RESUMO
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
RESUMO
OBJECTIVE: The aim of the work described here was to evaluate the diagnostic performance of a new integrated strategy using breast ultrasound (US) combined with magnetic resonance imaging (MRI) to differentiate benign and malignant breast non-mass-like lesions (NMLs) detected on US. METHODS: From October 2017 to January 2021, 183 NMLs detected on US that had undergone MRI examinations were included in this respective study. Pathological results were used as the reference standard. The integrated diagnostic strategy of breast US combined with MRI based on a combination of MRI Breast Imaging Reporting and Data System (BI-RADS) with discriminant sonographic indicators highly associated with malignancy was established and validated in a cohort of 61 women. The diagnostic performances of US, MRI and the combined method were calculated and compared. RESULTS: In the training set, the area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, MRI and the integrated diagnostic strategy using US combined with MRI for NMLs were 0.730, 93.7% and 52.3%; 0.849, 94.7% and 75.0%; and 0.901, 92.6% and 87.5%, respectively. Compared with US or MRI alone, the integrated diagnostic strategy significantly increased the AUC (p < 0.001, p = 0.007) and specificity (p < 0.001, p = 0.034) while maintaining high sensitivity (p = 0.774, p = 0.551). In the validation set, the integrated strategy of US combined with MRI (AUC = 0.899) also had good performance compared with US (AUC = 0.728) or MRI (AUC = 0.838). CONCLUSION: The integrated diagnostic strategy of US combined with MRI exhibited good performance for breast NMLs compared with either modality used alone, which can improve the diagnostic specificity while maintaining high sensitivity.
Assuntos
Neoplasias da Mama , Ultrassonografia Mamária , Feminino , Humanos , Ultrassonografia Mamária/métodos , Ultrassonografia , Mama/diagnóstico por imagem , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Estudos RetrospectivosRESUMO
To investigate the strengthening effects and mechanisms of bioaugmentation on the microbial remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization, two exogenous microbial consortia with reducing and phosphate-solubilizing functions were screened and added to uranium-contaminated groundwater as the experimental groups (group B, reducing consortium added; group C, phosphate-solubilizing consortium added). ß-glycerophosphate (GP) was selected to stimulate the microbial community as the sole electron donor and phosphorus source. The results showed that bioaugmentation accelerated the consumption of GP and the proliferation of key functional microbes in groups B and C. In group B, Dysgonomonas, Clostridium_sensu_stricto_11 and Clostridium_sensu_stricto_13 were the main reducing bacteria, and Paenibacillus was the main phosphate-solubilizing bacteria. In group C, the microorganisms that solubilized phosphate were mainly unclassified_f_Enterobacteriaceae. Additionally, bioaugmentation promoted the formation of unattached precipitates and alleviated the inhibitory effect of cell surface precipitation on microbial metabolism. As a result, the formation rate of U-phosphate precipitates and the removal rates of aqueous U(VI) in both groups B and C were elevated significantly after bioaugmentation. The U(VI) removal rate was poor in the control group (group A, with only an indigenous consortium). Propionispora, Sporomusa and Clostridium_sensu_stricto_11 may have played an important role in the removal of uranium in group A. Furthermore, the addition of a reducing consortium promoted the reduction of U(VI) to U(IV), and immobilized uranium existed in the form of U(IV)-phosphate and U(VI)-phosphate precipitates in group B. In contrast, U was present mainly as U(VI)-phosphate precipitates in groups A and C. Overall, bioaugmentation with an exogenous consortium resulted in the rapid removal of uranium from groundwater and the formation of U-phosphate minerals and served as an effective strategy for improving the treatment of uranium-contaminated groundwater in situ.
RESUMO
A new kind of nonmetallic atom-doped boron cluster is described herein theoretically. When a phosphorus atom is added to the B12 motif and loses an electron, a novel B12 cage is obtained, composed of two B3 rings at both ends and one B6 ring in the middle, forming a triangular bifrustum. Interestingly, this B12 cage is formed by three B7 units joined together from three directions at an angle of 120°. When two P atoms are added to the B12 motif, this novel B12 cage is also obtained, and two P atoms are attached to the B3 rings at both ends of the triangular bifrustum, forming a triangular bipyramid (Johnson solid). Amazingly, the global minimums of neutral, monocationic, and monoanionic P2B12+/0/- have the same cage structure with a D3h symmetry; this is the smallest boron cage with the same structure. The P atom has five valence electrons, according to adaptive natural density partitioning bonding analyses of cage PB12+ and P2B12, in addition to one lone pair, the other three electrons of the P atom combine with an electron of each B atom on the B3 ring to form three 2c-2e σ bonds and form three electron sharing bonds with B atoms through covalent interactions, stabilizing the B12 cage. The calculated photoelectron spectra can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of PnB12- (n = 1-2).
