Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.124
Filtrar
1.
Nat Commun ; 11(1): 5189, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060596

RESUMO

Among the various host cellular processes that are hijacked by flaviviruses, few mechanisms have been described with regard to viral egress. Here we investigate how flaviviruses exploit Src family kinases (SFKs) for exit from infected cells. We identify Lyn as a critical component for secretion of Dengue and Zika infectious particles and their corresponding virus like particles (VLPs). Pharmacological inhibition or genetic depletion of the SFKs, Lyn in particular, block virus secretion. Lyn-/- cells are impaired in virus release and are rescued when reconstituted with wild-type Lyn, but not a kinase- or palmitoylation-deficient Lyn mutant. We establish that virus particles are secreted in two distinct populations - one as free virions and the other enclosed within membranes. Lyn is critical for the latter, which consists of proteolytically processed, infectious virus progenies within autophagosome-derived vesicles. This process depends on Ulk1, Rab GTPases and SNARE complexes implicated in secretory but not degradative autophagy and occur with significantly faster kinetics than the conventional secretory pathway. Our study reveals a previously undiscovered Lyn-dependent exit route of flaviviruses in LC3+ secretory organelles that enables them to evade circulating antibodies and might affect tissue tropism.

2.
Chemosphere ; 264(Pt 2): 128549, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33065328

RESUMO

Moisture content (MC) influences substance transformation during composting and the function of exogenous microbial agents. Unsuitable MC could cause leaching, nutrient loss, and secondary contamination. In this study, chicken manure composting with varied MC (45-61%) was conducted under functional microbial agent inoculation to explore the optimum condition for composting and the potential mechanism. Due to the enhanced decomposing, nitrosation, and nitrification effect lead by the functional microorganism, treatment with the optimal MC (53%) exhibited the highest composting temperature (61 °C) and longest high-temperature period (15 days), achieving a final carbon-nitrogen ratio (C/N), humic acids and fulvic acids ratio (HA/FA), and NH4+-N/NO3--N at 19.20, 2.00, and 0.93, respectively. After composting, the total nitrogen (TN) increased by 13.01-22.10% in the treatments with microbial agent inoculation compared with original stack, while it decreased by 7.76% in control. The highest nutrient (5.63%, 5.63-14.20% higher than the other composts) and better product safety (11.43-23.58% higher seed germination than others) were observed in treatment with MC at 53%, exceeding the Chinese national standard for organic fertilizer. Obviously, under optimum MC, microbial agent augmentation lead to high quality and safe compost products after a short composting period (25 days) without any leaching, which suggested an efficient way to promote the recycling and recovery of husbandry waste.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33011437

RESUMO

Ammonia is toxic to most fish, and its negative effects can be eliminated by nutritional manipulation. In this study, triplicate groups of yellow catfish (0.58 ±â€¯0.03 g) were fed diets supplemented with 0, 0.30 and 0.60 mg selenium (Se) kg-1 diet for 56 days under three ammonia contents (0.00, 5.70 and 11.40 mg L-1 total ammonia nitrogen). The results showed that ammonia toxicity could affects growth (weight gain, feed efficiency ratio, Se contents in muscle and whole body declined) and survival, leads to oxidative stress (total antioxidant capacity, superoxide dismutase, catalase and glutathione peroxidase activities declined and malondialdehyde accumulation), immunosuppression (lysozyme activity, 50% hemolytic complement, immunoglobulin M, respiratory burst and phagocytic index declined) and cytokines release (TNF, IL 1 and IL 8 elevated), induces up-regulation of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT and GPx), cytokines (TNFα, IL 1 and IL 8) and pro-apoptotic genes (p53, Bax, Cytochrome c, Caspase 3 and Caspase 9) transcription, and down-regulation of anti-apoptotic gene Bcl2 transcription. The dietary Se supplementation could mitigate the adverse effect of ammonia poisoning on fish growth, oxidative damage, immunosuppression and apoptotic.

6.
J Pineal Res ; : e12698, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33016468

RESUMO

Targeting mitochondrial quality control with melatonin has been found promising for attenuating diabetic cardiomyopathy (DCM), although the underlying mechanisms remain largely undefined. Activation of SIRT6 and melatonin membrane receptors exerts cardioprotective effects while little is known about their roles during DCM. Using high-fat diet-streptozotocin-induced diabetic rat model, we found that prolonged diabetes significantly decreased nocturnal circulatory melatonin and heart melatonin levels, reduced the expressions of cardiac melatonin membrane receptors, decreased myocardial SIRT6 and AMPK-PGC-1α-AKT signaling. 16 weeks of melatonin treatment inhibited the progression of DCM and the following myocardial ischemia-reperfusion (MI/R) injury by reducing mitochondrial fission, enhancing mitochondrial biogenesis and mitophagy via re-activating SIRT6 and AMPK-PGC-1α-AKT signaling. After the induction of diabetes, adeno-associated virus carrying SIRT6-specific small hairpin RNA or luzindole was delivered to the animals. We showed that SIRT6 knockdown or antagonizing melatonin receptors abolished the protective effects of melatonin against mitochondrial dysfunction as evidenced by aggravated mitochondrial fission and reduced mitochondrial biogenesis and mitophagy. Additionally, SIRT6 shRNA or luzindole inhibited melatonin-induced AMPK-PGC-1α-AKT activation as well as its cardioprotective actions. Collectively, we demonstrated that long-term melatonin treatment attenuated the progression of DCM and reduced myocardial vulnerability to MI/R injury through preserving mitochondrial quality control. Melatonin membrane receptors-mediated SIRT6-AMPK-PGC-1α-AKT axis played a key role in this process. Targeting SIRT6 with melatonin treatment may be a promising strategy for attenuating DCM and reducing myocardial vulnerability to ischemia-reperfusion injury in diabetic patients.

7.
Br J Nutr ; : 1-26, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33028452

RESUMO

The association between egg consumption and diabetes is inconclusive. We aimed to examine the association between long-term egg consumption and its trajectory with diabetes in Chinese adults. A total of 8 545 adults aged ≥ 18 years old who attended the China Health and Nutrition Survey from 1991 to 2009 were included in this analysis. Egg consumption at each survey was assessed by a three-day 24-hour recall and weighed food record methods. The consumption trajectories of egg were modelled with the latent class group approach. Diabetes was diagnosed based on fasting blood glucose in 2009. Logistic regression was used to examine the association. The mean age of the study population was 50.9 (SD 15.1) years. 11.1% had diabetes in 2009. Egg consumption nearly doubled in 2009 from 16 g/day in 1991. Compared with the first quartile of egg consumption (0-9.0 g/day), the adjusted OR (95% CI) of diabetes for the second (9.1-20.6 g/day), third (20.7-37.5 g/day), and fourth (≥ 37.6 g/day) quartiles were 1.29 (95% CI 1.03, 1.62), 1.37 (95% CI 1.09, 1.72), and 1.25 (95% CI 1.04, 1.64), respectively (P for trend = 0.029). Three trajectory groups of egg consumption were identified. Compared with Group 1 (30.7%, low baseline intake and slight increase), both Group 2 (62.2%, medium baseline intake and increase) and Group 3 (7.1%, high baseline intake and decrease) were associated with an increased odds ratio (OR) for diabetes. The results suggested that higher egg consumption was positively associated with the risk of diabetes in Chinese adults.

8.
Mol Plant Pathol ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33029873

RESUMO

Plant pathogens deliver virulence effectors into plant cells to modulate plant immunity and facilitate infection. Although species-specific virulence effector screening approaches have been developed for several pathogens, these assays do not apply to pathogens that cannot be cultured and/or transformed outside of their hosts. Here, we established a rapid and parallel screening assay, called the virus-induced virulence effector (VIVE) assay, to identify putative effectors in various plant pathogens, including unculturable pathogens, using a virus-based expression vector. The VIVE assay uses the potato virus X (PVX) vector to transiently express candidate effector genes of various bacterial and fungal pathogens into Nicotiana benthamiana leaves. Using the VIVE assay, we successfully identified Avh148 as a potential virulence effector of Phytophthora sojae. Plants infected with PVX carrying Avh148 showed strong viral symptoms and high-level Avh148 and viral RNA accumulation. Analysis of P. sojae Avh148 deletion mutants and soybean hairy roots overexpressing Avh148 revealed that Avh148 is required for full pathogen virulence. In addition, the VIVE assay was optimized in N. benthamiana plants at different developmental stages across a range of Agrobacterium cell densities. Overall, we identified six novel virulence effectors from seven pathogens, thus demonstrating the broad effectiveness of the VIVE assay in plant pathology research.

9.
Autophagy ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030400

RESUMO

Deficiency in decidualization has been widely regarded as an important cause of spontaneous abortion. Generalized decidualization also includes massive infiltration and enrichment of NK cells. However, the underlying mechanism of decidual NK (dNK) cell residence remains largely unknown. Here, we observe that the increased macroautophagy/autophagy of decidual stromal cells (DSCs) during decidualization, facilitates the adhesion and retention of dNK cells during normal pregnancy. Mechanistically, this process is mediated through activation of the MITF-TNFRSF14/HVEM signaling, and further upregulation of multiple adhesion adhesions (e.g, Selectins and ICAMs) in a MMP9-dependent manner. Patients with unexplained spontaneous abortion display insufficient DSC autophagy and dNK cell residence. In addition, poor vascular remodeling of placenta, low implantation number and high ratio of embryo loss are observed in NK cell depletion mice. In therapeutic studies, low doses of rapamycin, a known autophagy inducer that significantly promotes endometrium autophagy and NK cell residence, and improves embryo absorption in spontaneous abortion mice models, which should be dependent on the activation of MITF-TNFRSF14/HVEM-MMP9-adhension molecules axis. This observation reveals novel molecular mechanisms underlying DSCs autophagy-driven dNK cell residence, and provides a potential therapeutic strategy to prevent spontaneous abortion.

10.
Biotechnol Bioeng ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33022743

RESUMO

Yeast has been engineered for cost-effective organic acid production through metabolic engineering and synthetic biology techniques. However, cell growth assays in these processes were performed in bulk at the population level, thus obscuring the dynamics of rare single cells exhibiting beneficial traits. Here, we introduce the use of monodisperse picolitre droplets as bioreactors to cultivate yeast at the single-cell level. We investigated the effect of acid stress on growth and the effect of potassium ions on propionic acid tolerance for single yeast cells of different species, genotypes and phenotypes. The results showed that the average growth of single yeast cells in microdroplets experiences the same trend to those of yeast populations grown in bulk, and microdroplet compartments do not significantly affect cell viability. This approach offers the prospect of detecting cell-to-cell variations in growth and physiology and is expected to be applied for the engineering of yeast to produce value-added bioproducts. This article is protected by copyright. All rights reserved.

11.
Exp Biol Med (Maywood) ; : 1535370220963197, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023330

RESUMO

IMPACT STATEMENT: In this study, we explored the expression profile of lncRNA in HCC tumor tissues and paracancerous tissues using microarray assays. Furthermore, a new lncRNA (lnc-ATG9B-4) was identified, which was about 3.5 times more expressed in tumor tissues than in paracancerous tissues. Through clinicopathological analysis, lnc-ATG9B-4 was determined to be related to the tumorous size, TNM stages, portal vein tumor thrombus (PVTT), the tumor capsule, metastasis, and the degree of differentiation. Lnc-ATG9B-4 promoted the proliferation, invasion, as well as migration of the HCC cells by upregulating the expression of CDK5. Here, we further exploited the molecular mechanisms of lnc-ATG9B-4 to screen new drug intervention targets for recurrence and metastasis of HCC.

12.
Cell Death Dis ; 11(10): 838, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037177

RESUMO

An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play important roles in tumor development and progression. However, their involvement in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Epigenetic regulation is one major mechanism utilized by cancer cells to control lncRNA expression. We identified that lncRNA VENTXP1 was epigenetically silenced in multiple cancer types, and its lower expression was correlated with poorer survival in HNSCC patients. Through in silico analysis and experimental validation, we identified miR-205-5p and its direct interacting partner of VENTXP1, which regulates HNSCC cell proliferation and tumorigenicity. Using RNA-seq and differential gene expression analysis, we further identified ANKRD2 as a miR-205-5p target, which plays an essential role in modulating NF-kB signaling. These findings suggest that VENTXP1 inhibits tumor growth via suppressing miR-205-5p/ANKRD2-mediated NF-kB signaling in HNSCC. Thus, pharmaceutical targeting of DNA methylation to restore VENTXP1 expression might constitute a therapeutic strategy for HNSCC.

13.
Inorg Chem ; 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33040527

RESUMO

Zn-doped cuprous oxide (Cu2O) nanoparticles coated by carbon layers (Zn/Cu2O@C) have been obtained via a bimetallic MOF (Zn/Cu-MOF-199) as the sacrificial precursor. Originated from the octahedral morphology of Zn/Cu-MOF-199, the as-synthesized Zn/Cu2O@C shows a porous octahedron structure. The obtained Zn/Cu2O@C can afford the following merits. (1) The cation doping of Zn inside Cu2O can enhance the light absorption by introducing impurity energy levels and facilitate the separation of photoinduced electrons and holes. (2) The coating of a carbon layer in Zn/Cu2O@C can also efficiently enhance the separation efficiency of photoinduced charge carriers. (3) The porous structure of Zn/Cu2O@C can provide increased active sites. Therefore, these merits lead to the highly improved photocatalytic activities toward various chemical reactions. In addition, the fully coated carbon layer can facilitate the cycle stability of Zn/Cu2O@C in the photocatalytic processes.

14.
J Xray Sci Technol ; 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33044222

RESUMO

BACKGROUND: Dual-energy breast CT reconstruction has a potential application that includes separation of microcalcification from healthy breast tissue for assisting early breast cancer detection. OBJECTIVE: To investigate and validate the noise suppression algorithm applied in the decomposition of the simulated breast phantom into microcalcification and healthy breast. METHODS: The proposed hybrid optimization method (HOM) uses a simultaneous algebraic reconstruction technique (SART) output as a prior image, which is then incorporated into the self-adaptive dictionary learning. This self-adaptive dictionary learning seeks each group of patches to faithfully represent the learned dictionary, and the sparsity and non-local similarity of group patches are used to enforce the image regularization term of the prior image. We simulate a numerical phantom by adding different levels of Gaussian noise to test performance of the proposed method. RESULTS: The mean value of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) for the proposed method are (49.043±1.571), (0.997±0.002), (0.003±0.001) and (51.329±1.998), (0.998±0.002), (0.003±0.001) for 35 kVp and 49 kVp, respectively. The PSNR of the proposed method shows greater improvement over TWIST (5.2%), SART (34.6%), FBP (40.4%) and TWIST (3.7%), SART (39.9%), FBP (50.3%) for 35 kVp and 49 kVp energy images, respectively. For the proposed method, the signal-to-noise ratio (SNR) of decomposed normal breast tissue (NBT) is (22.036±1.535), which exceeded that of TWIST, SART, and FBP by 7.5%, 49.6%, and 96.4%, respectively. The results reveal that the proposed algorithm achieves the best performance in both reconstructed and decomposed images under different levels of noise and the performance is due to the high sparsity and good denoising ability of minimization exploited to solve the convex optimization problem. CONCLUSIONS: This study demonstrates the potential of applying dual-energy reconstruction in breast CT to detect and separate clustered MCs from healthy breast tissues without noise amplification. Compared to other competing methods, the proposed algorithm achieves the best noise suppression performance for both reconstructed and decomposed images.

15.
Food Chem ; 340: 128123, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33010645

RESUMO

Six commercial red sorghum varieties (Tong Za 117, 141, 142 and 143, Chi Za 109 and 101) were investigated for their triacylglycerol (TAG) profiles, soluble and bound phenolics, and radical scavenging and anti-inflammatory activities. A total of 21 TAGs were identified in red sorghum oils for the first time. Total phenolic (TPC) and flavonoid contents (TFC) in the soluble or bound phenolic fractions differed among red sorghums. Significant correlation among TPC, TFC and DPPH radical scavenging activities was observed in both fractions. Except for caffeic acid, most of phenolic acids in red sorghums are in the bound form. Soluble 3-deoxyanthocyanidins contents (2.12-57.14 µg/g) were significantly higher than those of bound forms (0.01-0.18 µg/g) regardless of sorghum varieties and types of 3-deoxyanthocyanidins. Moreover, the stronger anti-inflammatory capacity of soluble phenolic fraction in Tong Za 117 correlated with its higher TPC, TFC and radical scavenging activity than those of its bound counterpart.

16.
Circulation ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034202

RESUMO

Background: A systemic pro-inflammatory state has been hypothesized to mediate the association between comorbidities and abnormal cardiac structure/function in heart failure with preserved ejection fraction (HFpEF). We conducted a proteomic analysis to investigate this paradigm. Methods: In 228 HFpEF patients from the multicenter PROMIS-HFpEF study, 248 unique circulating proteins were quantified by a multiplex immunoassay (Olink) and used to recapitulate systemic inflammation. In a deductive approach, we performed principal component (PC) analysis to summarize 47 proteins known a priori to be involved in inflammation. In an inductive approach, we performed unbiased weighted co-expression network analyses of all 248 proteins to identify clusters of proteins that overrepresented inflammatory pathways. We defined comorbidity burden as the sum of 8 common HFpEF comorbidities. We used multivariable linear regression and statistical mediation analyses to determine whether and to what extent inflammation mediates the association of comorbidity burden with abnormal cardiac structure/function in HFpEF. We also externally validated our findings in an independent cohort of 117 HFpEF cases and 30 comorbidity controls without HF. Results: Comorbidity burden was associated with abnormal cardiac structure/function and with PCs/clusters of inflammation proteins. Systemic inflammation was also associated with increased mitral E velocity, E/e' ratio, and tricuspid regurgitation (TR) velocity; and worse right ventricular function (tricuspid annular plane systolic excursion [TAPSE] and right ventricular. [RV] free wall strain). Inflammation mediated the association between comorbidity burden and mitral E velocity (proportion mediated 19-35%), E/e' ratio (18-29%), TR velocity (27-41%), and tricuspid annular plane systolic excursion (13%) (P<0.05 for all) but not RV free wall strain. TNF-R1, UPAR, IGFBP-7 and GDF-15 were the top individual proteins that mediated the relationship between comorbidity burden and echocardiographic parameters. In the validation cohort, inflammation was upregulated in HFpEF cases versus controls, and the most prominent inflammation protein cluster identified in PROMIS-HFpEF was also present in HFpEF cases (but not controls) in the validation cohort. Conclusions: Proteins involved in inflammation form a conserved network in HFpEF across 2 independent cohorts and may mediate the association between comorbidity burden and echocardiographic indicators of worse hemodynamics and RV dysfunction. These findings support the comorbidity-inflammation paradigm in HFpEF.

17.
Mol Brain ; 13(1): 135, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028376

RESUMO

BACKGROUND: Cerebral microinfarcts (MIs) lead to progressive cognitive impairments in the elderly, and there is currently no effective preventative strategy due to uncertainty about the underlying pathogenic mechanisms. One possibility is the dysfunction of GABAergic transmission and ensuing excitotoxicity. Dysfunction of GABAergic transmission induces excitotoxicity, which contributes to stroke pathology, but the mechanism has kept unknown. The secreted leucine-rich repeat (LRR) family protein slit homologue 2 (Slit2) upregulates GABAergic activity and protects against global cerebral ischemia, but the neuroprotective efficacy of Slit2 against MIs has not been examined. METHODS: Middle-aged Wild type (WT) and Slit2-Tg mice were divided into sham and MI treatment groups. MIs were induced in parietal cortex by laser-evoked arteriole occlusion. Spatial memory was then compared between sham and MI groups using the Morris water maze (MWM) task. In addition, neuronal activity, blood brain barrier (BBB) permeability, and glymphatic clearance in peri-infarct areas were compared using two-photon imaging, while GABAergic transmission, microglial activation, neuronal loss, and altered cortical connectivity were compared by immunofluorescent staining or western blotting. RESULTS: Microinfarcts increased the amplitude and frequency of spontaneous intracellular Ca2+ signals, reduced neuronal survival and connectivity within parietal cortex, decreased the number of GABAergic interneurons and expression of vesicular GABA transporter (VGAT), induced neuroinflammation, and impaired both glymphatic clearance and spatial memory. Alternatively, Slit2 overexpression attenuated dysfunctional neuronal Ca2+ signaling, protected against neuronal death in the peri-infarct area as well as loss of parietal cortex connectivity, increased GABAergic interneuron number and VGAT expression, attenuated neuroinflammation, and improved both glymphatic clearance and spatial memory. CONCLUSION: Our results strongly suggest that overexpression of Slit2 protected against the dysfunction in MIs, which is a potential therapeutic target for cognition impairment in the elderly.

18.
Sci Rep ; 10(1): 16690, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028924

RESUMO

We evaluated the feasibility and image quality of prospective electrocardiography (ECG)-triggered coronary computed tomography angiography (CCTA) using a body surface area (BSA) protocol for contrast-medium (CM) administration on both second- and third-generation scanners (Flash and Force CT), without using heart rate control. One-hundred-and-eighty patients with suspected coronary heart disease undergoing CCTA were divided into groups A (BSA protocol for CM on Flash CT), B (body mass index (BMI)-matched patients; BMI protocol for CM on Flash CT), and C (BMI-matched patients; BSA protocol for CM on Force CT). Patient characteristics, quantitative and qualitative measures, and radiation dose were compared between groups A and B, and A and C. Of the 180 patients, 99 were male (median age, 62 years). Average BSA in groups A, B, and C was 1.80 ± 0.17 m2, 1.74 ± 0.16 m2, and 1.64 ± 0.17 m2, respectively, with groups A and C differing significantly (P < 0.001). Contrast volume (50.50 ± 8.57 mL vs. 45.00 ± 6.18 mL) and injection rate (3.90 ± 0.44 mL/s vs. 3.63 ± 0.22 mL/s) differed significantly between groups A and C (P < 0.001). Groups A and C (both: all CT values > 250 HU, average scores > 4) achieved slightly lower diagnostic image quality than group B. The BSA protocol for CM administration was feasible in both Flash and Force CT, and therefore may be valuable in clinical practice.

19.
J Cardiovasc Nurs ; 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027135

RESUMO

BACKGROUND: The theory of planned behavior (TPB), combined with social support, forms the extended TPB, which has shown to predict adherence to health-related behavior effectively, but few studies have applied it to explain medication adherence in patients with coronary heart disease (CHD) after percutaneous coronary intervention (PCI). OBJECTIVES: The aim of this study was to explore the factors associated with medication adherence and the underlying mechanisms based on the extended TPB among patients with CHD after PCI. METHODS: A cross-sectional descriptive study was conducted among patients with CHD after PCI in 2 major hospitals in Guangzhou, China. Medication adherence was measured with the Medication Adherence Report Scale. Constructs of the TPB contributing to medication adherence were assessed by the Theory of Planned Behavior Questionnaire for Medication Adherence. Social support was measured by the Multidimensional Scale of Perceived Social Support. Structural equation modeling was used to examine the hypotheses based on the extended TPB. RESULTS: A total of 300 patients were surveyed and 26.0% of them were nonadherent. The structural equation modeling had good fit indices and estimated 62.6% of the variance in medication adherence. Regarding the relationships between the extended TPB constructs and medication adherence, "intention" was directly associated with medication adherence, and "perceived behavioral control" positively predicted medication adherence directly and indirectly. "Affective attitude" and "subjective norm" were indirectly associated with medication adherence through "intention." Social support exerted an indirect effect on medication adherence through "subjective norm." CONCLUSIONS: The extended TPB is an appropriate model to predict medication adherence and provides an effective framework for adherence-enhancing interventions.

20.
J Hazard Mater ; 398: 122869, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027880

RESUMO

Evidence has shown that the activation of AhR (aryl hydrocarbon receptor) can promote cancer cell metastasis. However, limited studies have been carried out on mixed exposure to endocrine-disrupting chemicals (EDCs), especially in human breast cancer. Therefore, using MCF7 human breast cancer cells, we investigated the effects of coexposure to MEHP (mono 2-ethylhexyl phthalate) and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on cell migration and invasion, as well as the roles of AhR and the MMP/slug pathway. Our data suggest that MEHP or TCDD can induce migration and invasion in MCF7 cells, and the promotion is partly AhR dependent. We also observed that MEHP antagonized TCDD to reduce AhR-mediated CYP1A1 expression. Subsequently, we revealed that MEHP recruited AhR to dioxin response element (DRE) sequences and decreased TCDD-induced AhR-DRE binding in CYP1A1 genes. Overall, MEHP is a potential AHR agonist, capable of decreasing TCDD-induced AhR-DRE binding in CYP1A1 genes. The antagonizing effect of coexposure led to the inhibition of the epithelial-mesenchymal transition (EMT) in MCF7 cells. Our study provides new evidence for the potential mechanisms involved in EDCs exposure and their interactions in EMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA