Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Sleep Breath ; 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635991

RESUMO

PURPOSE: This study explored the interactive effects between polymorphonuclear neutrophils (PMNs) and vascular endothelial cells under intermittent hypoxia (IH) and investigated the mechanisms underlying these effects. METHODS: Endothelial cells were co-cultured with PMNs isolated from rats exposed to normoxia or IH. The PMN apoptotic rate was determined using flow cytometry. Expression of apoptosis-related proteins in the endothelial cells were evaluated using Western blotting, and the levels of intercellular adhesion molecules in the co-culture supernatants were measured using enzyme-linked immunosorbent assay. RESULTS: The PMN apoptotic rate in the IH-exposed rat group was significantly lower than that of the normoxia control group. There was a positive relationship between the PMN apoptotic rate and IH exposure time. In endothelial cells co-cultured with PMNs isolated from IH-exposed rats, a significant increase in the protein expression levels of Bax, Bcl-2, and caspase-3 and a significant decrease in the Bcl-2/Bax ratio were observed. Furthermore, the intercellular cell adhesion molecule-1(ICAM-1) and E-select element (E-S) levels were elevated significantly in the co-cultured supernatants of endothelial cells and PMNs from IH-exposed rats compared to that from controls. The above IH-induced alterations were partially restored by tempol pretreatment. CONCLUSIONS: The apoptotic rate was low in PMNs from IH-exposed rats, which consequently increased the apoptotic signals in endothelial cells in vitro. This may be associated with the increased levels of intercellular adhesion molecules. Further, tempol partially attenuates the PMN-mediated pro-apoptotic effects on endothelial cells under IH.

2.
J Environ Sci (China) ; 110: 2-11, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593190

RESUMO

Coagulation and precipitation is a widely applied method to remove F- from wastewater. In this work, the effect of coagulation on the removal of F- and organic matter from coking wastewater was studied using AlCl3 and FeCl3 as compound coagulants. The removal rates of F- and organic matter under different coagulant doses and pH conditions were investigated. The results show that the highest removal rates of F- by AlCl3 and FeCl3 are 94.4% and 25.4%, respectively; when the dosage is 10 mmol/L, the TOC removal rates of FeCl3 and AlCl3 reach 20.4% and 34.7%, respectively. Therefore, the removal rate of F- by AlCl3 is higher than that of FeCl3, but the removal rate of organic matter by FeCl3 is relatively higher. The addition of Ca2+ can promote the removal of F-, but the removal rate of organic matter decreases. In addition, by investigating the effects of different pH and Fe-Al ratio on the removal rate, the removal effect of adding FeCl3 and AlCl3 at the same time was discussed. The results show that the most suitable working condition for the removal of organic matter and F- is that the pH is 6.5 and the molar ratio of Al/Fe is 8:2. Overall, the removal mechanism of F- and organic matter in coking wastewater by FeCl3 and AlCl3 was explored in this study. The experimental results can provide reference for the advanced treatment of coking wastewater.


Assuntos
Coque , Purificação da Água , Águas Residuárias
3.
Adv Mater ; : e2105951, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617348

RESUMO

Zn metal anode has garnered growing scientific and industrial interest owing to its appropriate redox potential, low cost and high safety. Nevertheless, the instability of Zn anode caused by dendrite formation, hydrogen evolution and side reactions has greatly hampered its commercialization. Herein, an in situ grown ZnSe overlayer is crafted over one side of commercial Zn foil via chemical vapor deposition in a scalable manner, aiming to achieve optimized electrolyte/Zn interfaces with large-scale viability. Impressively, thus-derived ZnSe coating functions as a cultivator to guide oriented growth of Zn (002) plane at the infancy stage of stripping/plating cycles, thereby inhibiting the formation of Zn dendrites and the occurrence of side reactions. As a result, high cyclic stability (1530 h at 1.0 mA cm-2 /1.0 mAh cm-2 ; 172 h at 30.0 mA cm-2 /10.0 mAh cm-2 ) in symmetric cells is harvested. Meanwhile, when paired with V2 O5 based cathode, assembled full cell achieves an outstanding capacity (194.5 mAh g-1 ) and elongated lifespan (a capacity retention of 84% after 1000 cycles) at 5.0 A g-1 . Our reversible Zn anode enabled by the interfacial manipulation strategy via ZnSe cultivator is anticipated to satisfy the demand of commercial use. This article is protected by copyright. All rights reserved.

4.
Front Immunol ; 12: 684605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594323

RESUMO

Engineered nanomaterials (ENMs) have been widely exploited in several industrial domains as well as our daily life, raising concern over their potential adverse effects. While in general ENMs do not seem to have detrimental effects on immunity or induce severe inflammation, their indirect effects on immunity are less known. In particular, since the gut microbiota has been tightly associated with human health and immunity, it is possible that ingested ENMs could affect intestinal immunity indirectly by modulating the microbial community composition and functions. In this perspective, we provide a few pieces of evidence and discuss a possible link connecting ENM exposure, gut microbiota and host immune response. Some experimental works suggest that excessive exposure to ENMs could reshape the gut microbiota, thereby modulating the epithelium integrity and the inflammatory state in the intestine. Within such microenvironment, numerous microbiota-derived components, including but not limited to SCFAs and LPS, may serve as important effectors responsible of the ENM effect on intestinal immunity. Therefore, the gut microbiota is implicated as a crucial regulator of the intestinal immunity upon ENM exposure. This calls for including gut microbiota analysis within future work to assess ENM biocompatibility and immunosafety. This also calls for refinement of future studies that should be designed more elaborately and realistically to mimic the human exposure situation.

5.
Ann Palliat Med ; 10(9): 9784-9791, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34628904

RESUMO

BACKGROUND: The study aimed to quantify the characteristics of trapezius myofascial trigger points (MTrPs) using shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) and explore the application value of the new ultrasound techniques in identifying MTrPs. METHODS: Forty patients participated in this study. MTrPs in the trapezius muscle were determined by palpation, and SWE and CEUS were used to quantify the focal and adjacent areas. The elastic modulus values and CEUS parameters between the focal area of MTrPs and adjacent areas were evaluated and compared. Pathological biopsy was performed according to the above two methods, and the pathological tissues were observed by Masson staining, immunohistochemistry and electron microscope. RESULTS: The elastic modulus values were significantly higher for the focal area of MTrPs compared to those for adjacent areas (P<0.05). There were statistically significant differences in MTrP parameters, including peak intensity, mean transit time, and area between the focal and adjacent areas (P<0.05). Masson staining showed that there were inflammatory cell infiltration dominated by lymphocytes in the vascular wall. Electron microscopy showed a large number of fibroblast proliferation, lamellar collagen proliferation and lysosomal deposition; immunohistochemical results: the expression of CD3+, CD4+, CD8+, CD68+, mhc-1+, dys+, CD8 was more than that of CD20 (F=4.385, P=0.036). CONCLUSIONS: Combined use of SWE and CEUS provides a new detection approach for quantitative identification of MTrPs in the trapezius muscle, which has high application value and is a method worthy of wider use in clinical practice.


Assuntos
Técnicas de Imagem por Elasticidade , Síndromes da Dor Miofascial , Músculos Superficiais do Dorso , Humanos , Síndromes da Dor Miofascial/diagnóstico por imagem , Músculos Superficiais do Dorso/diagnóstico por imagem , Pontos-Gatilho/diagnóstico por imagem , Ultrassonografia
6.
Mater Horiz ; 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586118

RESUMO

Recent advances in wearable and implantable electronics have increased the demand for biocompatible integrated energy storage systems. Conducting polymers, such as polyaniline (PANi), have been suggested as promising electrode materials for flexible biocompatible energy storage systems, based on their intrinsic structural flexibility and potential polymer chain compatibility with biological interfaces. However, due to structural disorder triggering insufficient electronic conductivity and moderate electrochemical stability, PANi still cannot fully satisfy the requirements for flexible and biocompatible energy storage systems. Herein, we report a biocompatible physiological electrolyte activated flexible supercapacitor encompassing crystalline tetra-aniline (c-TANi) as the active electrode material, which significantly enhances the specific capacitance and electrochemical cycling stability with chloride electrochemical interactions. The crystallization of TANi endows it with sufficient electronic conductivity (8.37 S cm-1) and a unique Cl- dominated redox charge storage mechanism. Notably, a fully self-healable and biocompatible supercapacitor has been assembled by incorporating polyethylene glycol (PEG) with c-TANi as a self-healable electrode and a ferric-ion cross-linked sodium polyacrylate (Fe3+-PANa)/0.9 wt% NaCl as a gel electrolyte. The as-prepared device exhibits a remarkable capacitance retention even after multiple cut/healing cycles. With these attractive features, the c-TANi electrode presents a promising approach to meeting the power requirements for wearable or implantable electronics.

7.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4849-4864, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581097

RESUMO

As a unicellular organism, Plasmodium displays a panoply of lipid metabolism pathways that are seldom found together in a unicellular organism. These pathways mostly involve the Plasmodium-encoded enzymatic machinery and meet the requirements of membrane synthesis during the rapid cell growth and division throughout the life cycle. Different lipids have varied synthesis and meta-bolism pathways. For example, the major phospholipids are synthesized via CDP-diacylglycerol-dependent pathway in prokaryotes and de novo pathway in eukaryotes, and fatty acids are synthesized mainly via type Ⅱ fatty acid synthesis pathway. The available studies have demonstrated the impacts of artemisinin and its derivatives, the front-line compounds against malaria, on the lipid metabolism of Plasmodium. Therefore, this article reviewed the known lipid metabolism pathways and the effects of artemisinin and its derivatives on these pathways, aiming to deepen the understanding of lipid synthesis and metabolism in Plasmodium and provide a theoretical basis for the research on the mechanisms and drug resistance of artemisinin and other anti-malarial drugs.


Assuntos
Antimaláricos , Artemisininas , Malária , Plasmodium , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Humanos , Metabolismo dos Lipídeos , Malária/tratamento farmacológico
8.
Chemosphere ; 287(Pt 2): 132094, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34492410

RESUMO

Electrochemical activation of peroxymonosulfate (PMS) at carbon cloth anode (E (Carbon cloth Anode)/PMS system) was investigated for sulfamethoxazole (SMX) degradation. The results indicated that PMS could be activated at carbon cloth anode during electrolysis, resulting in the improvement of SMX degradation. The degradation efficiency of SMX was facilitated with the higher PMS concentration and current density, respectively. The degradation rate constant of SMX increased with the rising pH from 3.6 to 6.0, and reached the highest value at pH 6.0, and then decreased with further increasing pH to 8.0. The presence of chloride ion (Cl-, 5-100 mM) significantly enhanced SMX degradation, while addition of humic acid (HA, 1-5 mgC L-1) inhibited SMX degradation. Addition of carbonate (HCO3-, 5-20 mM) had a negligible impact on SMX degradation. Small amounts of phosphate (PO43-, 0-5 mM) could promote degradation, while a large amount of PO43- (10-20 mM) inhibited the degradation. Moreover, the quenching experiments demonstrated that sulfate radical (SO4·-), hydroxyl radical (·OH) and singlet oxygen (1O2) contributed to SMX degradation in E (Carbon cloth Anode)/PMS system. The degradation intermediates of SMX were identified by LC-MS/MS and the degradation pathways were deduced to be hydroxylation, the cleavage of S-N bond, and oxidation of aniline group. Moreover, the micronucleus test of Vicia faba root tips indicated that the E (Carbon Cloth Anode)/PMS system could reduce the genetic toxicity of SMX contaminated water to some extent.

9.
Microb Ecol ; 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528105

RESUMO

Henan Province is a major area of peanut production in China but the rhizobia nodulating the crop in this region have not been described. A collection of 217 strains of peanut rhizobia was obtained from six field sites across four soil types in Henan Province, North China, by using peanut as a trap host under glasshouse conditions. The 217 strains separated into 8 distinct types on PCR-RFLP analysis of their IGS sequences. Phylogenetic analysis of the 16S rRNA, recA, atpD, and glnII genes of 11 representative strains of the 8 IGS types identified Bradyrhizobium guangdongense, B. ottawaense and three novel Bradyrhizobium genospecies. Bradyrhizobium guangdongense was dominant, accounting for 75.0% of the total isolates across the field sites while B. ottawaense covered 5.1% and the three novel Bradyrhizobium genospecies 4.1 to 8.8% of the total. The symbiosis-related nodA and nifH gene sequences were not congruent with the core genes on phylogenetic analysis and separated into three groups, two of which were similar to sequences of Bradyrhizobium spp. isolated from peanut in south-east China and the third identical to that of B. yuanmingense isolated from Lespedeza cuneata in northern China. A canonical correlation analysis between the distribution of IGS genotypes and soil physicochemical characteristics and climatic factors indicated that the occurrence of IGS types/species was mainly associated with soil pH and available phosphorus.

10.
J Reconstr Microsurg ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553344

RESUMO

BACKGROUND: Current near-infrared spectroscopy (NIRS)-based systems for continuous flap monitoring are limited to flaps which carry a cutaneous paddle. As such, this useful and reliable technology has not previously been applicable to muscle-only free flaps where other modalities with substantial limitations continue to be utilized. METHODS: We present the first NIRS probe which allows continuous monitoring of local tissue oxygen saturation (StO2) directly within the substance of muscle tissue. This probe is flexible, subcentimeter in scale, waterproof, biocompatible, and is fitted with resorbable barbs which facilitate temporary autostabilization followed by easy atraumatic removal. This novel device was compared with a ViOptix T.Ox monitor in a porcine rectus abdominus myocutaneous flap model of arterial and venous occlusions. During these experiments, the T.Ox device was affixed to the skin paddle, while the novel probe was within the muscle component of the same flap. RESULTS: The intramuscular NIRS device and skin-mounted ViOptix T.Ox devices produced very similar StO2 tracings throughout the vascular clamping events, with obvious and parallel changes occurring upon vascular clamping and release. The normalized cross-correlation at zero lag describing correspondence between the novel intramuscular NIRS and T.Ox devices was >0.99. CONCLUSION: This novel intramuscular NIRS probe offers continuous monitoring of oxygen saturation within muscle flaps. This experiment demonstrates the potential suitability of this intramuscular NIRS probe for the task of muscle-only free flap monitoring, where NIRS has not previously been applicable. Testing in the clinical environment is necessary to assess durability and reliability.

11.
J Asthma ; : 1-9, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559035

RESUMO

OBJECTIVE: Asthmatic children presenting with chest tightness as the only symptom have not been widely recognized. This study attempted to find risk factors, summarize clinical features and offer some suggestions for the diagnosis of this atypical asthma.Methods: We studied 94 children, aged 6 to 14 years, who complained only of chest tightness. Data from clinical manifestations and laboratory tests were analyzed. The atypical asthma group (n = 58) showed positive bronchial challenge tests, and symptoms either improved or resolved in response to the bronchodilator. The control group (n = 36) had negative results on the bronchial challenge, diurnal PEF, and BDR tests, and no response to asthma treatment with bronchodilator.Results: Pollution, weather, recent house renovation, and air-conditioning use may be risk factors for children with atypical asthma. These children had more accompanying symptoms of rhinitis and rhinitis family history (P < 0.05), and a higher positive detection rate of inhaled allergens and multiple sensitizations. Parameters of the pulmonary function test were lower in the atypical asthma group than in the control group, and they also had higher FeNO values. If a cutoff value of improvement in FEV1 of BDR were set at 8.9%, sensitivity would be 48.2%, which is higher than a 12% cutoff.Conclusions: Environmental factors appeared to cause development of the isolated chest tightness symptom. Clinical history and laboratory tests could provide partial values for this diagnosis. In the absence of a bronchial challenge test, a margin of improvement in FEV1 of BDR set at 8.9% may be helpful.

12.
Comput Methods Programs Biomed ; 211: 106417, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34587564

RESUMO

BACKGROUND AND OBJECTIVE: Aortic dissection is a severe cardiovascular pathology in which an injury of the intimal layer of the aorta allows blood flowing into the aortic wall, forcing the wall layers apart. Such situation presents a high mortality rate and requires an in-depth understanding of the 3-D morphology of the dissected aorta to plan the right treatment. An accurate automatic segmentation algorithm is therefore needed. METHOD: In this paper, we propose a deep-learning-based algorithm to segment dissected aorta on computed tomography angiography (CTA) images. The algorithm consists of two steps. Firstly, a 3-D convolutional neural network (CNN) is applied to divide the 3-D volume into two anatomical portions. Secondly, two 2-D CNNs based on pyramid scene parsing network (PSPnet) segment each specific portion separately. An edge extraction branch was added to the 2-D model to get higher segmentation accuracy on intimal flap area. RESULTS: The experiments conducted and the comparisons made show that the proposed solution performs well with an average dice index over 92%. The combination of 3-D and 2-D models improves the aorta segmentation accuracy compared to 3-D only models and the segmentation robustness compared to 2-D only models. The edge extraction branch improves the DICE index near aorta boundaries from 73.41% to 81.39%. CONCLUSIONS: The proposed algorithm has satisfying performance for capturing the aorta structure while avoiding false positives on the intimal flaps.

14.
Bioengineered ; 12(1): 6434-6447, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519263

RESUMO

This study investigated the role of microRNA (miRNA) miR-486-5p in oxidative stress injury in hepatocytes under the treatment of mesenchymal stem cell conditioned medium (MSC-CM). The oxidative stress injury in hepatocytes (L02) was induced by H2O2. Human umbilical cord blood MSC-CM (UCB-MSC-CM) was prepared. The effects of UCB-MSC-CM on the proliferation, apoptosis, and inflammatory response in L02 cells were detected by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, and enzyme-linked immunosorbent assay (ELISA). Subsequently, the target of miR-486-5p was predicted using bioinformatics analysis, and the possible signaling pathway addressed by miR-486-5p was explored using western blot. We found that miR-486-5p expression was elevated following oxidative stress injury and was reduced after UCB-MSC-CM treatment. UCB-MSC-CM protected L02 cells against H2O2-induced injury by downregulation of miR-486-5p. Proviral integration site for Moloney murine leukemia virus 1 (PIM1) was verified to be targeted by miR-486-5p. UCB-MSC-CM upregulated the expression of PIM1 reduced by H2O2 in L02 cells. Additionally, silencing PIM1 attenuated the protective effects of miR-486-5p downregulation against oxidative stress injury. We further demonstrated that UCB-MSC-CM inhibited the TGF-ß/Smad signaling in H2O2-treated L02 cells by the miR-486-5p/PIM1 axis. Overall, UCB-MSC-CM attenuates oxidative stress injury in hepatocytes by downregulating miR-486-5p and upregulating PIM1, which may be related to the inhibition of TGF-ß/Smad pathway.

15.
J Phys Chem Lett ; : 9321-9327, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544240

RESUMO

The prospects of sodium (Na) metal batteries have been fatally plagued by interfacial Na dendrites, mainly affected by preferred nucleation on the metal anode and the steep gradient of Na ions in the electrolyte, leading to limited Coulombic efficiency and short lifespans. Herein, an electrochemically inert potassium-based Na-K alloy demonstrates a liquid alloying diffusion mechanism that enables dendrite-free Na anodes. The extremely small Na fluctuation and flexible Na-K bonds in the liquid alloy phase bring isotropic nucleation of Na upon electroplating/stripping, which is directly observed by in situ optical imaging. Spontaneously, serving as (de)sodiation buffer with faster electron/mass transportation, the liquid inertia also provides attenuated concentration distribution of Na. Significantly, a record capacity retention of approximately 100% is rendered when coupled with Na3V2(PO4)3 cathodes (ca. 2 mg cm-2) over 500 cycles at 10C, advancing the possibility of using liquid alloy for stable metal anodes beyond Na storage systems.

16.
Small ; : e2103623, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546645

RESUMO

Carbon dots (CDs) are widely studied for years due to their unique luminescent properties and potential applications in many fields. However, aggregation-caused quenching, monotonous emission modes, and unsustainable preparation impose restrictions on their performance and practical applications. Here, this work reports the facile synthesis of sustainable silk-derived multimode emitting CDs with dispersed-state fluorescence (DSF), aggregation-induced fluorescence (AIF), and aggregation-induced room temperature phosphorescence (AIRTP) through radiating sericin proteins in a household microwave oven (800 W, 2.5 min). The structure, luminescent properties, and the mechanism are investigated and discussed. The sericin-derived CDs have graphitized cores and heteroatom-cluster-rich surfaces. The DSF corresponds to the graphitized cores and the AIF origins from the aggregation-induced abundant orbital energy levels on the heteroatom-cluster-rich surfaces. The presence of abundant hydrogen bonds and small gap between the lowest singlet and triplet excited states induces AIRTP. Finally, based on the unique multimode emission of the prepared CDs, their applications in high-performance white-light-emitting diode, information encryption, anti-counterfeiting, and visual humidity sensors are demonstrated.

17.
Comput Med Imaging Graph ; 93: 101971, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34482121

RESUMO

Accurate segmentation of the right ventricle from cardiac magnetic resonance images (MRI) is a critical step in cardiac function analysis and disease diagnosis. It is still an open problem due to some difficulties, such as a large variety of object sizes and ill-defined borders. In this paper, we present a TSU-net network that grips deeper features and captures targets of different sizes with multi-scale cascade and multi-field fusion in the right ventricle. TSU-net mainly contains two major components: Dilated-Convolution Block (DB) and Multi-Layer-Pool Block (MB). DB extracts and aggregates multi-scale features for the right ventricle. MB mainly relies on multiple effective field-of-views to detect objects at different sizes and fill boundary features. Different from previous networks, we used DB and MB to replace the convolution layer in the encoding layer, thus, we can gather multi-scale information of right ventricle, detect different size targets and fill boundary information in each encoding layer. In addition, in the decoding layer, we used DB to replace the convolution layer, so that we can aggregate the multi-scale features of the right ventricle in each decoding layer. Furthermore, the two-stage U-net structure is used to further improve the utilization of DB and MB through a two-layer encoding/decoding layer. Our method is validated on the RVSC, a public right ventricular data set. The results demonstrated that TSU-net achieved an average Dice coefficient of 0.86 on endocardium and 0.90 on the epicardium, thereby outperforming other models. It effectively assists doctors to diagnose the disease and promotes the development of medical images. In addition, we also provide an intuitive explanation of our network, which fully explain MB and TSU-net's ability to detect targets of different sizes and fill in boundary features.

18.
EMBO Rep ; : e52532, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515392

RESUMO

Transforming growth factor-beta (TGFß) is a multifunctional cytokine with a well-established role in mammary gland development and both oncogenic and tumor-suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFß activity by acting as a storage compartment of latent-TGFß, but how TGFß is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFß signaling through the release of latent-TGFß from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFß signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent-TGFß1, while overexpression of hepsin in mammary tumors increased TGFß signaling. Cell-free and cell-based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent-TGFß and, importantly, that the ability of hepsin to activate TGFß signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFß pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.

19.
J Surg Oncol ; 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494280

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed to compare outcomes between neoadjuvant imatinib and upfront surgery in patients with localized rectal gastrointestinal stromal tumors (GIST) patients. METHODS: Eighty-five patients with localized rectal GIST were divided into two groups: upfront surgery ± adjuvant imatinib (Group A, n = 33) and the neoadjuvant imatinib + surgery + adjuvant imatinib (Group B, n = 52). Baseline characteristics between groups were controlled for with inverse probability of treatment weighting (IPTW) adjusted analysis. RESULTS: The response rate to neoadjuvant imatinib was 65.9%. After the IPTW-adjusted analysis, patients who underwent neoadjuvant therapy had better distant recurrence-free survival (DRFS) and disease-specific survival (DSS) compared with those who underwent upfront surgery (5-year DRFS 97.8 vs. 71.9%, hazard ratio [HR], 0.15; 95% CI, 0.03-0.87; p = 0.03; 5-year DSS 100 vs. 77.1%; HR, 0.11; 95% CI, 0.01-0.92; p = 0.04). While no significant association was found between overall survival (OS) and treatment groups (p = 0.07), 5-year OS was higher for the neoadjuvant group than upfront surgery group (97.8% vs. 71.9%; HR, 0.2; 95% CI, 0.03-1.15). CONCLUSIONS: In patients with localized rectal GIST, neoadjuvant imatinib not only shrunk the tumor size but also decreased the risk of metastasis and tumor-related deaths when compared to upfront surgery and adjuvant imatinib alone.

20.
J Clin Invest ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473650

RESUMO

Atrial natriuretic peptide (ANP) is an important hormone in cardiovascular biology. It is activated by the protease corin. In pregnancy, ANP and corin promote uterine spiral artery remodeling, but the underlying mechanism remains unknown. Here we report an ANP function in uterine decidualization and TNF-related apoptosis-induced ligand (TRAIL)-dependent death in spiral arterial smooth muscle cells (SMCs) and endothelial cells (ECs). In ANP- or corin-deficient mice, uterine decidualization markers and TRAIL expression were decreased, whereas in cultured human endometrial stromal cells (HESCs), ANP increased decidualization and TRAIL expression. In uterine spiral arteries from pregnant wild-type mice, SMC and EC loss occurred sequentially before trophoblast invasion. In culture, TRAIL from decidualized HESCs induced apoptosis in uterine SMCs, but not in ECs with low TRAIL receptor expression. Subsequently, cyclophilin B was identified from apoptotic SMCs that up-regulated endothelial TRAIL receptor and caused apoptosis in ECs. These results indicate that ANP promotes decidualization and TRAIL expression in endometrial stromal cells, contributing to sequential events in remodeling spiral arteries, including SMC death and cyclophilin B release, which in turn induces TRAIL receptor expression and apoptosis in ECs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...