXPAR for signal amplification. The specific real-time curve of products was recorded through detecting the fluorescence intensity triggered by CRISPR Cas12a. As a result, methylation target of abundance down to 1% was successfully identified. In addition, this strategy could be used for the analysis of cell RNA extracts. Combined with an electrochemical sensor for quantitative detection of RNA methylation, we demonstrated the generality of as-proposed strategy. We envision the present method would provide a new platform for the analysis of m6A in RNA and promote its application in clinical diseases.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Adenosina/análogos & derivados , Metilação , RNA/metabolismo
13.
Anal Bioanal Chem ; 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523014

RESUMO

Glycosylated PD-L1 is a more reliable biomarker for immune checkpoint therapy and plays important roles in tumor immunity. Glycosylation of PD-L1 hinders antibody-based detection, which is partially responsible for the inconsistency between PD-L1 immunohistochemical results and therapeutic treatment response. Herein, we present a proximity ligation assay mediated rolling circle amplification (PLA-RCA) strategy for amplified imaging of glycosylated PD-L1 in situ. The strategy relies on a pair of DNA probes: an aptamer probe to specifically recognize cellular surface protein PD-L1 and a glycan conversion (GC) probe for metabolic glycan labeling. Upon proximity ligation of sequence binding to the two probes, the proximity ligation-triggered RCA occurs. The feasibility of the as-proposed strategy has been validated as it realized the visualization of PD-L1 glycosylation in different cancer cells and the monitoring of the variation of PD-L1 glycosylation during drug treatment. Thus, we envision the present work offers a useful alternative to track protein-specific glycosylation and potentially advances the investigation of the dynamic glycan state associated with the disease process.

14.
Taiwan J Obstet Gynecol ; 60(5): 827-830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34507656

RESUMO

OBJECTIVE: This study aims to investigate the status of fertility preservation (FP) in young breast cancer patients. MATERIALS AND METHODS: A clinical database of six women with breast cancer who wished to undergo FP before starting chemotherapy were analyzed between January 2018 and December 2019 in our hospital. Among the six women, three were unmarried and three were married. RESULTS: Three patients chose oocyte preservation and obtained 23, 7, and 17 MII oocytes, respectively. One patient chose embryo freezing, and three embryos were frozen. Fertility preservation failed for two patients, one of whom had premature ovulation, while the other patient abandoned egg retrieval on the human chorionic gonadotropin (HCG) day. CONCLUSION: The present results indicate that oocyte and embryo cryopreservation are effective optional methods for young breast cancer patients. However, a lack of knowledge, the urgency of cancer treatment, and financial constraints are causes for a low access rate regarding this process.

15.
Plant Cell ; 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498077

RESUMO

Plant SNF1-Related Kinase1 (SnRK1) is an evolutionarily conserved energy sensing protein kinase that orchestrates transcriptional networks to maintain cellular energy homeostasis when energy supplies become limited. However, the mechanism by which SnRK1 regulates this gene expression switch to gauge cellular energy status remains largely unclear. In this work, we show that the rice histone H3K27me3 demethylase JMJ705 is required for low energy stress tolerance in rice plants. The genetic inactivation of JMJ705 resulted in similar effects as those of the rice snrk1 mutant on the transcriptome, which impair not only the promotion of the low energy stress-triggered transcriptional program but also the repression of the program under an energy-sufficient state. We show that the α-subunit of OsSnRK1 interacts with and phosphorylates JMJ705 to stimulate its H3K27me3 demethylase activity. Further analysis revealed that JMJ705 directly targets a set of low energy stress-responsive transcription factor genes. These results uncover the chromatin mechanism of SnRK1-regulated gene expression in both energy-sufficient and -limited states in plants and suggest that JMJ705 functions as an upstream regulator of the SnRK1α-controlled transcriptional network.

16.
J Alzheimers Dis ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34511503

RESUMO

BACKGROUND: Tauopathies are a group of neurodegenerative disorders, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau pathology. Hyperphosphorylation modification promotes tau protein misfolding and aggregation into neurofibrillary tangles, leading to impairments of synaptic plasticity and learning and memory. However, very limited therapeutic strategies are available. OBJECTIVE: In the present study, we wanted to investigate the potential effects of Dihydroartemisinin (DHA) on tauopathies. METHODS: We constructed adeno-associated virus carrying hTau cDNA (AAVhTau) to establish a mouse model of tauopathy through intrahippocampal microinjection. Using a combination of behavioral test, electrophysiological recording, and western blotting assay, we examined the neuroprotective effects of DHA on learning and memory deficits in mice with tauopathy. RESULTS: DHA improved learning and memory and increased hippocampal CA1 long-term potentiation (LTP) in mice overexpressed human tau (hTau) in the hippocampus. More importantly, further study revealed that DHA could induce protein O-GlcNAcylation modification and reduce protein phosphorylation. O-GlcNAc transferase inhibitor alloxan could suppress DHA-induced protein O-GlcNAcylation, and subsequently prevent therapeutic effect of DHA on the deficits of learning and memory as well as synaptic plasticity in hTau mice. CONCLUSION: These results indicate that DHA may exert neuroprotective role in tauopathy through a crosstalk between O-GlcNAcylation and phosphorylation, suggesting a potential therapeutic for learning and memory deficits associated with tau pathology.

17.
Biofactors ; 47(5): 865-878, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339079

RESUMO

To investigate the role of cell division cycle associated 7 (CDCA7) in stomach carcinoma, detect whether CDCA7 knockdown could regulate the development of stomach carcinoma, and further observe the relationship between CDCA7 and inflammation through TLR4/NF-κB signaling pathway in stomach adenocarcinoma (STAD) in vitro and in vivo. TIMER2.0, Kaplan-Meier plotter, Target Gene, and GEPIA systems were used to predict the potential function of CDCA7. Western blot and immunohistochemistry was used to analyze the expression of CDCA7 at different tissue or cell lines. The proliferation, development, inflammation, and apoptosis of STAD in vitro and in vivo were observed by using CDCA7 knockdown lentivirus through TLR4 suppression by its inhibitor. Bioinformatics analysis of CDCA7 with inflammation and western blot of CDCA7 with target protein of immune-associated cells were observed by using CDCA7 knockdown lentivirus in vivo. Finally, the prognosis and associated of CDCA7 in some gene mutations of STAD was observed by Target Gene system. CDCA7 expression in STAD tumor tissue was higher than the normal. The CDCA7 expression in tumor or MGC803 cells was increased. Furthermore, CDCA7 knockdown lentivirus could inhibit STAD development in vitro and in vivo through weakening tumor cells proliferation, reducing tumor volume and biomarker levels, and then increasing apoptotic level. CDCA7 is possibly able to regulate inflammation in STAD through TLR4/NF-κB signaling pathway. Furthermore, CDCA7 may be related with mast cells and the upstream target factor of TLR4/NF-κB signaling pathway in inflammation. These results may provide a new strategy to stomach carcinoma development by regulating inflammation.

18.
Langmuir ; 37(35): 10579-10587, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34427093

RESUMO

Freezing of ice has been largely reported from many aspects, especially its complex pattern formation. Ice grown from liquid phase is usually characteristic of lamellar morphology that plays a significant role in various domains. However, tilted growth of ice via transition from coplanar to noncoplanar in directional solidification has been paid little attention in previous studies and there was a misleading explanation of the formation of tilted lamellar ice. Here, we in situ investigated the variations of tilting behavior of lamellar ice tips under different conditions within a single ice crystal of manipulated orientation via unidirectional freezing of aqueous solutions. It is found that tilted growth of ice tips is sensitive to pulling velocity and solute type. These experimental results reveal intrinsic tilted growth behavior of lamellar ice, which is suggested to enrich our understanding of pattern formation of ice in relevant physical processes.

19.
Clin Transl Immunology ; 10(8): e1335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429969

RESUMO

Objectives: Developing a vaccine formula that alters the tumor-infiltrating lymphocytes to be more immune active against a tumor is key to the improvement of clinical responses to immunotherapy. Here, we demonstrate that, in conjunction with E7 antigen-specific immunotherapy, and IL-10 and PD-1 blockade, intratumoral administration of caerin 1.1/1.9 peptides improves TC-1 tumor microenvironment (TME) to be more immune active than injection of a control peptide. Methods: We compared the survival time of vaccinated TC-1 tumor-bearing mice with PD-1 and IL-10 blockade, in combination with a further injection of caerin 1.1/1.9 or control peptides. The tumor-infiltrating haematopoietic cells were examined by flow cytometry. Single-cell transcriptomics and proteomics were used to quantify changes in cellular activity across different cell types within the TME. Results: The injection of caerin 1.1/1.9 increased the efficacy of vaccinated TC-1 tumor-bearing mice with anti-PD-1 treatment and largely expanded the populations of macrophages and NK cells with higher immune activation level, while reducing immunosuppressive macrophages. More activated CD8+ T cells were induced with higher populations of memory and effector-memory CD8+ T subsets. Computational integration of the proteome with the single-cell transcriptome supported activation of Stat1-modulated apoptosis and significant reduction in immune-suppressive B-cell function following caerin 1.1 and 1.9 treatment. Conclusions: Caerin 1.1/1.9-containing treatment results in improved antitumor responses. Harnessing the novel candidate genes preferentially enriched in the immune active cell populations may allow further exploration of distinct macrophages, T cells and their functions in TC-1 tumors.

20.
ACS Appl Mater Interfaces ; 13(32): 38467-38476, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342964

RESUMO

The ultrahigh electrostrain and piezoelectric constant (d33) in relaxor piezoelectric PMN-30PT single crystals are closely related to the coexistence and transition of multiple phases at the morphotropic phase boundary (MPB). However, the key mechanisms underlying the stability of the phases and their transitions are yet to be fully understood. In this work, we undertake a systematic study of the influences of phase transitions on the electrostrictive and piezoelectric behaviors in ⟨001⟩-, ⟨011⟩-, and ⟨111⟩-oriented PMN-30PT single crystals. We first classify the various phase transitions within the quasi-MPB in electric field-temperature phase diagrams as either dominated by the electric field or by temperature. We find that the electrostrain reaches a maximum at each phase transition, especially in the electric-field-dominated transitions, whereas d33 only peaks at specific phase transitions. In particular, the electrostrain in the ⟨001⟩ crystal reaches a maximum of S = 0.52% at 55 °C under an external electric field with E = 15 kV/cm, primarily due to a joint contribution of the electric field-dominated rhombohedral-monoclinic and monoclinic-tetragonal phase transitions at the quasi-MPB. An ultrahigh d33 (∼2460 pC/N) only occurs at the rhombohedral-monoclinic phase transition in the ⟨001⟩ crystal and at the rhombohedral-orthorhombic transition in the ⟨011⟩ crystal (d33 ∼ 1500 pC/N) due to the lower energy barriers. The temperature-dominated phase transitions also contribute toward minor peaks in electrostrain and/or d33. This work provides a deeper and quantitative understanding of the microscopic mechanisms underlying electrostrictive and piezoelectric behaviors relevant for the design of high-performance materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...