Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
1.
Nat Commun ; 12(1): 241, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431824

RESUMO

Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.

2.
Appl Microbiol Biotechnol ; 105(2): 679-694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394158

RESUMO

Phospholipases play vital roles in immune and inflammatory responses in mammals and plants; however, knowledge of phospholipase functions in fungi is limited. In this study, we investigated the effects of deleting predicted phospholipase genes on cellulase and xylanase production, and morphological phenotype, in Penicillium oxalicum. Individual deletion of nine of the ten predicted phospholipase genes resulted in alteration of cellulase and xylanase production, and the morphological phenotypes, to various degrees. The mutant ∆POX07277 lost 22.5 to 82.8% of cellulase (i.e., filter paper cellulase, carboxymethylcellulase, and p-nitrophenyl-ß-cellobiosidase) and xylanase production, whereas p-nitrophenyl-ß-glucopyranosidase production increased by 5.8-127.8 fold. POX07277 (P. oxalicum gene No. 07277) was predicted to encode phospholipase A2 and was found to negatively affect the sporulation of P. oxalicum. Comparative transcriptomic and quantitative reverse transcription-PCR analysis indicated that POX07277 dynamically affected the expression of cellulase and xylanase genes and the regulatory genes for fungal sporulation, under micro-crystalline cellulose induction. POX07277 was required for the expression of the known regulatory gene PoxCxrB (cellulolytic and xylanolytic regulator B in P. oxalicum), which is involved in cellulase and xylanase gene expression in P. oxalicum. Conversely, POX07277 expression was regulated by PoxCxrB. These findings will aid the understanding of phospholipase functions and provide novel insights into the mechanism of fungal cellulase and xylanase gene expression. KEY POINTS : • The roles of phospholipases were investigated in Penicillium oxalicum. • POX07277 (PLA2) is required for the expression of cellulase and xylanase genes. • PoxCxrB dynamically regulated POX07277 expression.

3.
ACS Nano ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449616

RESUMO

Herein, we developed hybrid DNAzyme nanoparticles (NPs) to achieve light-induced carrier-free self-delivery of DNAzymes with sufficient cofactor supply and lysosome escape capacity. In this system, aggregation-induced emission (AIE) photosensitizer (PS) (TBD-Br) was grafted onto a phosphorothiolated DNAzyme backbone, which automatically self-assembled to form NPs and the surface phosphorothioate group could easily coordinate with the cofactor Zn2+ in the buffer. When the yielded hybrid DNAzyme NPs were located inside tumor cell lysosomes, the 1O2 from TBD-Br under light illumination could destroy lysosome structure and promote the Zn2+ coordinated DNAzyme NPs escape. Both in vitro and in vivo results demonstrated that the hybrid DNAzyme NPs could downregulate the early growth response factor-1 protein (EGR-1) to inhibit tumor cell growth in addition to induce tumor cell apoptosis by AIE PS (TBD-Br) under light irradiation.

4.
Pest Manag Sci ; 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33423365

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS: RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6,171 lncRNAs transcripts were identified. These included 3,728 lincRNAs, 653 antisense lncRNAs, 1,402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION: LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. This article is protected by copyright. All rights reserved.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33470903

RESUMO

Granulocyte colony stimulating factor (GCSF) is a cytokine with immunomodulation effects. However, little is known about its role in metabolic diseases. In the current study we aimed to explore the role of GCSF in non-alcoholic fatty liver disease (NAFLD). GCSF-/- mice were used to investigate the function of GCSF in vivo after high fat diet (HFD). Primary hepatocytes were used for evaluating the function of GCSF in vitro. Liver immune cells were isolated and analyzed by flow cytometry. Our results showed that GCSF administration significantly increased serum triglyceride (TG) levels in patients. Circulating GCSF was markedly elevated in HFD-fed mice. GCSF-/- mice exhibited alleviated HFD-induced obesity, insulin resistance and hepatic steatosis. Extra administration of GCSF significantly aggravated palmitic acid (PA)-induced lipid accumulation in primary hepatocytes. Mechanically, GCSF could bind to granulocyte colony stimulating factor receptor (GCSFR) and regulate suppressors of cytokine signaling 3, Janus kinase, signal transducer and activator of transcription 3 (SOCS3-JAK-STAT3) pathway. GCSF also enhanced hepatic neutrophils and macrophages infiltration, thereby modulating NAFLD. These findings suggest that GCSF plays an important regulatory role in NAFLD and may be a potential therapeutic target for NAFLD.

6.
Anticancer Drugs ; Publish Ahead of Print2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33394687

RESUMO

Evodiamine (Evo), a quinazoline alkaloid and one of the most typical polycyclic heterocycles, is mainly isolated from Evodia rugulosa. Vasculogenic mimicry (VM) is a newly identified way of angiogenesis during tumor neovascularization, which is prevalent in a variety of highly invasive tumors. The purpose of this study was to investigate the effect and mechanism of Evo on VM in human colorectal cancer (CRC) cells. The number of VM structures was calculated by the three-dimensional culture of human CRC cells. Wound-healing was used to detect the migration of HCT116 cells. Gene expression was detected by reverse transcription-quantitative PCR assay. CD31/ PAS staining was used to identify VM. Western blotting and immunofluorescence were used to detect protein levels. The results showed that Evo inhibited the migration of HCT116 cells, as well as the formation of VM. Furthermore, Evo reduced the expression of hypoxia-inducible factor 1-alpha (HIF-1α), VE-cadherin, VEGF, MMP2, and MMP9. In a model of subcutaneous xenotransplantation, Evo also inhibited tumor growth and VM formation. Our study demonstrates that Evo could inhibit VM in CRC cells HCT116 and reduce the expression of HIF-1α, VE-cadherin, VEGF, MMP2, and MMP9.

7.
Food Funct ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459740

RESUMO

Pulmonary fibrosis is an incurable end-stage lung disease and remains a global public health problem. Although there have been some breakthroughs in understanding the pathogenesis of pulmonary fibrosis, effective intervention methods are still limited. Natural products have the advantages of multiple biological activities and high levels of safety, which are important factors for preventing and treating pulmonary fibrosis. In this review, we summarized the mechanisms and health benefits of natural products against pulmonary fibrosis. These natural products target oxidative stress, inflammatory injury, epithelial-mesenchymal transition (EMT), fibroblast activation, extracellular matrix accumulation and metabolic regulation, and the mechanisms involve the NF-κB, TGF-ß1/Smad, PI3K/Akt, p38 MAPK, Nrf2-Nox4, and AMPK signaling pathways. We hope to provide new ideas for pulmonary fibrosis prevention and treatment strategies.

8.
Int J Environ Health Res ; : 1-10, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33406863

RESUMO

The objective of this study was to examine the relationship between weekly specific maternal air pollution exposures and low birth weight. We fitted a distributed lag nonlinear model (DLNM) to analyze the nonlinear exposure-response association and delayed effects of air pollutants on the risk for low birth weight. The model assumed that all live births have 40 gestational weeks.The 1st week lag was the 40th gestational week, and 40th lag week was the 1st gestational week.The study included 71,809 live births (from July 1, 2016, to June 30, 2019), of which 2,391 (3.33%) exhibited low birth weight. The results demonstrated that exposure of pregnant women to PM10 at lag 22-30 weeks was significantly associated with low birth weight risk, with the greatest impact at the lag 30 week. Exposure to SO2 at lag 29-37 weeks was significantly associated with low birth weight risk. The sensitive exposure window for NO2 began at lag 25-37 weeks of pregnancy. The lag 6-10 weeks constituted the susceptible exposure window for O3. Therefore we concluded that maternal exposures to PM10, SO2, NO2, and O3 were associated with increased risk for low birth weight.

9.
Toxicol Lett ; 337: 57-67, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232776

RESUMO

In this study, a ricin toxin (RT)-induced pulmonary intoxication model was established in mice by intratracheal-delivered RT at a dose of 2× LD50. Based on this model, the histopathological evaluation of the lungs at 24 h and 48 h post-exposure was executed, and the genome-wide transcriptome of the lungs at 4, 12, 24 and 48 h post-exposure was analyzed. Histopathological analysis showed that a large number of neutrophils infiltrated the lungs at 24 h post-exposure, and slight pulmonary edema and perivascular-peribronchiolar edema appeared in the lungs at 48 h. Transcriptome analysis showed that the expression of a large number of genes related to leukocyte migration and chemotaxis consistently increased in the lungs upon exposure to RT, and the expression of genes that participate in acute phase immune and/or inflammatory response, also increased within 12 h of exposure to RT, which could be confirmed by the measurement of cytokines, such as IL-1ß, TNF-α and IL-6, in bronchoalveolar lavage fluid. While the expression of genes related to cellular components of the extracellular matrix and cell membrane integrity consistently decreased in the lungs, and the expression of genes related to antioxidant activity also decreased within the first 12 h. There are 17 differentially expressed genes (DEGs) that participate in ribotoxic stress response, endoplasmic reticulum stress response or immune response in the lungs at 4 h post-exposure. The expression of these DEGs was upregulated, and the number of these DEGs accounted for about 59 % of all DEGs at 4 h. The 17 DEGs may play an important role in the occurrence and development of inflammation. Notably, Atf3, Egr1, Gdf15 and Osm, which are poorly studied, may be important targets for the subsequent research of RT-induced pulmonary intoxication. This study provides new information and insights for RT-induced pulmonary intoxication, and it can provide a reference for the subsequent study of the toxicological mechanism and therapeutic approaches for RT-induced pulmonary intoxication.


Assuntos
Armas Biológicas , Perfilação da Expressão Gênica , Pneumopatias/induzido quimicamente , Ricina/administração & dosagem , Ricina/toxicidade , Reação de Fase Aguda/induzido quimicamente , Reação de Fase Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Inflamação/induzido quimicamente , Inflamação/patologia , Intubação Intratraqueal , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Mol Cell Endocrinol ; 521: 111097, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278491

RESUMO

BACKGROUND: Coronavirus disease (COVID-19) has resulted in considerable morbidity and mortality worldwide. Thyroid hormones play a key role in modulating metabolism and the immune system. However, the prevalence of thyroid dysfunction (TD) and its association with the prognosis of COVID-19 have not yet been elucidated. In this study, we seek to address this gap and understand the link between TD and COVID-19. METHODS: Herein, we enrolled patients who were hospitalized with COVID-19 and had normal or abnormal thyroid function test results at the West Court of Union Hospital in Wuhan, China, between 29 January and February 26, 2020. We carried out follow up examinations until April 26, 2020. Data on clinical features, treatment strategies, and prognosis were collected and analyzed. TD was defined as an abnormal thyroid function test result, including overt thyrotoxicosis, overt hypothyroidism, subclinical hypothyroidism, subclinical hyperthyroidism, and euthyroid sick syndrome. RESULTS: A total of 25 and 46 COVID-19 patients with and without TD, respectively, were included in the study. COVID-19 patients with TD had significantly higher neutrophil counts and higher levels of C-reactive protein, procalcitonin, lactate dehydrogenase, serum creatine kinase, aspartate transaminase, and high-sensitive troponin I and a longer activated partial thromboplastin time but lower lymphocyte, platelet, and eosinophil counts. A longitudinal analysis of serum biomarkers showed that patients with TD presented persistently high levels of biomarkers for inflammatory response and cardiac injury. COVID-19 patients with TD were more likely to develop a critical subtype of the disease. Patients with TD had a significantly higher fatality rate than did those without TD during hospitalization (20% vs 0%, P = 0.002). Patients with TD were more likely to stay in the hospital for more than 28 days than were those without TD (80% vs 56.52%, P = 0.048). CONCLUSIONS: Our preliminary findings suggest that TD is associated with poor outcomes in patients with COVID-19.

11.
Plant Signal Behav ; 16(1): 1841974, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33126826

RESUMO

Spliceosomes are large complexes regulating pre-mRNA processing in eukaryotes. Arabidopsis JANUS encodes a putative subunit of spliceosome`. We recently demonstrated that JANUS plays an essential role during early embryogenesis and root meristem development. Instead of mediating pre-mRNA splicing as a subunit of spliceosome, JANUS regulates the transcription of key genes by recruiting RNA Polymerase II (Pol II). Here, we summarize our latest findings and provide insights into the regulation of JANUS during Arabidopsis development.

12.
Virulence ; 12(1): 360-376, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380272

RESUMO

Abnormalities in CD4+ T cell (Th cell) differentiation play an important role in the pathogenesis of viral myocarditis (VMC). Our previous studies demonstrated that activation of the cholinergic anti-inflammatory pathway (CAP) alleviated the inflammatory response. In addition, we observed that right cervical vagotomy aggravates VMC by inhibiting CAP. However, the vagus nerve's effect on differentiation of CD4+ T cells has not been studied in VMC mice to date. In this study, we investigated the effects of cervical vagotomy and the α7nAChR agonist pnu282987 on CD4+ T cell differentiation in a murine myocarditis model (BALB/c) infected with coxsackievirus B3 (CVB3). Splenic CD4+ T cells from CVB3-induced mice obtained and cultured to investigate the potential mechanism of CD4+ T cell differentiation. Each Th cell subset was analyzed by flow cytometry. Our results showed that right cervical vagotomy increased proportions of Th1 and Th17 cells and decreased proportions of Th2 and Treg cells in the spleen. Vagotomy-induced upregulation of T-bet, Ror-γ, IFN-γ, and IL-17 expression while downregulating the expression of Gata3, Foxp3, and IL-4 in the heart. In addition, we observed upregulated levels of proinflammatory cytokines, aggravated myocardial lesions and cellular infiltration, and worsened cardiac function in VMC mice. Pnu282987 administration reversed these outcomes. Furthermore, vagotomy inhibited JAK2-STAT3 activation and enhanced NF-κB activation in splenic CD4+ T cells. The CD4+ T cell differentiation was related to JAK2-STAT3 and NF-κB signal pathways. In conclusion, vagus nerve modulates the inflammatory response by regulating CD4+ T cell differentiation in response to VMC.

13.
Biomed Pharmacother ; 133: 111081, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378977

RESUMO

OBJECTIVE: A growing evidence demonstrates that inflammation is a major contributor to the pathogenesis of pulmonary arterial hypertension (PAH). However, blocking inflammation has only been shown to be of minor clinical benefit due to a lack of understanding of the precise inflammation present in PAH. Thus, the present study aimed to investigate characteristics of inflammatory process in PAH induced by monocrotaline (MCT) in rats. METHODS: Adult male Sprague-Dawley rats received a single dose of MCT (50 mg/kg, ip), and the occurrence of PAH and inflammation biomarkers were measured at 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 days after MCT injection. RESULTS: From the 6th day after the injection of MCT, the mean pulmonary artery pressure gradually increased and doubled on the 30th day, accompanied by right ventricular hypertrophy and pulmonary arterial remodeling in a time-dependent manner. In the first 6 days after MCT treatment, only pro-inflammatory cytokines TNF-α, IL-1ß increased, which was defined as acute inflammatory phase, after that, both pro-inflammatory factors TNF-α, IL-1ß, IL-6, IL-12 and anti-inflammatory factors Arg1, IL-10, TGF-ß increased, which was defined as chronic inflammatory phase. The M1/M2 macrophage ratios in lung and alveolar lavage fluid were elevated on the 6th and 30th day, moreover, which were higher on the 6th than 30th day, and the PI3K/Akt signaling pathway increased along with the progression of PAH and correlated with pro-inflammatory proteins, which revealed also to some extent the characteristics of inflammation of PAH induced by MCT. CONCLUSION: The course of PAH induced by MCT injection is progressive with persistent inflammation, which is defined as acute inflammatory phase within 6 days after MCT treatment, after that, is defined as chronic inflammatory phase.

14.
J Hazard Mater ; 403: 123803, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264905

RESUMO

How nitrate (NO3-) fertilization influences ciprofloxacin (CIP) uptake by crops remains unsolved. Here, two Brassica parachinensis cultivars differing in CIP accumulation were cultivated to investigate the effects of NO3- supply on CIP uptake and the underlying mechanism. The results showed that NO3- supply effectively reduced CIP toxicity and accumulation in the two cultivars, especially in the low CIP cultivar. Moreover, NO3- supply induced different mechanisms of coping with CIP stress in the two cultivars through influencing subcellular distribution of CIP. The uptake of CIP by root was demonstrated to be a carrier-mediated, energy-consuming, and proton motive force-dependent influx process. Consequently, a mechanism of nitrate supply decreasing CIP uptake was proposed that uptake of CIP and NO3- into root cell would compete for the proton motive force and share a common energy source provided by plasma membrane H+-ATPase. Besides, regulating the concentration balances of cytoplasmic NO3- and proton by inhibiting the activities of NRase and two tonoplast proton pumps (V-ATPase and V-PPase) led to opposite effect on CIP uptake, further supporting this inference. Our results provide a novel insight into CIP uptake by plant roots, and improve the strategy of minimizing CIP accumulation in crops for food safety by fertilization management.

15.
Arch Gerontol Geriatr ; 92: 104262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33032183

RESUMO

BACKGROUND: Increased evidence suggests chronic inflammation is significant in the progression of sarcopenia in older adults. In this study, we aimed to compare the level of systemic inflammation markers (White blood cells, neutrophils, lymphocytes, platelets and their derived ratios) between sarcopenic and non-sarcopenic individuals and investigate the association of these inflammatory markers with sarcopenia. METHODS: This cross-sectional study included 4224 adults (1514 men and 2710 women) from the West China Health and Aging Trend (WCHAT) study. Sarcopenia was defined according to the recommended diagnostic algorithm of the Asia Working Group for Sarcopenia (AWGS). The value of systemic inflammatory markers was based on laboratory data. Multiple logistic regression analysis was used to explore the association between inflammatory markers and sarcopenia after adjusting for covariates. RESULTS: Among 4224 participants (mean age 62.3 ±â€¯8.2 years, 64.2 % women), 814 (19.3 %) were diagnosed as sarcopenia. After adjusting for potential confounders, logistic regression analysis indicated that neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) were significantly associated with sarcopenia. Participants in the highest NLR, PLR and SII value group had higher odds for sarcopenia than those in the lowest value group (OR [95 %CI]: 1.233 [1.002,1.517], 1.455 [1.177,1.799] and 1.268 [1.029,1.561], respectively). CONCLUSIONS: Higher NLR, PLR, and SII level are associated with an increased prevalence of sarcopenia in middle-aged and older adults. Since these systemic inflammatory markers are inexpensive and can be obtained easily from routine blood tests, regular follow-up of NLR, PLR and SII may be an effective strategy in sarcopenia screening and management.

16.
J Sci Food Agric ; 101(2): 693-702, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32700446

RESUMO

BACKGROUND: This study developed a feasible catalytic method for d-allulose syrup production using a fusion enzyme, either in free or immobilized form, through hydrolysis of inulin extracted from Jerusalem artichoke tubers. RESULTS: d-Allulose 3-epimerase (DAE) was actively expressed in secretory form by fusing with the extracellular exo-inulinase CSCA in Escherichia coli BL21 (DE3). The best linker ligating the two enzymes was a flexible peptide containing 12 residues (GSAGSAAGSGEF). At 55 °C and pH 8.0, and as with the addition of 1 mmol L-1 Mn2+ , the CSCA-linkerE-DAE fusion enzyme obtained through high cell-density cultivation displayed a maximal exo-inulinase activity of 21.8 U mg-1 and resulted in a yield of 6.3 g L-1 d-allulose and 39.2 g L-1 d-fructose using 60 g L-1 inulin as the raw material. Catechol-modified alginate with titanium ions (Alg(Ti)PDA) was found to be a promising immobilization material for the fusion enzyme. After conversion for 8 days, the Alg(Ti)PDA-immobilized CSCA-linkerE-DAE (8 U g-1 ) completed 24 reaction cycles and retained over 80% of its original activity. Each reaction obtained an average of 19.8 g L-1 d-allulose and 32.7 g L-1 D-fructose from 60 g L-1 inulin. CONCLUSION: This study shed light on a feasible and cost-effective approach for the production of syrup containing d-allulose and D-fructose with inulin as the raw material via the use of a CSCA and DAE fusion enzyme. This syrup is of added value as a functional sweetener. © 2020 Society of Chemical Industry.

17.
Sci Total Environ ; 752: 141827, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889271

RESUMO

Northwest China is abundant in iron ore reserves and has become one of the important iron ore mining bases in China. However, the contamination and microbial community structure of iron tailing ponds in Northwest China have not been extensively investigated. In the present study, we characterized the main physicochemical properties, the multiple heavy metal contamination, and the bacterial community structure of the soils surrounding an iron tailing pond in Linze County, Zhangye city, Gansu Province. The tailing-associated soils were barren, exhibiting alkaline pH and low organic matter (OM), total nitrogen (TN) and total potassium (TK) compared with the control areas. There was considerable multiple heavy metal pollution in the iron tailing pond, mainly including lead (Pb), manganese (Mn), arsenic (As), cadmium (Cd), zinc (Zn), iron (Fe) and copper (Cu). Among the 303 identified core operational taxonomic units (OTUs), Actinobacteria, Proteobacteria and Deinococcus-Thermus were predominant at the phylum level, and Blastococcus, Arthrobacter, Marmoricola, Kocuria, Truepera, and Sphingomonadaceae were prevalent at a finer taxonomic level. The bacterial richness and diversity of the tailing samples were significantly lower than those of the reference samples. RDA, VPA and Spearman correlation analyses showed that the soil pH, CEC, OM, TP, TK, Cd, Pb, Ni, Zn, As and Mn had significant effects on the bacterial community composition and distribution. This work profiles the basic features of the soil physicochemical properties, the multiple heavy metal contamination and the bacterial community structure in an iron tailing pond in Northwest China, thereby providing a foundation for the future ecological remediation of the iron tailing environment in the area.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Ferro , Metais Pesados/análise , Solo , Poluentes do Solo/análise
18.
Plant Physiol Biochem ; 158: 91-102, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302125

RESUMO

Here, we explored the mutual regulation of radical oxygen species (ROS) and autophagy in wheat (Triticum aestivum L.) roots under hypoxia stress. We also analyzed differences between the responses of the stele and the cortex in the two wheat cultivars Huamai 8 (waterlogging-tolerant) and Huamai 9 (waterlogging-sensitive) to hypoxia stress. In situ detection and ultracytochemical localization analysis in wheat roots showed that hypoxia stress caused greater increases in ROS levels and the expression levels of alternative oxidase (AOX) and antioxidant enzymes in the stele than in the cortex. The analysis of exogenous ROS addition and the inhibition of its production revealed the pivotal roles played by ROS in autophagy. Moreover, transmission electron microscopy and qRT-PCR analysis indicated that the stele had a higher level of autophagy than the cortex and that the two wheat cultivars primarily differed in the type and number of autophagosomes. Additional research revealed that autophagy could remove excess ROS, as pre-treatment with the autophagy inhibitor 3-methyladenine increased ROS levels in roots and the addition of the autophagy inducer rapamycin reduced root ROS levels. In conclusion, hypoxia stress induced ROS accumulation in wheat roots where ROS acted as an autophagy signal. Furthermore, higher levels of autophagy and antioxidant enzyme expression in the stele facilitated the elimination of oxidative damage caused by excessive ROS and thereby increased cell survival; in the cortex, a large number of cells died and formed aerenchyma.

19.
Bioresour Technol ; 320(Pt A): 124346, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33161315

RESUMO

This study focused on the non-grain biorefining of Jerusalem artichoke (JA) for exopolysaccharide (EPS) efficient production by using Bacillus velezensis LT-2. Results showed that LT-2 could directly utilize JA tuber power (JATP) for EPS production, and its EPS yield reached 11.47 ± 0.33 g/L in the simultaneous saccharification and fermentation (SSF) mode. Furthermore, the SSF mode shortened the fermentation period by 26.67% and reduced the fermentation cost by 79.41% due to the improved substrate utilization and the avoidance of inhibition effects of a high fructose concentration. Transcriptome sequencing results showed that inulin could accelerate nucleotide-sugars biosynthesis, induce EPS synthetic gene cluster transcription, and strengthen the electron transport respiratory chain and the transporter systems, thereby ensuring EPS efficient synthesis. This work exhibited a productive non-grain and environmentally friendly fermentation strategy for EPS biosynthesis, which promoted the JA industry development and created new prospects for high-value industrial products biosynthesis by using JATP.


Assuntos
Bacillus , Helianthus , Fermentação , Tubérculos
20.
Brain Res ; 1751: 147176, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33121922

RESUMO

Intelligence is a form of advanced cognition that includes reasoning, problem solving, pattern recognition, and establishing relationships among items. The amygdala plays an important role in cognitive processing, but the relationship between amygdalar function and intelligence has rarely been explored directly. Here, we investigated the relationship between resting-state functional connectivity (RSFC) of the amygdala and intelligence test performance in a large sample of healthy adults (N = 197). We found that two pairs of RSFCs were significantly increased in the high IQ group compared with that of the general IQ group. One of these RSFCs consisted of the right amygdala and the right superior parietal lobule, whereas the other RSFC consisted of the right amygdala and the left middle cingulum. In addition, we found that the brain regions in which the strength of RSFC significantly correlated with full IQ (FIQ) were mainly distributed in the parietal and limbic lobes. What's more, a further mediation analysis indicated that the functional connectivity of the right amygdala and the right superior parietal lobule significantly mediated the correlation between comprehension and object assembly, whereas the functional connectivity of the right amygdala and the left middle cingulum mediated the association between similarities and digit symbol. These findings suggest that amygdalar RSFC may reflect individual differences in intelligence and mediate specific relationships among different intellectual abilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA