RESUMO
Gut microbiota, specifically gut bacteria, are critical for effective immune checkpoint blockade therapy (ICT) for cancer. The mechanisms by which gut microbiota augment extraintestinal anticancer immune responses, however, are largely unknown. Here, we find that ICT induces the translocation of specific endogenous gut bacteria into secondary lymphoid organs and subcutaneous melanoma tumors. Mechanistically, ICT induces lymph node remodeling and dendritic cell (DC) activation, which facilitates the translocation of a selective subset of gut bacteria to extraintestinal tissues to promote optimal antitumor T cell responses in both the tumor-draining lymph nodes (TDLNs) and the primary tumor. Antibiotic treatment results in decreased gut microbiota translocation into mesenteric lymph nodes (MLNs) and TDLNs, diminished DC and effector CD8+ T cell responses, and attenuated responses to ICT. Our findings illuminate a key mechanism by which gut microbiota promote extraintestinal anticancer immunity.
Assuntos
Microbioma Gastrointestinal , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Linfócitos T CD8-Positivos , LinfonodosRESUMO
As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.
Assuntos
Meios de Contraste , Neoplasias , Masculino , Humanos , Proteínas Proto-Oncogênicas c-sis , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Dióxido de Silício , Microambiente TumoralRESUMO
Tumor hypoxia and systemic toxicity seriously affect the efficacy of photodynamic therapy (PDT) and are considered as the "Achilles' heel" of PDT. Herein, to combat such limitations, an intelligent orthogonal emissions LDNP@SiO2 -CaO2 and folic acid-polyethylene glycol-Ce6 nanodrug is rationally designed and fabricated not only for relieving the hypoxic tumor microenvironment (TME) to enhance PDT efficacy, but also for determining the optimal triggering time through second near-infrared (NIR-II) fluorescence imaging. The designed nanodrug continuously releases a large amount of O2 , H2 O2 , and Ca2+ ions when exposed to the acidic TME. Meanwhile, under downshifting NIR-II bioimaging guidance, chlorine e6 (Ce6) consumes oxygen to produce 1 O2 upon excitation of upconversion photon. Moreover, cytotoxic reactive oxygen species (ROS) and calcium overload can induce mitochondria injury and thus enhance the oxidative stress in tumor cells. As a result, the NIR-II bioimaging guided TME-responsive oxygen self-sufficient PDT nanosystem presents enhanced anti-tumor efficacy without obvious systemic toxicity. Thus, the fabricated nanodrug offers great potential for designing an accurate cancer theranostic system.
RESUMO
This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.
RESUMO
Seizures are a common symptom of craniocerebral diseases, and epilepsy is one of the comorbidities of craniocerebral diseases. However, how to rationally use anti-seizure medications (ASMs) in the perioperative period of craniocerebral surgery to control or avoid seizures and reduce their associated harm is a problem. The China Association Against Epilepsy (CAAE) united with the Trauma Group of the Chinese Neurosurgery Society, Glioma Professional Committee of the Chinese Anti-Cancer Association, Neuro-Oncology Branch of the Chinese Neuroscience Society, and Neurotraumatic Group of Chinese Trauma Society, and selected experts for consultancy regarding outcomes from evidence-based medicine in domestic and foreign literature. These experts referred to the existing research evidence, drug characteristics, Chinese FDA-approved indications, and expert experience, and finished the current guideline on the application of ASMs during the perioperative period of craniocerebral surgery, aiming to guide relevant clinical practice. This guideline consists of six sections: application scope of guideline, concepts of craniocerebral surgery-related seizures and epilepsy, postoperative application of ASMs in patients without seizures before surgery, application of ASMs in patients with seizures associated with lesions before surgery, emergency treatment of postoperative seizures, and 16 recommendations.
RESUMO
Metabolic syndrome (MetS) is a major risk factor for cardiovascular disease and negatively affecting the prognosis of patients with ST elevation myocardial infarction (STEMI). Macrophage migration inhibitory factor (MIF) is a multipotent cytokine involved in various cardiovascular and inflammatory diseases. In this prospective study, we investigate the value of MIF in the long-term prognosis of STEMI combined with MetS after emergency PCI. Circulating MIF levels were measured at admission, and major adverse cardiovascular and cerebrovascular events (MACCE) were monitored during the follow-up period of 4.9 (3.9-5.8) years. MACCE occurred in 92 patients (22.9%), which was significantly higher in MetS (69/255, 27.1%) than in the non-MS subgroup (23/146, 15.8%, P < 0.05). Patients with MetS developed MACCE had the highest admission MIF level. Kaplan-Meier survival analysis using the cutoff value of admission MIF (143 ng/ml) showed that patients with a higher MIF level had a greater incidence of MACCE than those with lower MIF levels in both the MetS (P < 0.0001) and non-MetS groups (P = 0.016). After adjustment for clinical variables, the value of MIF ≥ 143 ng/ml still had the predictive power for the MetS group [HR 9.56, 95% CI (5.397-16.944),P < 0.001]; nevertheless, it was not the case in the non-MetS group. Our findings indicated that MetS is a critical risk factor for adverse clinical outcomes in patients with STEMI, and a high admission MIF level has predictive power for the long-term MACCE, which is superior in STEMI patients with MetS and better than other traditional predictors.
RESUMO
Ethylene biosynthesis and signal transduction play critical roles in plant sex differentiation. ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a rate-limiting enzyme in ethylene biosynthesis. However, the understanding of the ACS gene family in Cucurbita maxima is limited. Here, we identified and characterized 13 ACS genes in the C. maxima genome. All ACS genes could be divided into three groups according to a conserved serine residue at the C-terminus. Thirteen CmaACS genes were found to be randomly distributed on 10 of the 20 chromosomes of C. maxima. The ACS gene exhibits different tissue-specific expression patterns in pumpkin, and four ACS genes (CmaACS1, CmaACS4, CmaACS7, and CmaACS9) were expressed specifically in both the female and male flowers of C. maxima. In addition, the expression levels of CmaACS4 and CmaACS7 were upregulated after ethephon and IAA treatments, which ultimately increased the number of female flowers, decreased the position of the first female flower and decreased the number of bisexual flowers per plant. These results provide relevant information for determining the function of the ACS genes in C. maxima, especially for regulating the function of ethylene in sex determination.
Assuntos
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Etilenos/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
MAIN CONCLUSION: ΔClnps6 induced iron redistribution in maize B73 leaf cells and resulted in reactive oxygen species (ROS) burst to enhance plant resistance against Curvularia lunata. Iron is an indispensable co-factor of various crucial enzymes that are involved in cellular metabolic processes and energy metabolism in eukaryotes. For this reason, plants and pathogens compete for iron to maintain their iron homeostasis, respectively. In our previous study, ΔClnps6, the extracellular siderophore biosynthesis deletion mutant of Curvularia lunata, was sensitive to exogenous hydrogen peroxide and virulence reduction. However, the mechanism was not studied. Here, we report that maize B73 displayed highly resistance to ΔClnps6. The plants recruited more iron at cell wall appositions (CWAs) to cause ROS bursts. Intracellular iron deficiency induced by iron redistribution originated form up-regulated expression of genes involved in intracellular iron consumption in leaves and absorption in roots. The RNA-sequencing data also showed that the expression of respiratory burst oxidase homologue (ZmRBOH4) and NADP-dependent malic enzyme 4 (ZmNADP-ME4) involved in ROS production was up-regulated in maize B73 after ΔClnps6 infection. Simultaneously, jasmonic acid (JA) biosynthesis genes lipoxygenase (ZmLOX), allene oxide synthase (ZmAOS), GA degradation gene gibberellin 2-beta-dioxygenase (ZmGA2OX6) and ABA degradation genes abscisic acid hydroxylase (ZmABH1, ZmABH2) involved in iron homeostasis were up-regulated expression. Ferritin1 (ZmFER1) positive regulated maize resistance against C. lunata via ROS burst under Fe-limiting conditions. Overall, our results showed that iron played vital roles in activating maize resistance in B73-C. lunata interaction.
Assuntos
Doenças das Plantas , Zea mays , Curvularia , Ferro/metabolismo , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Zea mays/genética , Zea mays/metabolismoRESUMO
Botrytis cinerea is a necrotrophic microbe that causes gray mold disease in a broad range of hosts. In the present study, we conducted molecular microbiology and transcriptomic analyses of the host-B. cinerea interaction to investigate the plant defense response and fungal pathogenicity. Upon B. cinerea infection, plant defense responses changed from activation to repression; thus, the expression of many defense genes decreased in Arabidopsis thaliana. B. cinerea Zn(II)2Cys6 transcription factor BcSpd1 was involved in the suppression of plant defense as ΔBcSpd1 altered wild-type B05.10 virulence by recovering part of the defense responses at the early infection stage. BcSpd1 affected genes involved in the fungal sclerotium development, infection cushion formation, biosynthesis of melanin, and change in environmental pH values, which were reported to influence fungal virulence. Specifically, BcSpd1 bound to the promoter of the gene encoding quercetin dioxygenase (BcQdo) and positively affected the gene expression, which was involved in catalyzing antifungal flavonoid degradation. This study indicates BcSpd1 plays a key role in the necrotrophic microbe B. cinerea virulence toward plants by regulating pathogenicity-related compounds and thereby suppressing early plant defense.
RESUMO
Context: Parietal lobe epilepsy (PLE) accounts for approximately 5% of all focal epilepsies worldwide,1 and few PLE patients have undergone epilepsy surgery in the past. With the introduction of functional neuroimaging methods, such as interictal fluorodeoxyglucose-positron emission tomography (FDG-PET), stereotactic electroencephalograms (SEEGs), and high-resolution magnetic resonance imaging (MRI), more patients with intractable neocortical epilepsy have been considered for surgical treatment. Objective: The study intended to characterize the clinical features, aura, and presurgical evaluations of patients with PLE, by investigating their demographic and clinical characteristics, and to evaluate the prognostic value of the four diagnostic modalities-MRI, FDG-PET, scalp EEG, and SEEG-in terms of the localization of epileptogenic area. Design: The research team performed a retrospective analysis of outcomes for PLE patients who underwent resistive brain surgery. Setting: The study took place in the Neurosurgery Department of Epilepsy at the Second Hospital of Hebei Medical University in Shijiazhuang, China. Participants: Participants were 9 PLE patients, 4 males and 5 females, who underwent epilepsy surgery at the hospital between 2017 and 2019. Outcome Measures: The measures included demographic data, seizure data, electroencephalogram (EEG) recordings, magnetic resonance imaging (MRI) of the brain, positron emission tomography (PET), and stereotactic electroencephalogram (SEEG). The pathological findings were reviewed. Results: The five participants who had a PET all had positive results. Eight participants who had parietal lobe lesions had an MRI, and four had a stereotactic electroencephalogram (SEEG) that localized the epileptogenic zone. The interictal scalp EEG recordings for seven participants showed an abnormality, and six participants who had ictal surface EEG recordings showed parietal ictal EEG onset. Conclusions: Surgical excision of epileptogenic foci is the main treatment for drug-resistant PLE. Parietal functional anatomy is the basis for understanding and diagnosing PLE. Aura, semiology, interictal EEG, and PET are an important foundation for evaluation of PLE patients, and the SEEG is the most valuable tool, allowing localization of the epileptogenic zone.
Assuntos
Epilepsias Parciais , Epilepsia , Eletroencefalografia/métodos , Epilepsias Parciais/cirurgia , Epilepsia/diagnóstico , Epilepsia/cirurgia , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
Embryos devoid of autonomic innervation suffer sudden cardiac death. However, whether autonomic neurons have a role in heart development is poorly understood. To investigate if sympathetic neurons impact cardiomyocyte maturation, we co-cultured phenotypically immature cardiomyocytes derived from human induced pluripotent stem cells with mouse sympathetic ganglion neurons. We found that 1) multiple cardiac structure and ion channel genes related to cardiomyocyte maturation were up-regulated when co-cultured with sympathetic neurons; 2) sarcomere organization and connexin-43 gap junctions increased; 3) calcium imaging showed greater transient amplitudes. However, sarcomere spacing, relaxation time, and level of sarcoplasmic reticulum calcium did not show matured phenotypes. We further found that addition of endothelial and epicardial support cells did not enhance maturation to a greater extent beyond sympathetic neurons, while administration of isoproterenol alone was insufficient to induce changes in gene expression. These results demonstrate that sympathetic neurons have a significant and complex role in regulating cardiomyocyte development.
RESUMO
Diffraction gratings with high upward diffraction efficiency and large effective length are required for chip-scale light detection and ranging. We propose a diffraction grating based on a multilayer silicon nitride waveguide, which theoretically achieves an upward diffraction efficiency of 92%, a near-field effective length of 376 µm, and a far-field divergence angle of 0.105° at a wavelength of 850 nm. The diffraction grating has a high tolerance to process variations based on Monte Carlo analysis. When the conditions are ±5% layer thickness variation, ±50nm lithographic variation, and ±20nm wavelength drift, more than 71% of the grating samples have a diffraction efficiency higher than 80%, and 100% of the samples have an effective length larger than 200 µm (corresponding to a far-field divergence <0.2∘). Furthermore, the near-field effective length of the grating with an upward diffraction efficiency above 90% can be adjusted from hundreds of microns to centimeters by changing the etching layer thickness and the grating duty cycle. This diffraction grating has a potential application in optical sensing and imaging from visible to near-IR wavelengths.
RESUMO
Cytoplasmic incompatibility (CI) results when Wolbachia bacteria-infected male insects mate with uninfected females, leading to embryonic lethality. "Rescue" of viability occurs if the female harbors the same Wolbachia strain. CI is caused by linked pairs of Wolbachia genes called CI factors (CifA and CifB). The co-evolution of CifA-CifB pairs may account in part for the incompatibility patterns documented in insects infected with different Wolbachia strains, but the molecular mechanisms remain elusive. Here, we use X-ray crystallography and AlphaFold to analyze the CI factors from Wolbachia strain wMel called CidAwMel and CidBwMel. Substituting CidAwMel interface residues with those from CidAwPip (from strain wPip) enables the mutant protein to bind CidBwPip and rescue CidBwPip-induced yeast growth defects, supporting the importance of CifA-CifB interaction in CI rescue. Sequence divergence in CidAwPip and CidBwPip proteins affects their pairwise interactions, which may help explain the complex incompatibility patterns of mosquitoes infected with different wPip strains.
Assuntos
Wolbachia , Animais , Citoplasma/genética , Citosol , Drosophila melanogaster/genética , Feminino , Masculino , Saccharomyces cerevisiae , Simbiose/genética , Wolbachia/genética , Wolbachia/metabolismoRESUMO
Wild emmer wheat (Triticum dicoccoides, WEW) is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt). A powdery mildew resistance gene MlIW172 originated from WEW accession IW172 (G-797-M) is fine mapped in a 0.048 centimorgan (cM) genetic interval on 7AL, corresponding to a genomic region spanning 233 kb, 1 Mb and 800 kb in Chinese Spring, WEW Zavitan, and T. urartu G1812, respectively. MlIW172 encodes a typical NLR protein NLRIW172 and physically locates in an NBS-LRR gene cluster. NLRIW172 is subsequently identified as a new allele of Pm60, and its function is validated by EMS mutagenesis and transgenic complementation. Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations (PAV) in WEW populations. Four common single nucleotide variations (SNV) are detected between the Pm60 alleles from WEW and T. urartu, indicative of speciation divergence between the two different wheat progenitors. The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection.
Assuntos
Doenças das Plantas , Triticum , Alelos , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Melhoramento VegetalRESUMO
KEY MESSAGE: Powdery mildew resistance gene MlWE74, originated from wild emmer wheat accession G-748-M, was mapped in an NBS-LRR gene cluster of chromosome 2BS. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease. Wild emmer wheat (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene was transferred to hexaploid wheat line WE74 from wild emmer accession G-748-M. Genetic analysis revealed that the powdery mildew resistance in WE74 is controlled by a single dominant gene, herein temporarily designated MlWE74. Bulked segregant analysis (BSA) and molecular mapping delimited MlWE74 to the terminal region of chromosome 2BS flanking by markers WGGBD412 and WGGBH346 within a genetic interval of 0.25 cM and corresponding to 799.9 kb genomic region in the Zavitan reference sequence. Sequence annotation revealed two phosphoglycerate mutase-like genes, an alpha/beta-hydrolases gene, and five NBS-LRR disease resistance genes that could serve as candidates for map-based cloning of MlWE74. The geographical location analysis indicated that MlWE74 is mainly distributed in Rosh Pinna and Amirim regions, in the northern part of Israel, where environmental conditions are favorable to the occurrence of powdery mildew. Moreover, the co-segregated marker WGGBD425 is helpful in marker-assisted transfer of MlWE74 into elite cultivars.
Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Família Multigênica , Doenças das Plantas/genética , Triticum/genéticaRESUMO
OBJECTIVE: Dihydromyricetin (DMY), also called Ampelopsin, which was extracted from Ampelopsis grossedentata, has been demonstrated to have a protective effect against cell oxidative injury and cell apoptosis in vitro. In the present study, we tried to study the role of DMY on apoptosis of vascular smooth muscle cells (VSMCs) induced by hydrogen peroxide (H2O2) and explore the underlying mechanisms. METHODS: Apoptotic cells were detected by Hematoxylin and Eosin (H.E.) staining, Hoechst 33342 staining, and Annexin V-fluorescein isothiocyanate binding assay. The intracellular reactive oxygen species (ROS) level was estimated through fluorescence assay. The mRNA and protein expression of Caspase-3, Caspase-9, Bcl-2, and Bax were determined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. RESULTS: The results showed that the pretreatment of VSMCs with DMY not only significantly increased cell viability, reduced intracellular ROS release, alleviated the morphological changes of apoptosis, and decreased the apoptosis rate, but also upregulated Bcl-2 expression and downregulated Caspase-3, Caspase-9, Bax expression, and ultimately attenuated the H2O2-stimulated apoptosis. CONCLUSION: The inhibition of DMY on VSMC apoptosis may be mediated by ROS scavenging and the activation of the mitochondrial apoptotic signaling pathway.
RESUMO
Synthetic immunosuppressive glucocorticoids (GCs) are widely used to control inflammatory bowel disease (IBD). However, the impact of GC signaling on intestinal tumorigenesis remains controversial. Here, we report that intestinal epithelial GC receptor (GR), but not whole intestinal tissue GR, promoted chronic intestinal inflammation-associated colorectal cancer in both humans and mice. In patients with colorectal cancer, GR was enriched in intestinal epithelial cells and high epithelial cell GR levels were associated with poor prognosis. Consistently, intestinal epithelium-specific deletion of GR (GR iKO) in mice increased macrophage infiltration, improved tissue recovery, and enhanced antitumor response in a chronic inflammation-associated colorectal cancer model. Consequently, GR iKO mice developed fewer and less advanced tumors than control mice. Furthermore, oral GC administration in the early phase of tissue injury delayed recovery and accelerated the formation of aggressive colorectal cancers. Our study reveals that intestinal epithelial GR signaling repressed acute colitis but promoted chronic inflammation-associated colorectal cancer. Our study suggests that colorectal epithelial GR could serve as a predictive marker for colorectal cancer risk and prognosis. Our findings further suggest that, although synthetic GC treatment for IBD should be used with caution, there is a therapeutic window for GC therapy during colorectal cancer development in immunocompetent patients.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inflamação/tratamento farmacológico , Intestinos/patologia , Receptores de Glucocorticoides/uso terapêutico , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Masculino , CamundongosRESUMO
Traditional wavelengths (400-700 nm) have made tremendous inroads in vivo fluorescence imaging. However, the ability of visible light photon penetration hampered the bio-applications. With reduced photon scattering, minimal tissue absorption and negligible autofluorescence properties, near-infrared light (NIR 700-1700 nm) demonstrates better resolution, high signal-to-background ratios, and deep tissue penetration capability, which will be of great significance for in-vivo determination in deep tissue. In this review, we summarized the latest novel NIR inorganic nanomaterials and the emission mechanism including single-walled carbon nanotubes, rare-earth nanoparticles, quantum dots, metal nanomaterials. Subsequently, the recent progress of precise noninvasive diagnosis in biomedicine and cancer therapy utilizing near-infrared inorganic nanomaterials are discussed. In addition, this review will highlight the concerns, challenges and future directions of near-infrared light utilization.
RESUMO
Haemophilus influenzae infection is a well-known cause of serious invasive disease in adults and children. But incidence of the common serotypes are type b, f and a. There is very little information available on invasive disease of Haemophilus influenzae type e (Hie) in China, especially in children. We report a case of an immunocompetent child who was clinically diagnosed with bacterial meningitis with bacteremia caused by Hie. The literature on infection especially meningitis caused by Hie is reviewed.