RESUMO
A visible-light-induced annulation/thiolation of 2-isocyanobiaryls with dialkyl(aryl)disulfides has been established, delivering a sustainable and atom-economic route to 6-organoylthiophenanthridines with wild functional group tolerance and good to excellent yields under oxidant-, base-, and transition-metal-free conditions.
RESUMO
Objective To compare the functional status of diabetic patients with and without nephropathy and identify the items that diabetic patients with nephropathy are more likely to develop dysfunction than diabetic patients without nephropathy based on the international classification of functioning,disability and health rehabilitation set(ICF-RS).Methods A cross-sectional study was conducted.A total of 320 diabetic patients hospitalized in Guangdong Provincial Hospital of Chinese Medicine from August 2021 to February 2022 were selected and assigned into a group with nephropathy and a group without nephropathy.The general characteristics,clinical examination,and laboratory findings were compared by the t test,rank sum test,and Chi-squared test.The functional status of the patients was compared between the two groups by the t test based on the ICF-RS.Logistic regression was employed to control interferential factors between the two groups and identify the association between nephropathy and ICF-RS problematic items among diabetic patients.Results The diabetic patients with nephropathy had more problematic items in ICF-RS(P<0.001),the body function dimension(P=0.003),the activity dimension(P<0.001),and the participation dimension(P<0.001)than those without nephropathy.Moreover,the diabetic patients with nephropathy experienced severer problems in 5 body function items(energy and drive functions,sleep functions,sexual functions,exercise tolerance functions,and muscle power functions),10 activity items(transferring oneself,walking,moving around using equipment,moving around,washing oneself,caring for body parts,toileting,dressing,doing housework,and looking after one's health),and 4 participation items(using transportation,assisting others,basic interpersonal interactions,and recreation and leisure)(all P<0.05).The Logistic regression results showed that compared with the diabetic patients without nephropathy,the diabetic patients with nephropathy were more likely to develop problems in energy and drive functions(aOR=4.35,95%CI=1.28-14.79,P=0.019),emotional functions(aOR=1.88,95%CI=1.06-3.34,P=0.031),sexual functions(aOR=3.39,95%CI=1.82-6.34,P<0.001),moving around(aOR=3.11,95%CI=1.76-5.52,P<0.001),doing housework(aOR=17.48,95%CI=3.57-85.60,P<0.001),looking after one's health(aOR=1.97,95%CI=1.13-3.43,P=0.017),using transportation(aOR=2.59,95%CI=1.38-4.88,P=0.003),and recreation and leisure(aOR=2.52,95%CI=1.46-4.35,P<0.001).Conclusion Compared with the diabetic patients without nephropathy,the patients with nephropathy suffer more ICF-RS problematic items and are more likely to develop dysfunction in certain items in all the three dimensions.
Assuntos
Diabetes Mellitus , Pessoas com Deficiência , Nefropatias , Humanos , Avaliação da Deficiência , Estudos Transversais , Estado Funcional , Pessoas com Deficiência/reabilitação , Atividades CotidianasRESUMO
Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm that can occur in various organs, including the lung. Surgical resection is usually the preferred treatment for localized IMT.A 6-year-old female was admitted to our hospital with complaints of "coughing and vomiting for 6 days". A chest CT scan revealed occlusion of the left main bronchus, segmental atelectasis of the left lower lung, and cystic low-density shadows along the bronchial pathway. Subsequent fiberoptic bronchoscopy confirmed the diagnosis of IMT through pathological biopsy. After excluding surgical contraindications, the patient underwent uniportal video-assisted thoracoscopic sleeve lobectomy for treatment. The patient had an uneventful postoperative course and was discharged four days after surgery. After one month, the patient received a follow-up examination and reported no significant discomfort. A chest CT scan revealed no postoperative complications.Our experience suggests that uniportal video-assisted thoracoscopic surgery may be a safe and effective approach for the treatment of pediatric patients with IMT requiring complex surgical procedures such as sleeve lobectomy and tracheoplasty.
RESUMO
Developing low-voltage carboxylate anode materials is critical for achieving low-cost, high-performance, and sustainable Na-ion batteries (NIBs). However, the structure design rationale and structure-performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2'-bipyridine-5,5'-dicarboxylate (2255-Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g-1 ), longest cycle life (2000 cycles), and best rate capability (up to 5 A g-1 ). The cyclic stability and redox mechanism of 2255-Na in NIBs are exploited by various characterization techniques. Moreover, high-temperature (up to 100 °C) and all-organic batteries based on a 2255-Na anode, a polyaniline (PANI) cathode, and an ether-based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high-performance and sustainable NIBs.
RESUMO
BACKGROUND: Introduced in clinical practice in 1989, perforator flaps are vital for tissue defect repair, but they are challenged by distal necrosis. Tetrahydropalmatine (THP) from celandine is renowned for its anti-inflammatory and analgesic effects. This study investigates THP's use in perforator flaps. METHODS: Thirty rats were divided into a control group and four THP concentration groups, while seventy-eight rats were categorized as control, THP, THP combined with rapamycin (RAP), and RAP alone. We created 11 cm by 2.5 cm multi-regional perforator flaps on rat backs, assessing survival blood flow and extracting skin flap tissue for autophagy, oxidative stress, apoptosis, and angiogenesis markers. RESULTS: The THP group exhibited significantly reduced distal necrosis, increased blood flow density, and survival area on the seventh day compared to controls. Immunohistochemistry and Western blot results demonstrated improved anti-oxidative stress and angiogenesis markers, along with decreased autophagy and apoptosis indicators. Combining THP with RAP diminished flap survival compared to THP alone. This was supported by protein expression changes in the PI3K-AKT-mTOR pathway. CONCLUSION: THP enhances flap survival by modulating autophagy, reducing tissue edema, promoting angiogenesis, and mitigating apoptosis and oxidative stress. THP offers a potential strategy for enhancing multi-regional perforator flap survival through the PI3K/AKT/mTOR pathway. These findings highlight THP's promise in combatting perforator flap necrosis, uncovering a novel mechanism for its impact on flap survival.
RESUMO
Background: Umbilical cord blood mononuclear cells (UCMNCs) show broad immune-modulation effects, which may be helpful for treating asthma. Effects of UCMNCs on asthma were investigated with mouse model in present study. Methods: Asthma was induced in BALB/c mice by ovalbumin (OVA) immunization and challenge. Asthmatic mice were then treated on days 7 and 20 with intravenous injections of UCMNCs in doses of 4×105, 2×106, and 107 cells per mouse for the low-dose UCMNC (UCMNCL), medium-dose UCMNC (UCMNCM), and high-dose UCMNC (UCMNCH) groups, respectively. Fetal mouse blood mononuclear cells (FMMNCs) were administered to FMMNC group at a dose of 2×106 cells per mouse as approximate allograft control. Airway hyperresponsiveness (AHR), airway inflammation indexes, and CD4/CD8 T cell subsets were measured at day 25. Results: Compared with the model group, AHR in the UCMNCL group, inflammation score of lung tissue in the UCMNCM group, interleukin (IL)-5 in bronchoalveolar lavage fluid (BALF) in UCMNCL group, IL-5 and IL-13 in BALF in UCMNCM group, and IL-17 in serum in UCMNCH group were significantly inhibited. Compared with the model group, CD4+CD8+ T cells were reduced in the UCMNCL group, while decrease of CD4-CD8- T cells and increase of CD4+CD8- T cells were further strengthened in UCMNCM group. FMMNC treatment significantly reduced the IL-13 and IL-17 in serum, decreased CD4-CD8- and CD4+CD8- T cells, and increased the CD4+CD8+ and CD4-CD8+ T cells in BALF. Conclusions: UCMNCs can modulate AHR, T-helper (Th)2 inflammation, and airway injury in experimental asthma at appropriate dose.
RESUMO
Sclerotinia sclerotiorum is a necrotrophic plant pathogenic fungus with broad distribution and host range. Bioactive compounds derived from plant extracts have been proven to be effective in controlling S. sclerotiorum. In this study, the mycelial growth of S. sclerotiorum was effectively inhibited by maleic acid, malonic acid, and their combination at a concentration of 2 mg/mL, with respective inhibition rates of 32.5%, 9.98%, and 67.6%. The treatment of detached leaves with the two acids resulted in a decrease in lesion diameters. Interestingly, maleic acid and malonic acid decreased the number of sclerotia while simultaneously increasing their weight. The two acids also disrupted the cell structure of sclerotia, leading to sheet-like electron-thin regions. On a molecular level, maleic acid reduced oxalic acid secretion, upregulated the expression of Ss-Odc2 and downregulated CWDE10, Ss-Bi1 and Ss-Ggt1. Differently, malonic acid downregulated CWDE2 and Ss-Odc1. These findings verified that maleic acid and malonic acid could effectively inhibit S. sclerotiorum, providing promising evidence for the development of an environmentally friendly biocontrol agent.
RESUMO
Sorafenib resistance greatly restricts its clinical application in patients with hepatocellular carcinoma (HCC). Numerous studies have reported that ID1 exerts a crucial effect in cancer initiation and development. Our previous research revealed an inhibitory role of ID1 in sorafenib resistance. However, the upstream regulatory mechanism of ID1 expression is unclear. Here, we discovered that ID1 expression is negatively correlated with promoter methylation, which is regulated by DNMT3B. Knockdown of DNMT3B significantly inhibited ID1 methylation status and resulted in an increase of ID1 expression. The demethylating agent 5-aza-2'-deoxycytidine (5-aza) remarkably upregulated ID1 expression. The combination of 5-aza with sorafenib showed a synergistic effect on the inhibition of cell viability.
RESUMO
PURPOSE: Highly modulated radiotherapy plans aim to achieve target conformality and spare organs at risk, but the high complexity of the plan may increase the uncertainty of treatment. Thus, patient-specific quality assurance (PSQA) plays a crucial role in ensuring treatment accuracy and providing clinical guidance. This study aims to propose a prediction model based on complexity metrics and patient planning dose for PSQA results. MATERIALS AND METHODS: Planning dose, measurement-based reconstructed dose and plan complexity metrics of the 687 radiotherapy plans of patients treated in our institution were collected for model establishing. Global gamma passing rate (GPR, 3%/2mm,10% threshold) of 90% was used as QA criterion. Neural architecture models based on Swin-transformer were adapted to process 3D dose and incorporate 1D metrics to predict QA results. The dataset was divided into training (447), validation (90), and testing (150) sets. Evaluation of predictions was performed using mean absolute error (MAE) for GPR, planning target volume (PTV) HI and PTV CI, mean absolute percentage error (MAPE) for PTV D95, PTV D2 and PTV Dmean, and the area under the receiver operating characteristic (ROC) curve (AUC) for classification. Furthermore, we also compare the prediction results with other models based on either only 1D or 3D inputs. RESULTS: In this dataset, 72.8% (500/687) plans passed the pretreatment QA under the criterion. On the testing set, our model achieves the highest performance, with the 1D model slightly surpassing the 3D model. The performance results are as follows (combine, 1D, and 3D transformer): The AUCs are 0.92, 0.88 and 0.86 for QA classification. The MAEs of prediction are 0.039, 0.046, and 0.040 for 3D GPR, 0.018, 0.021, and 0.019 for PTV HI, and 0.075, 0.078, and 0.084 for PTV CI. Specifically, for cases with 3D GPRs greater than 90%, the MAE could achieve 0.020 (combine). The MAPE of prediction is 1.23%, 1.52%, and 1.66% for PTV D95, 2.36%, 2.67%, and 2.45% for PTV D2, and 1.46%, 1.70%, and 1.71% for PTV Dmean. CONCLUSION: The model based on 1D complexity metrics and 3D planning dose could predict pretreatment PSQA results with high accuracy and the complexity metrics play a leading role in the model. Furthermore, dose-volume metric deviations of PTV could be predicted and more clinically valuable information could be provided.
Assuntos
Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Raios gamaRESUMO
Four pairs of neolignan enantiomers (±)-1- (±)-4 with a distinctive isochroman moiety, including seven undescribed compounds, were isolated and identified from the fruits of Crataegus pinnatifida. Structural characterization of these compounds was established through comprehensive spectroscopic analyses, as well as quantum chemical calculations of ECD and NMR data. The preliminary bioassay displayed that compounds (+)-2 and (±)-3 exerted protective activities against H2O2-induced human neuroblastoma SH-SY5Y cells compared with the positive control. These bioactive compounds could be potential candidates for further pharmaceutical applications.
RESUMO
Background: Ovarian cancer (OC) is the second most common gynecological malignancy and has a high mortality rate. The current chemotherapeutic drugs have the disadvantages of drug resistance and side effects. Myricetin, a kind of natural compound, has the advantages of easy extraction, low price, and fewer side effects. Multiple studies have demonstrated the anti-cancer properties of myricetin. However, its impact on OC is still unknown and needs further investigation. Therefore, this study aimed to elucidate the mechanism by which myricetin suppresses transforming growth factor-ß (TGF-ß) -induced epithelial-to-mesenchymal transition (EMT) in OC through in vivo and in vitro experiments. Methods: In vitro experiments were conducted to evaluate the effects of myricetin on cell proliferation and apoptosis using CCK8 assay, plate clonal formation assay, and flow cytometry. Western blot was employed to evaluate the expression levels of caspase-3, PARP, and the MAPK/ERK and PI3K/AKT signaling pathways. Wound healing, transwell, western blot and immunofluorescence assay were used to detect TGF-ß-induced cell migration, invasion, EMT and the levels of Smad3, MAPK/ERK, PI3K/AKT signaling pathways. Additionally, a mouse xenograft model was established to verify the effects of myricetin on OC in vivo. Results: Myricetin inhibited OC proliferation through MAPK/ERK and PI3K/AKT signaling pathways. Flow cytometry and western blot analyses demonstrated that myricetin promoted apoptosis by increasing the expression of cleaved-PARP and cleaved-caspase-3 and the ratio of Bax/Bcl-2 in OC. Furthermore, myricetin suppressed the TGF-ß-induced migration and invasion by transwell and wound healing assays. Mechanistically, western blot indicated that myricetin reversed TGF-ß-induced metastasis through Smad3, MAPK/ERK and PI3K/AKT signaling pathway. In vivo, myricetin significantly repressed OC progression and liver and lung metastasis. Conclusion: Myricetin exhibited inhibitory effects on OC progression and metastasis both in vivo and in vitro. And it also reversed TGF-ß-induced EMT through the classical and non-classical Smad signaling pathways.
RESUMO
Background: Ultrasound-guided percutaneous device closure of perimembranous ventricular septal defects (PmVSD) is a minimally invasive recent treatment approach. Perventricular PmVSD device closure is an emerging radiation-free intervention, yet it comes with certain limitations. No studies compared both of these treatment approaches. Methods: We performed a retrospective institutional data comparison of percutaneous (PCP Group, n = 138) and perventricular (PVP Group, n = 67) ultrasound-guided device closure procedures in 205 patients with PmVSD between March 2017 and December 2022. Results: Patients of the PCP and PVP groups had a median age of 4.9 years (IQR, 3.1-14.0) and 5.3 years (IQR, 3.4-13.1) respectively. The median PmVSD diameter in the PCP Group was 4.0â mm (IQR, 3.3-5.3) and 5.2â mm (IQR, 4.0-7.0) in the PVP Group (p = 0.001). There was no significant difference in success rates between the PCP and PVP Groups (intention-to-treat population, 88.4% vs. 92.5%, p = 0.36; as-treated population, 88.4% vs. 89.3%, p = 0.84). 5/8 failed percutaneous cases that were shifted to the perventricular approach were successful. Compared to the PVP Group, patients of the PCP group experienced a significant decrease in ventilation time, drainage volume, and postoperative hospital stay (p < 0.001). The median follow-up period was 24 months (IQR, 6-42) for the PCP group and 61 months (IQR, 53-65) for the PVP group. The overall severe adverse event rate was 0% in the PCP group and 3.0% in the PVP group. Conclusions: Perventricular and percutaneous ultrasound-guided device closure of PmVSD are both effective and safe treatment options. The percutaneous approach offers less trauma and faster recovery and may be the preferred approach in selected patients.
RESUMO
In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R2 = 0.77-0.93), and the accumulation of NPAHs in adipose tissue was higher than that in kidney or liver tissue. Depending on the mouse adipose model, the NPAHs-RBA ranged from 1.88 % to 73.92 %, and a strongly significant negative relationship (R2 = 0.94, p < 0.05) was found between the NPAHs-RBA and Log Kow. The simplified experiment of the TITF showed that the composition of the GIF medium had a significant effect on the bioaccessibilities of NPAHs. The NPAH bioaccessibilities measured by the Tenax improved simplified FOREhST method (TISF) (9.0-36.5 %) were higher than that of the traditional FOREhST method (6.8-22.8 %) but significantly lower than that of the TITF method (16.8-55.2 %). With an increase in the bile concentration in the GIF (from 6 to 10 g/L), the bioaccessibilities of NPAHs increased from 9.0 to 36.5 % to 12.9-42.4 %. The accuracies of the four in vitro methods for predicting the bioavailabilities of NPAHs was in the following order: Tenax improved simplified FOREhST method with increased bile concentration (TITF-IB) (R2 = 0.54-0.87) ≈ TITF (R2 = 0.55-0.85) > TISF (R2 = 0.41-0.77) > FOREhST (R2 = 0.02-0.68). These results indicated that the simple in vitro method could also effectively predict the bioavailabilities of NPAHs.
RESUMO
Background and aim: Xianglian Wan (XLW) as a classic prescription of traditional Chinese medicine protects digestive function; however, few studies have investigated its anti-colorectal cancer effects. This study verified that the effective monomer berberine of XLW plays an antitumo r role by regulating the acetyl-CoA carboxylase (ACC)/fatty acid synthase (FASN) lipid metabolism-related signaling pathway. Experimental procedure: The connection between XLW and FASN was identified through literature mining, bioinformatics and structural biology. In vivo experiments verified the rationality of the antitumor effect of berberine by regulating the ACC/FASN pathway, and in vitro experiments verified the regulatory relationship between berberine and FASN. Results and conclusion: The most frequent Chinese medicine component in XLW was Coptis chinensis. Berberine, the active ingredient of XLW, has a FASN binding site. FASN expression is higher in tumor tissues than in normal tissues. FASN is related to colorectal adenocarcinoma occurrence and patient survival time. Experiments showed that XLW, berberine and orlistat (FASN inhibitor) can cooperate with palmitic acid (PA) to inhibit tumors in mice. Berberine can downregulate FASN and ACC expression in tumor tissues and inhibit the increase in acetyl-CoA, the intermediate product of exogenous PA intake. The mechanism by which berberine inhibits colon cancer cell proliferation by lowering lipids is related to its downregulation of FASN protein expression. The ACC/FASN signaling pathway is a critical pathway through which berberine, the effective monomer of XLW, plays an antitumor role in colon cancer.
RESUMO
BACKGROUND: Airway epithelium defects are a hallmark of recurrent benign tracheal stenosis (RBTS). Reconstructing an intact airway epithelium is of great importance in airway homeostasis and epithelial wound healing and has great potential for treating tracheal stenosis. METHODS: An experimental study was conducted in canines to explore the therapeutic effect of autologous basal cell transplantation in restoring airway homeostasis. First, airway mucosae from human patients with recurrent tracheal stenosis were analyzed by single-cell RNA sequencing. Canines were then randomly divided into tracheal stenosis, Stent, Stentâ +â Cells, and Stentâ +â Cellsâ +â Biogel groups. Autologous airway basal cells of canines in the Stentâ +â Cells and Stentâ +â Cellsâ +â Biogel groups were transplanted onto the stenotic airway after modeling. A biogel was coated on the airway prior to basal cell transplantation in the Stentâ +â Cellsâ +â Biogel group. After bronchoscopic treatments, canines were followed up for 16 weeks. RESULTS: Single-cell RNA sequencing demonstrated packed airway basal cells and an absence of normal airway epithelial cells in patients with RBTS. Autologous airway basal cell transplantation, together with biogel coating, was successfully performed in the canine model. Follow-up observation indicated that survival time in the Stentâ +â Cellsâ +â Biogel group was significantly prolonged, with a higher (100%) survival rate compared with the other groups. In terms of pathological and bronchoscopic findings, canines that received autologous basal cell transplantation showed a reduction in granulation hyperplasia as well as airway re-epithelialization with functionally mature epithelial cells. CONCLUSIONS: Autologous airway basal cell transplantation might serve as a novel regenerative therapy for airway re-epithelialization and inhibit recurrent granulation hyperplasia in benign tracheal stenosis.
RESUMO
BACKGROUND: A pseudoaneurysm of the superficial temporal artery is an uncommon clinical entity that has largely been linked with direct traumatic causes. Neurofibromatosis type 1 (NF1)-related vasculopathy is a rare cause of idiopathic arterial bleeding in the craniofacial region. OBSERVATIONS: A 46-year-old male with clinical features of NF1 presented to the hospital with an enlarging and tender right temporal mass without a history of trauma. Computed tomography angiography suggested the development of a pseudoaneurysm, and surgery was performed to resect the mass. Histopathological examinations showed focal interruption of the epithelium layer and elastic lamina, well-demarcated thickening of the smooth muscle layers of the arterial wall, supporting the diagnosis of pseudoaneurysm. LESSONS: NF1-associated vasculopathy is likely the predisposing factor for the development of a superficial temporal artery pseudoaneurysm.