Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 117: 104818, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619704

RESUMO

BACKGROUND: MiRNAs have been demonstrated to be important regulators during osteogenic differentiation in multiple types of stem cells. In the study, the interaction between miR-375 and TOB2 was analyzed to identify their functions on the proliferation and osteogenic differentiation of hPDLSCs. METHODS: hPDLSCs were isolated from human first premolars, and hPDLSCs stably expressing and silenced miR-375 were constructed using miR-375-ago and miR-375-antago, respectively. miR-375 and RUNX2 mRNA expression levels in hPDLSCs during osteogenic differentiation were investigated using qRT-PCR. The impact of miR-375 expression on hPDLSCs proliferation and osteogenic differentiation was determined using MTT assay, ALP assay, and alizarin red S staining. The protein expression levels of COL1A1, RUNX2 and OCN were detected using Western blot. The targeting of TOB2 by miR-375 was validated using dual luciferase reporter assay. RESULTS: The expression levels of miR-375 were increased in hPDLSCs during osteogenic differentiation in a time-dependant manner, and was positively correlated with RUNX2 mRNA expression. miR-375 facilitated the proliferation and osteogenic differentiation of hPDLSCs, and promoted the protein expression levels of COL1A1, RUNX2 and OCN. Moreover, TOB2 protein expression was reduced in hPDLSCs during osteogenic differentiation in a time-dependant manner, and miR-375 directly targeted TOB2 expression. In addition, targeting TOB2 expression in hPDLSCs could rescue the suppression of cell proliferation and osteogenic differentiation by miR-375-antago. CONCLUSION: In summary, miR-375 promotes proliferation and osteogenic differentiation of hPDLSCs by targeting TOB2, which reveals a new regulatory mechanism underlying osteogenic differentiation of hPDLSCs by miR-375/TOB2 axis.

2.
Nano Lett ; 20(3): 2062-2071, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096643

RESUMO

Tumor hypoxia is the Achilles heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based self-delivery nanomedicine (designated as ACSN) were prepared via π-π stacking and hydrophobic interaction for O2-economized PDT against hypoxic tumors. Specifically, carrier-free ACSN exhibited an extremely high drug loading rate and avoided the excipient-induced systemic toxicity. Moreover, ACSN not only dramatically improved the solubility and stability of ATO and Ce6 but also enhanced the cellular internalization and intratumoral permeability. Abundant investigations confirmed that ACSN effectively suppressed the oxygen consumption to reverse the tumor hypoxia by inhibiting mitochondrial respiration. Benefiting from the synergistic mechanism, an enhanced PDT effect of ACSN was observed on the inhibition of tumor growth. This self-delivery system for oxygen-economized PDT might be a potential appealing clinical strategy for tumor eradication.

3.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31904091

RESUMO

BACKGROUND: The USH2A gene encodes usherin, a basement membrane protein that is involved in the development and homeostasis of the inner ear and retina. Mutations in USH2A are linked to Usher syndrome type II (USH II) and non-syndromic retinitis pigmentosa (RP). Molecular diagnosis can provide insight into the pathogenesis of these diseases, facilitate clinical diagnosis, and identify individuals who can most benefit from gene or cell replacement therapy. Here, we report 21 pathogenic mutations in the USH2A gene identified in 11 Chinese families by using the targeted next-generation sequencing (NGS) technology. METHODS: In all, 11 unrelated Chinese families were enrolled, and NGS was performed to identify mutations in the USH2A gene. Variant analysis, Sanger validation, and segregation tests were utilized to validate the disease-causing mutations in these families. RESULTS: We identified 21 pathogenic mutations, of which 13, including 5 associated with non-syndromic RP and 8 with USH II, have not been previously reported. The novel variants segregated with disease phenotype in the affected families and were absent from the control subjects. In general, visual impairment and retinopathy were consistent between the USH II and non-syndromic RP patients with USH2A mutations. CONCLUSIONS: These findings provide a basis for investigating genotype-phenotype relationships in Chinese USH II and RP patients and for clarifying the pathophysiology and molecular mechanisms of the diseases associated with USH2A mutations.

4.
Mol Vis ; 25: 654-662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741654

RESUMO

Purpose: To identify any novel mutations in CYP4V2 in 85 Chinese families with Bietti corneoretinal crystalline dystrophy (BCD) by using next-generation sequencing, and to summarize the mutation spectrum in this population, along with any genotype-phenotype correlations. Methods: A total of 90 patients with BCD from 85 unrelated Chinese families were recruited. All probands were analyzed by using gene chip-based next-generation sequencing, to capture and sequence all the exons of 57 known hereditary retinal degeneration-associated genes. The candidate variants were validated with PCR and Sanger sequencing. Results: Twenty-eight mutations were detected in all patients, including thirteen novel mutations (five missense, six deletions, one splicing and one frame-shift mutations) and 15 previously reported mutations. Mutations in 64 patients were inherited from their parents, while three patients had de novo mutations. c.802-8_810del17insGC was the most common mutation, accounting for 78% of the mutations. Although 16 patients were homozygous at this site, the clinical features of all 16 patients were highly heterogeneous. Conclusions: These results expand the spectrum of mutations in CYP4V2, and suggest that mutations in CYP4V2 may be common in the Chinese population. The phenotype of patients with the homozygous mutation (hom.c.802-8_810del17insGC) is highly heterogeneous.


Assuntos
Distrofias Hereditárias da Córnea/genética , Família 4 do Citocromo P450/genética , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Doenças Retinianas/genética , Adulto , Distrofias Hereditárias da Córnea/fisiopatologia , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Retinianas/fisiopatologia
5.
Cardiol Res Pract ; 2019: 6857232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662902

RESUMO

Objectives: Chronic total occlusion (CTO) is prevalent in patients with prior coronary artery bypass grafting (CABG). However, data available concerning the prevalence of new-onset CTO of native vessels in patients with prior CABG is limited. Therefore, the objective of the study is to determine predictors for new native-vessel occlusion in patients with prior coronary bypass surgery. Methods: 354 patients with prior CABG receiving follow-up angiography are selected and analyzed in the present study, with clinical and angiographic variables being analyzed by logistic regression to determine the predictors of new native-vessel occlusion. Results: The overall new occlusion rate was 35.59%, with multiple CTOs (42.06%) being the most prevalent (LAD 24.60% and RCA 18.25%, respectively). Additionally, current smoking (OR: 2.67; 95% CI: 2.60 to 2.74; p=0.01), reduced ejection fraction (OR: 1.76; 95% CI: 1.04 to 2.97; p=0.04), severe stenosis (OR: 3.65; 95% CI: 2.55 to 5.24; p=0.01), and diabetes mellitus (OR: 1.86; 95% CI: 1.34 to 2.97; p=0.04) serve as the independent predictors for new native-vessel occlusion. Conclusion: As to high incidence of postoperative CTO, appropriate revascularization strategies and postoperative management should be taken into careful consideration.

6.
Biomaterials ; 224: 119497, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541935

RESUMO

In recent years, epigenetics has attracted great attentions in the field of biomedicine, which is used to denote the heritable changes in gene expression without any variation in DNA sequence, including DNA methylation, histone modification and so on. Inspired by it, a simple and versatile amino acids modification strategy is proposed in this paper to regulate the subcellular distribution of photosensitizer for plasma membrane targeted photodynamic therapy (PDT). Particularly, the plasma membrane anchoring ability and photo toxicity of the photosensitizer against different cell lines could be effectively manipulated at a single amino acid level. Systematic researches indicate that the number and variety of amino acids have a significant influence on the plasma membrane targeting effect of the photosensitizer. Furthermore, after self-assembling into nanoparticles, the obtained nano photosensitizers (NPs) also exhibit a good biocompatibility and plasma membrane targeting ability, which are conducive to enhancing the PDT therapeutic effect under light irradiation. Both in vitro and in vivo investigations confirm a robust tumor inhibition effect of NPs with a good biocompatibility. This epigenetics-inspired photosensitizer modification strategy would contribute to the development of structure-based drug design for tumor precision therapy.

7.
Biomaterials ; 211: 14-24, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31078049

RESUMO

Targeted delivery of the drug to its therapeutically active site with low immunogenicity and system toxicity is critical for optimal tumor therapy. In this paper, exosomes as naturally-derived nano-sized membrane vesicles are engineered by chimeric peptide for plasma membrane and nucleus targeted photosensitizer delivery and synergistic photodynamic therapy (PDT). Importantly, a dual-stage light strategy is adopted for precise PDT by selectively and sequentially destroying the plasma membrane and nucleus of tumor cells. Briefly, plasma membrane-targeted PDT of chimeric peptide engineered exosomes (ChiP-Exo) could directly disrupt the membrane integrity and cause cell death to some extent. More interestingly, the photochemical internalization (PCI) and lysosomal escape triggered by the first-stage light significantly improve the cytosolic delivery of ChiP-Exo, which could enhance its nuclear delivery due to the presence of nuclear localization signals (NLS) peptide. Upon the second-stage light irradiation, the intranuclear ChiP-Exo would activate reactive oxygen species (ROS) in situ to disrupt nuclei for robust and synergistic PDT. Based on exosomes, this dual-stage light guided subcellular dual-targeted PDT strategy exhibits a greatly enhanced therapeutic effect on the inhibition of tumor growth with minimized system toxicity, which also provides a new insight for the development of individualized biomedicine for precise tumor therapy.

8.
Br J Nutr ; 121(12): 1431-1440, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30975227

RESUMO

Residents of Hong Kong have undergone a dietary transition from a traditional Chinese diet that is high in seafood to a more Western diet. This may have affected the nutritional composition of breast milk of Hong Kong mothers. The present study aims to investigate the relationship between the dietary pattern and the fatty acid profile of the breast milk of lactating women in Hong Kong. Seventy-three volunteering healthy Hong Kong lactating mothers participated in the study. Their dietary intakes were assessed by using a 3-d dietary record and FFQ. The mean n-3 fatty acid levels were approximately 0·4 % (EPA) and 0·9 % (DHA) of total fatty acids in the breast milk of lactating mothers who had exclusively breastfed their infants aged 2-6 months. Maternal dietary intakes of n-3 fatty acids were positively associated with their levels in the breast milk. The levels of maternal intakes of freshwater and saltwater fish, especially the consumption of salmon, croaker and mandarin, were significantly correlated with the content of DHA in breast milk. The present study is among the very few in the literature to determine the fatty acid profile of breast milk in Hong Kong populations and verify certain dietary factors that influence this profile. High levels of n-3 PUFA, especially DHA, were observed in the breast milk of Hong Kong lactating women. The findings may serve as a dietary reference for lactating mothers to optimise the fatty acid profile of their breast milk.


Assuntos
Dieta/métodos , Ácidos Graxos Ômega-3/análise , Peixes , Lactação , Leite Humano/química , Alimentos Marinhos/análise , Adulto , Animais , Registros de Dieta , Feminino , Hong Kong , Humanos , Fenômenos Fisiológicos da Nutrição Materna , Adulto Jovem
9.
Nanoscale ; 11(18): 9008-9014, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020984

RESUMO

An abnormal pH microenvironment results from the development of tumors, and also affects the therapeutic efficiency of anti-tumor drugs. In this work, a Förster resonance energy transfer (FRET)-based theranostic fluorescent nanoprobe was constructed for simultaneous ratiometric pH sensing and tumor-targeted photodynamic therapy. Based on the FRET process between rhodamine B and protoporphyrin IX (PpIX), the fabricated nanoprobe exhibited excellent pH responsiveness in both solutions and live cells with the ratiometric fluorescence changes. Moreover, this ratiometric pH fluorescent nanoprobe also possessed the capability for pH-responsive singlet oxygen (1O2) generation under light irradiation, guiding robust photodynamic therapy in a pH-dependent manner. Benefiting from the enhanced permeability and retention (EPR) effect, the nanoprobe could significantly inhibit tumor growth and metastasis via targeted photodynamic therapy in vivo. This work presents a novel paradigm for precise tumor theranostics by ratiometric pH fluorescence imaging-guided photodynamic therapy.


Assuntos
Nanoestruturas/química , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Confocal , Neoplasias/diagnóstico por imagem , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Rodaminas/química , Oxigênio Singlete/metabolismo , Transplante Heterólogo
10.
Chin J Dent Res ; 22(1): 65-68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30746535

RESUMO

A 27-year-old patient with a history of maxillary anterior tooth trauma presented with a maxillary central diastema between tooth- and implant-supported prostheses that had been in use for 5 years. The all-ceramic crowns were placed in 2012 after rigorous occlusal adjustment. Evaluations were carried out at 0, 2, 3, 4 and 5 years post restoration. The central diastema between the natural teeth and the implant-supported prosthesis on teeth 11 and 12 was first observed 2 years after implantation. After 5 years, the distance was found to have increased, with anterior occlusion and esthetic changes having taken place. The following possible causes were discussed: occlusal problems, anterior traumatic effects, the possible impact of guided bone regeneration (GBR) on the adjacent natural teeth and natural movement. More predictive information should be given to patients with implant-supported prostheses and natural teeth so that they are fully informed of the impact of any necessary clinical compromise and are aware of the modifications that may occur to their natural dentition.


Assuntos
Diastema , Adulto , Coroas , Prótese Dentária Fixada por Implante , Seguimentos , Humanos , Maxila
11.
Biomaterials ; 195: 75-85, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616030

RESUMO

Targeted drug delivery with precisely controlled drug release and activation is highly demanding and challenging for tumor precision therapy. Herein, a biomimetic cascade nanoreactor (designated as Mem@GOx@ZIF-8@BDOX) is constructed for tumor targeted starvation therapy-amplified chemotherapy by assembling tumor cell membrane cloak and glucose oxidase (GOx) onto zeolitic imidazolate framework (ZIF-8) with the loading prodrug of hydrogen peroxide (H2O2)-sensitive BDOX. Biomimetic membrane camouflage affords superior immune evasion and homotypic binding capacities, which significantly enhance the tumor preferential accumulation and uptake for targeted drug delivery. Moreover, GOx-induced glycolysis would cut off glucose supply and metabolism pathways for tumor starvation therapy with the transformation of tumor microenvironments. Importantly, this artificial adjustment could trigger the site-specific BDOX release and activation for cascade amplified tumor chemotherapy regardless of the complexity and variability of tumor physiological environments. Both in vitro and in vivo investigations indicate that the biomimetic cascade nanoreactor could remarkably improve the therapeutic efficacy with minimized side effects through the synergistic starvation therapy and chemotherapy. This biomimetic cascade strategy would contribute to developing intelligent drug delivery systems for tumor precision therapy.


Assuntos
Biomimética/métodos , Nanopartículas/química , Animais , Glucose Oxidase/química , Humanos , Peróxido de Hidrogênio/química , Estruturas Metalorgânicas , Pró-Fármacos/química , Zeolitas/química
12.
Biomaterials ; 188: 1-11, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312907

RESUMO

Mitochondria and cell membrane play important roles in maintaining cellular activity and stability. Here, a single-agent self-delivery chimeric peptide based nanoparticle (designated as M-ChiP) was developed for mitochondria and plasma membrane dual-targeted photodynamic tumor therapy. Without additional carrier, M-ChiP possessed high drug loading efficacy as well as the excellent ability of producing reactive oxygen species (ROS). Moreover, the dual-targeting property facilitated the effective subcellular localization of photosensitizer protoporphyrin IX (PpIX) to generate ROS in situ for enhanced photodynamic therapy (PDT). Notably, plasma membrane-targeted PDT would enhance the membrane permeability to improve the cellular delivery of M-ChiP, and even directly disrupt the cell membrane to induce cell necrosis. Additionally, mitochondria-targeted PDT would decrease mitochondrial membrane potential and significantly promote the cell apoptosis. Both in vitro and in vivo investigations indicated that this combinatorial PDT in mitochondria and plasma membrane could achieve the therapeutic effect maximization with reduced side effects. The single-agent self-delivery system with dual-targeting strategy was demonstrated to be a promising nanoplatform for synergistic tumor therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Peptídeos/química , Fármacos Fotossensibilizantes/administração & dosagem , Protoporfirinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Camundongos , Mitocôndrias/metabolismo , Nanopartículas/química , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/farmacocinética , Protoporfirinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
13.
Macromol Biosci ; 19(4): e1800410, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576082

RESUMO

In this paper, a self-delivery chimeric peptide PpIX-PEG8 -KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self-assembly into nanoparticles (designated as PPMA), this self-delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti-tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti-tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti-tumor immune response. This self-delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.


Assuntos
Antígenos de Neoplasias/farmacologia , Sistemas de Liberação de Medicamentos , Imunoterapia , Melanoma Experimental/terapia , Peptídeos/farmacologia , Fotoquimioterapia , Animais , Antígenos de Neoplasias/imunologia , Células COS , Chlorocebus aethiops , Imunidade Celular/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
14.
Hum Gene Ther ; 30(6): 714-726, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582371

RESUMO

To study whether ectopic human melanopsin (hMel) in retinal ganglion cells (RGCs) could restore the visual function in end-stage retinal degeneration, AAV2/8-CMV-hMel/FYP was injected into the intravitreal space of Royal College of Surgeons (RCS) rats. It was observed that ectopic hMel/yellow fluorescent protein (YFP) was dominantly expressed in the RGCs of the RCS rat retinae. At 30-45 days after administration of AAV2/8-CMV-hMel/FYP in RCS rats, the flash visual evoked potentials and behavioral results demonstrated that visual function was significantly improved compared to that in the control group, while no improvement in flash electroretinography was observed at this time point. To translate this potential therapeutic approach to the clinic, the safety of viral vectors in the retinae of normal macaques was then studied, and the expression profile of exogenous hMel with/without internal limiting membrane peeling was compared before viral vector administration. The data revealed that there was no significant difference in the number of RGCs containing exogenous hMel/YFP between the two groups. Whole-cell patch-clamp recordings demonstrated that the hMel/YFP-positive RGCs of the macaque retinae reacted to the intense light stimulation, generating inward currents and action potentials. This result confirms that the ectopic hMel expressed in RGCs is functional. Moreover, the introduction of AAV2/8-CMV-hMel/FYP does not cause detectable pathological effects. Thus, this study suggests that AAV2/8-CMV-hMel/FYP administration without internal limiting membrane peeling is safe and feasible for efficient transduction and provides therapeutic benefits to restore the visual function of patients suffering photoreceptor loss.


Assuntos
Expressão Ectópica do Gene , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/genética , Visão Ocular/genética , Animais , Biomarcadores , Dependovirus/genética , Feminino , Genes Reporter , Vetores Genéticos/genética , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Macaca , Masculino , Imagem Molecular , Técnicas de Patch-Clamp , Ratos , Reprodutibilidade dos Testes , Retina/metabolismo , Retina/fisiopatologia
15.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5465-5472, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-32237396

RESUMO

The aim of this paper was to screen the active targets of Schizonepetae Herba and Saposhnikoviae Radix in the treatment of ulcerative colitis by means of network pharmacology,and to investigate their mechanism of action. The effective components of Schizonepetae Herba and Saposhnikoviae Radix were screened out by traditional Chinese medicine systematic pharmacological( TCMSP)database,with oral bioavilability( OB) ≥30% and drug-like( DL) ≥18% selected as the thresholds. Target PPI network was built between the main components and their corresponding targets. One hundred and eighty-two human genes corresponding to the medicine target sites were obtained from Uniprot database; 3 874 genes corresponding to ulcerative colitis were obtained from Genecard database.A total of 115 intersection genes were screened from disease genes and medicine genes,and the PPI interaction analysis was conducted by using String tool. Disease-target PPI network was drawn by using Cytoscape software,and component-target-disease network was constructed. One hundred and eight nodes and 1 882 connections were found,and then Cytoscape software was used to merge the networks and filter the core network for gene GO function analysis and KEGG pathway enrichment analysis. The mechanism of Schizonepetae Herba and Saposhnikoviae Radix was then verified by animal experiment. Gene GO functional analysis suggested that biological process,molecular functions and cell components were involved,and it was found that ulcerative colitis might be related to transcription factor activity,and cytokine receptor binding,etc. Gene KEGG pathway enrichment analysis showed that the mechanism of ulcerative colitis might be associated with TNF and Toll-like receptors( TLRs) signaling pathway-mediated cytoinflammatory factors interleukin-1( IL-1) and interleukin-6( IL6). The possible mechanism of the effective components of Schizonepetae Herba and Saposhnikoviae Radix in treating ulcerative colitis might be related to intervening the cytokine receptor binding of TNF and TLRs signaling pathways,reducing the transcription of nuclear factor-kappaB( NF-κB),and inhibiting the secretion of intestinal inflammatory factors IL-1 and IL-6.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Mapeamento de Interação de Proteínas , Animais , Apiaceae/química , Bases de Dados Genéticas , Humanos , Interleucinas/metabolismo , Lamiaceae/química , Medicina Tradicional Chinesa , Fitoterapia , Raízes de Plantas/química , Transdução de Sinais , Software , Receptores Toll-Like/metabolismo
16.
Cell Discov ; 4: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245845

RESUMO

Stem cell therapy may provide a safe and promising treatment for retinal diseases. Wet age-related macular degeneration (wet-AMD) is a leading cause of blindness in China. We developed a clinical-grade human embryonic stem cell (hESC) line, Q-CTS-hESC-2, under xeno-free conditions that differentiated into retinal pigment epithelial cells (Q-CTS-hESC-2-RPE). A clinical trial with three wet-AMD patients was initiated in order to study the safety and tolerance to Q-CTS-hESC-2-RPE cell transplants. The choroidal neovascularization membrane was removed and then a suspension of 1 × 106 Q-CTS-hESC-2-RPE cells were injected into a subfoveal pocket. The patients were followed for 12 months during which no adverse effects resulting from the transplant were observed. Anatomical evidence suggested the existence of new RPE-like cell layer in the previously damaged area. Visual and physiological testing indicated limited functional improvement, albeit to different degrees between patients. This study provides some promising early results concerning the use of transplanted hESC-RPE cells to alleviate wet-AMD.

17.
J Ethnopharmacol ; 219: 32-49, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29526703

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ligularia przewalskii (Maxim.) Diels (LP) (called zhangyetuowu in Chinese), is generally found in moist forest areas in the western regions of China. The root, leaves and flower of LP are utilized as a common traditional medicine in China. It has been utilized conventionally in herbal remedies for the remedy of haemoptysis, asthma, pulmonary phthisis, jaundice hepatitis, food poisoning, bronchitis, cough, fever, wound healing, measles, carbuncle, swelling and phlegm diseases. AIM OF THE STUDY: The review aims to provide a systematic summary of LP and to reveal the correlation between the traditional uses and pharmacological activities in order to provide updated, comprehensive and categorized information and identify the therapeutic potential for its use as a new medicine. MATERIALS AND METHODS: The relevant data were searched by using the keywords "Ligularia przewalskii" "phytochemistry", "pharmacology", "Traditional uses", and "Toxicity" in "Scopus", "Scifinder", "Springer", "Pubmed", "Wiley", "Web of Science", "China Knowledge Resource Integrated databases (CNKI)", "Ph.D." and "M.Sc. dissertations", and a hand-search was done to acquire peer-reviewed articles and reports about LP. The plant taxonomy was validated by the databases "The Plant List", "Flora Reipublicae Popularis Sinicae", "A Collection of Qinghai Economic Plants", "Inner Mongolia plant medicine Chi", Zhonghua-bencao and the Standard of Chinese herbal medicine in Gansu. RESULTS: Based on the traditional uses, the chemical nature and biological effects of LP have been the focus of research. In modern research, approximately seventy-six secondary metabolites, including thirty-eight terpenoids, nine benzofuran derivatives, seven flavonoids, ten sterols and others, were isolated from this plant. They exhibit anti-inflammatory, antioxidative, anti-bacterial and anti-tumour effects, and so on. Currently, there is no report on the toxicity of LP, but hepatotoxic pyrrolizidine alkaloids (HPA) were first detected with LC/MSn in LP, and they have potential hepatotoxicity. CONCLUSIONS: The lung-moistening, cough-relieving and phlegm-resolving actions of the root of LP are attributed to the anti-inflammatory properties of flavonoids and terpenoids. The heat-clearing, dampness-removing and gallbladder-normalizing (to cure jaundice) actions of the flowers of LP are based on the anti-inflammatory, antioxidant and hepatoprotective activity properties of terpenoids, flavonoids and sterols. The Traditional Chinese Medicine (TCM) characteristics of LP (bitter flavour) corroborate its potent anti-inflammatory effects. In addition, the remarkable anti-inflammatory and antioxidant capacities of LP contribute to its anti-tumour and antitussive activities. Many conventional uses of LP have now been validated by modernized pharmacological research. For future research, further phytochemical and biological studies need to be conducted on LP, In particular, the safety, mechanism of action and efficacy of LP could be of future research interest before beginning clinical trials. More in vivo experiments and clinical studies are encouraged to further clarify the relation between traditional uses and modern applications. Regarding the roots, leaves and flowers of LP, their chemical compositions and clinical effects should be compared. The information on LP will be helpful in providing and identifying its therapeutic potential and economic value for its use as a new medicine in the future.


Assuntos
Asteraceae , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/métodos , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa/tendências , Neoplasias/tratamento farmacológico , Fitoterapia/métodos , Fitoterapia/tendências , Transtornos Respiratórios/tratamento farmacológico
18.
Biomaterials ; 161: 81-94, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421565

RESUMO

Nowadays, cell membrane targeting therapy has drawn much attention for its high anti-tumor effect by avoiding the cellular barriers. In this study, therapeutic agent conjugated chimeric peptide (Cp) was anchored in cracked cancer cell membranes (CCCM) to construct a self-delivery membrane system (M-Cp), which could relize precise cell membrane targeting therapy. It was found that compared with Cp, M-Cp could target to the cancer cell membrane with longer retention time, which is very crucial for in vivo applications. And the superior cell membrane targeting ability was attributed to the specific proteins (focal adhesion proteins, focal adhesion kinase, RHO family proteins, and integrin) on the CCCM surface. Importantly, the M-Cp could promote tumor-specific immune response, which further enhanced anti-tumor effect when combined with therapeutic agents in M-Cp. What's more, this self-delivery membrane system could be used as a template for cell membrane targeting therapy by changing the therapeutic agents as well as the CCCM, and this strategy would open a new window for various cell membrane targeting therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Peptídeos/química , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Modelos Biológicos
19.
Biomaterials ; 151: 1-12, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29040939

RESUMO

In this report, a biomimetic theranostic oxygen (O2)-meter (cancer cell membrane@Pt(II) porphyrinic-metal organic framework, designated as mPPt) was constructed for cancer targeted and phosphorescence image-guided photodynamic therapy (PDT). mPPt presents high photosensitizers (PSs) loading and evitable self-quenching behaviors for favorable biological O2 sensing and PDT. Besides, endowed by the surface functionalization of cancer cell membrane, the homotypic targeting and immune escape abilities of mPPt could dramatically enhance its cancer targeting ability. Importantly, the O2-dependent phosphorescence responsibility of mPPt could be employed to pre-evaluate the real time O2 level in situ and guide the PDT under light irradiation. A significant anticancer effect is observed after intravenous injection of mPPt and subsequent treatment with PDT with no obvious side effects. As a versatile platform for cell imaging, O2 fluctuation monitoring as well as PDT, this biomimetic O2-meter exhibits great potential for biological analysis and personalized cancer theranostics.


Assuntos
Antineoplásicos/química , Estruturas Metalorgânicas/química , Oxigênio/análise , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Biomimética/métodos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Fluorescência , Haplorrinos , Humanos , Luz , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica/métodos , Oxigênio/metabolismo , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Platina/química , Porfirinas/química , Propriedades de Superfície
20.
Stem Cell Res Ther ; 8(1): 209, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962643

RESUMO

BACKGROUND: Retinitis pigmentosa is a common genetic disease that causes retinal degeneration and blindness for which there is currently no curable treatment available. Vision preservation was observed in retinitis pigmentosa animal models after retinal stem cell transplantation. However, long-term safety studies and visual assessment have not been thoroughly tested in retinitis pigmentosa patients. METHODS: In our pre-clinical study, purified human fetal-derived retinal progenitor cells (RPCs) were transplanted into the diseased retina of Royal College of Surgeons (RCS) rats, a model of retinal degeneration. Based on these results, we conducted a phase I clinical trial to establish the safety and tolerability of transplantation of RPCs in eight patients with advanced retinitis pigmentosa. Patients were studied for 24 months. RESULTS: After RPC transplantation in RCS rats, we observed moderate recovery of vision and maintenance of the outer nuclear layer thickness. Most importantly, we did not find tumor formation or immune rejection. In the retinis pigmentosa patients given RPC injections, we also did not observe immunological rejection or tumorigenesis when immunosuppressive agents were not administered. We observed a significant improvement in visual acuity (P < 0.05) in five patients and an increase in retinal sensitivity of pupillary responses in three of the eight patients between 2 and 6 months after the transplant, but this improvement did not appear by 12 months. CONCLUSION: Our study for the first time confirmed the long-term safety and feasibility of vision repair by stem cell therapy in patients blinded by retinitis pigmentosa. TRIAL REGISTRATION: WHO Trial Registration, ChiCTR-TNRC-08000193 . Retrospectively registered on 5 December 2008.


Assuntos
Células-Tronco Embrionárias/transplante , Retina/citologia , Retinite Pigmentosa/terapia , Transplante de Células-Tronco/efeitos adversos , Adulto , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Retina/embriologia , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA