Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 837
Filtrar
1.
Comput Methods Programs Biomed ; 221: 106869, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35576685

RESUMO

BACKGROUND AND OBJECTIVE: Bronchopulmonary dysplasia is a common respiratory disease in premature infants. The severity is diagnosed at the 56th day after birth or discharge by analyzing the clinical indicators, which may cause the delay of the best treatment opportunity. Thus, we proposed a deep learning-based method using chest X-ray images of the 28th day of oxygen inhalation for the early severity prediction of bronchopulmonary dysplasia in clinic. METHODS: We first adopted a two-step lung field extraction method by combining digital image processing and human-computer interaction to form the one-to-one corresponding image and label. The designed XSEG-Net model was then trained for segmenting the chest X-ray images, with the results being used for the analysis of heart development and clinical severity. Therein, Six-Point cardiothoracic ratio measurement algorithm based on corner detection was designed for the analysis of heart development; and the transfer learning of deep convolutional neural network models were used for the early prediction of clinical severities. RESULTS: The dice and cross-entropy loss value of the training of XSEG-Net network reached 0.9794 and 0.0146. The dice, volumetric overlap error, relative volume difference, precision, and recall were used to evaluate the trained model in testing set with the result being 98.43 ± 0.39%, 0.49 ± 0.35%, 0.49 ± 0.35%, 98.67 ± 0.40%, and 98.20 ± 0.47%, respectively. The errors between the Six-Point cardiothoracic ratio measurement method and the gold standard were 0.0122 ± 0.0084. The deep convolutional neural network model based on VGGNet had the promising prediction performance, with the accuracy, precision, sensitivity, specificity, and F1 score reaching 95.58 ± 0.48%, 95.61 ± 0.55%, 95.67 ± 0.44%, 96.98 ± 0.42%, and 95.61±0.48%, respectively. CONCLUSIONS: These experimental results of the proposed methods in lung field segmentation, cardiothoracic ratio measurement and clinic severity prediction were better than previous methods, which proved that this method had great potential for clinical application.

2.
Lancet Oncol ; 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35576956

RESUMO

BACKGROUND: Extensive-stage small-cell lung cancer (ES-SCLC) is associated with poor prognosis and treatment options are scarce. Immunotherapy has shown robust clinical activity in ES-SCLC in previous phase 3 trials. We aimed to assess the efficacy and safety of adebrelimab (SHR-1316), a novel anti-PD-L1 antibody, with standard chemotherapy as a first-line treatment for ES-SCLC. METHODS: The CAPSTONE-1 study was a randomised, double-blind, placebo-controlled, phase 3 trial, done in 47 tertiary hospitals in China. Key inclusion criteria were patients aged 18-75 years, with previously untreated histologically or cytologically confirmed ES-SCLC and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1. Eligible patients were randomly assigned (1:1) to receive four to six cycles of carboplatin (area under the curve of 5 mg/mL per min, day 1 of each cycle) and etoposide (100 mg/m2 of body-surface area, on days 1-3 of each cycle) with either adebrelimab (20 mg/kg, day 1 of each cycle) or matching placebo, followed by maintenance therapy with adebrelimab or placebo. All treatments were given intravenously in 21-day cycles. Randomisation was done using a centralised interactive web response system with a block size of four, stratified by liver metastases, brain metastases, and lactate dehydrogenase concentration. The primary endpoint was overall survival in patients who received at least one dose of study medication. Safety was analysed in the as-treated population. This study is complete and registered with ClinicalTrials.gov, NCT03711305. FINDINGS: Between Dec 26, 2018, and Sept 4, 2020, 462 eligible patients were enrolled and randomly assigned: 230 (50%) patients received adebrelimab plus chemotherapy (adebrelimab group) and 232 (50%) patients received placebo plus chemotherapy (placebo group). At data cutoff (Oct 8, 2021), median follow-up was 13·5 months (IQR 8·9-20·1). Median overall survival was significantly improved in the adebrelimab group (median 15·3 months [95% CI 13·2-17·5]) compared with the placebo group (12·8 months [11·3-13·7]; hazard ratio 0·72 [95% CI 0·58-0·90]; one-sided p=0·0017). The most common treatment-related grade 3 or 4 adverse events were decreased neutrophil count (174 [76%] patients in the adebrelimab group and 175 [75%] patients in the placebo group), decreased white blood cell count (106 [46%] and 88 [38%]), decreased platelet count (88 [38%] and 78 [34%]), and anaemia (64 [28%] and 66 [28%]). Treatment-related serious adverse events occurred in 89 (39%) patients in the adebrelimab group and 66 (28%) patients in the placebo group. Four treatment-related deaths were reported: two each in the adebrelimab group (respiratory failure and interstitial lung disease and pneumonia) and placebo group (multiple organ dysfunction and unknown cause of death). INTERPRETATION: Adding adebrelimab to chemotherapy significantly improved overall survival with an acceptable safety profile in patients with ES-SCLC, supporting this combination as a new first-line treatment option for this population. FUNDING: Jiangsu Hengrui Pharmaceuticals.

3.
J Nat Med ; 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534765

RESUMO

The aim of this study was to investigate the therapeutic effect of JQ-R on metabolic hypertension and its correlation with Fibroblast growth factor 21/Fibroblast growth factor receptors 1(FGF21/FGFR1) pathway. In this study, fructose-induced metabolic hypertension rats were used as hypertension models to detect the regulation effect of JQ-R on hypertension. The effects of JQ-R on blood glucose, blood lipids, serum insulin levels and other metabolic indicators of rats were also measured. The effects of JQ-R on FGF21/FGFR1 signaling pathway in model animals were detected by Real-time quantitative PCR and Western blotting. The results showed that JQ-R significantly reduce the blood pressure of model rats in a dose-dependent manner. Meanwhile, fasting insulin, fasting blood glucose, insulin resistance index, total cholesterol and triglyceride levels were significantly decreased, and glucose and lipid metabolism abnormalities were also significantly improved. JQ-R induces these changes along with FGFR1 phosphorylation, which was also detected in JQ-R treated FGF21 knockout mice. These results suggest that JQ-R can reduce blood pressure and improve glucose and lipid metabolism in fructose-induced hypertension rats. Activation of FGF21/FGFR1 signaling pathway to regulate downstream blood pressure and glucolipid metabolism-related pathways may be one of the important mechanisms of JQ-R in regulating blood pressure.

4.
Neural Regen Res ; 17(11): 2381-2390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35535875

RESUMO

Blood exosomes, which are extracellular vesicles secreted by living cells into the circulating blood, are regarded as a relatively noninvasive novel tool for monitoring brain physiology and disease states. An increasing number of blood cargo-loaded exosomes are emerging as potential biomarkers for preclinical and clinical Alzheimer's disease. Therefore, we conducted a meta-analysis and systematic review of molecular biomarkers derived from blood exosomes to comprehensively analyze their diagnostic performance in preclinical Alzheimer's disease, mild cognitive impairment, and Alzheimer's disease. We performed a literature search in PubMed, Web of Science, Embase, and Cochrane Library from their inception to August 15, 2020. The research subjects mainly included Alzheimer's disease, mild cognitive impairment, and preclinical Alzheimer's disease. We identified 34 observational studies, of which 15 were included in the quantitative analysis (Newcastle-Ottawa Scale score 5.87 points) and 19 were used in the qualitative analysis. The meta-analysis results showed that core biomarkers including Aß1-42, P-T181-tau, P-S396-tau, and T-tau were increased in blood neuron-derived exosomes of preclinical Alzheimer's disease, mild cognitive impairment, and Alzheimer's disease patients. Molecules related to additional risk factors that are involved in neuroinflammation (C1q), metabolism disorder (P-S312-IRS-1), neurotrophic deficiency (HGF), vascular injury (VEGF-D), and autophagy-lysosomal system dysfunction (cathepsin D) were also increased. At the gene level, the differential expression of transcription-related factors (REST) and microRNAs (miR-132) also affects RNA splicing, transport, and translation. These pathological changes contribute to neural loss and synaptic dysfunction. The data confirm that the above-mentioned core molecules and additional risk-related factors in blood exosomes can serve as candidate biomarkers for preclinical and clinical Alzheimer's disease. These findings support further development of exosome biomarkers for a clinical blood test for Alzheimer's disease. This meta-analysis was registered at the International Prospective Register of Systematic Reviews (Registration No. CRD4200173498, 28/04/2020).

5.
Mol Hum Reprod ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536234

RESUMO

A distinct age-related alteration in the uterine environment has recently been identified as a prevalent cause of the reproductive decline in older female mice. However, the molecular mechanisms that underlie age-associated uterine adaptability to pregnancy are not known. Sirtuin 1 (SIRT1), a multifunctional NAD+-dependent deacetylase that regulates cell viability, senescence and inflammation during aging, is reduced in aged decidua. Thus, we hypothesize that SIRT1 plays a critical role in uterine adaptability to pregnancy and that uterine-specific ablation of Sirt1 gene accelerates premature uterine aging. Female mice with uterine ablation of Sirt1 gene using progesterone receptor Cre (PgrCre) exhibit subfertility and signs of premature uterine aging. These Sirt1-deficient mothers showed decreases in litter size from their 1st pregnancy and became sterile (25.1 ± 2.5 weeks of age) after giving birth to the 3rd litter. We report that uterine-specific Sirt1 deficiency impairs invasion and spacing of blastocysts, and stromal cell decidualization, leading to abnormal placentation. We found that these problems traced back to the very early stages of hormonal priming of the uterus. During the window of receptivity, Sirt1 deficiency compromises uterine epithelial-stromal crosstalk, whereby estrogen, progesterone and Indian hedgehog signaling pathways are dysregulated, hampering stromal cell priming for decidualization. Uterine transcriptomic analyses also link these causes to perturbations of histone proteins and epigenetic modifiers, as well as adrenomedullin signaling, hyaluronic acid metabolism, and cell senescence. Strikingly, our results also identified genes with significant overlaps with the transcriptome of uteri from aged mice and transcriptomes related to master regulators of decidualization (e.g., Foxo1, Wnt4, Sox17, Bmp2, Egfr and Nr2f2). Our results also implicate accelerated deposition of aging-related fibrillar type I and III collagens in Sirt1-deficient uteri. Collectively, SIRT1 is an important age-related regulator of invasion and spacing of blastocysts, as well as decidualization of stromal cells.

6.
Front Psychiatry ; 13: 788677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546939

RESUMO

Preclinical and clinical studies have suggested that fibroblast growth factor (FGF) system contributed to the onset and development of schizophrenia (SCZ). However, there was no strong clinical evidence to link an individual FGF with SCZ. In this study, we aim to measure blood FGF9 levels in the patients with SCZ with and/or without medication, and test whether FGF9 has a potential to be a biomarker for SCZ. We recruited 130 patients with SCZ and 111 healthy individuals, and the ELISA and qRT-PCR assays were used to measure serum FGF9 levels in the participants. ELISA assay demonstrated that serum FGF9 protein levels were dramatically reduced in first-episode, drug-free patients, but not in chronically medicated patients when compared to healthy control subjects. Further analysis showed that treatment of the first-episode, drug-free SCZ patients with antipsychotics for 8 weeks significantly increased the serum FGF9 levels. In addition, we found that blood FGF9 mRNA levels were significantly lower in first-onset SCZ patients than controls. Under the receiver operating characteristic curve, the optimal cutoff values for FGF9 protein level as an indicator for diagnosis of drug-free SCZ patients was projected to be 166.4 pg/ml, which yielded a sensitivity of 0.955 and specificity of 0.86, and the area under the curve was 0.973 (95% CI, 0.954-0.993). Furthermore, FGF9 had good performance to discriminate between drug-free SCZ patients and chronically medicated patients, the optimal cutoff value for FGF9 concentration was projected to be 165.035 pg/ml with a sensitivity of 0.86 and specificity of 0.919, and the AUC was 0.968 (95% CI, 0.944, 0.991). Taken together, our results for the first time demonstrated the dysregulation of FGF9 in SCZ, and FGF9 has the potential to be served as a biomarker for SCZ.

7.
Front Bioeng Biotechnol ; 10: 876936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557856

RESUMO

Wound healing of skin defects remains a significant clinical problem due to inflammation, infection, and dysangiogenesis; especially, the promotion of microvasculature formation in healing of chronic wound or deep skin defects is critical as it supplies oxygen and nutrients to the impaired tissue, relieving uncontrolled inflammatory responses. The cellulose nanocrystals (CNCs) in the liquid crystalline phase, which facilitates cell proliferation and migration, has been shown to improve vascularization effectively. Therefore, we developed a novel injectable hydrogel based on Schiff base and coordination of catechol and Ag. The obtained hydrogels (CCS/CCHO-Ag) exhibited in situ forming properties, satisfactory mechanical performance, controlled release of Ag, antibacterial capacity, and biocompatibility. In addition, the hydrogels could also entirely cover and firmly attach wounds with irregular shapes, so as to reduce the re-injury rate. More importantly, experiments in vitro and in vivo demonstrated that CCS/CCHO-Ag hydrogels can promote neovascularization and tissue regeneration, thanks to their anti-inflammatory and antibacterial effects. In conclusion, these multifunctional hydrogels are well on the way to becoming competitive biomedical dressings, which show tremendous potential application in the field of tissue engineering.

8.
Cancer Med ; 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526267

RESUMO

BACKGROUND: Isocitrate dehydrogenase (IDH) is an appealing target for anticancer therapy, and IDH (IDH1/2) inhibitors have been approved for targeted therapy of acute myeloid leukemia (AML) and Cholangiocarcinoma. The therapeutic potential of IDH inhibitors for non-small-cell lung cancer (NSCLC) patients is under active clinical investigation. Thus, it would be necessary and meaningful to study the molecular and clinical characteristics of IDH mutation in NSCLC patients, especially in the Chinese population. METHODS: A total of 17,978 Chinese patients with NSCLC who underwent next -generation sequencing (NGS) testing were retrospectively reviewed. RESULTS: We identified 161 unique IDH mutations in 361 of 17,978 patients (2.01%). Common active-site mutations, including IDH1R100 , IDH1R132 , IDH2R140 , and IDH2R172 , were detected in 154 patients (0.86%) and were associated with male sex (p = 0.004) and older age (p = 0.02). The IDH mutation spectra observed in NSCLC were quite different from those in glioma or AML. Patients with IDH active-site mutations exhibited significantly higher coalterations in KRAS (p. G12/13/61, 22.1% vs. 8.2%, p < 0.001) or BRAF (p. V600E, 6.5% vs. 1.0%, p < 0.001), but significantly lower coalterations in activating EGFR (e18-e20, 22.7 vs. 37.9%, p < 0.001) than IDH wild-type patients. Furthermore, we found that active-site IDH mutations were correlated with a short PFS (2-5.6 months) and short OS (2-9.5 months), which may arise as a resistance mechanism against common targeted drugs. In vitro, we experimentally observed that the combination of an IDH inhibitor and EGFR TKI could better inhibit lung cancer cell proliferation than an EGFR TKI alone. CONCLUSIONS: Taken together, this study reveals the molecular and clinical characteristics of IDH mutations in Chinese NSCLC patients and provides a theoretical basis for IDH-directed treatment. The potential of IDH mutations as response markers for targeted therapy warrants further investigation.

9.
Health Inf Sci Syst ; 10(1): 3, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35401971

RESUMO

Nuclear cataract (NC) is a leading ocular disease globally for blindness and vision impairment. NC patients can improve their vision through cataract surgery or slow the opacity development with early intervention. Anterior segment optical coherence tomography (AS-OCT) image is an emerging ophthalmic image type, which can clearly observe the whole lens structure. Recently, clinicians have been increasingly studying the correlation between NC severity levels and clinical features from the nucleus region on AS-OCT images, and the results suggested the correlation is strong. However, automatic NC classification research based on AS-OCT images has rarely been studied. This paper presents a novel mixed pyramid attention network (MPANet) to classify NC severity levels on AS-OCT images automatically. In the MPANet, we design a novel mixed pyramid attention (MPA) block, which first applies the group convolution method to enhance the feature representation difference of feature maps and then construct a mixed pyramid pooling structure to extract local-global feature representations and different feature representation types simultaneously. We conduct extensive experiments on a clinical AS-OCT image dataset and a public OCT dataset to evaluate the effectiveness of our method. The results demonstrate that our method achieves competitive classification performance through comparisons to state-of-the-art methods and previous works. Moreover, this paper also uses the class activation mapping (CAM) technique to improve our method's interpretability of classification results.

10.
Front Aging Neurosci ; 14: 869964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478696

RESUMO

Background: Microglia participants to neuronal loss during brain development, inflammation, ischemia, and neurodegeneration. This bibliometric and visualized study aimed to confirm the top 100 cited original research in the field and to analyze their characteristics. Methods: The Web of Science database (WOS) was retrieved using the specific search strategy. The top 100 cited original articles that focused on the role of microglia in neurodegenerative diseases (NDs) were filtered by two researchers independently. The trend of yearly publications and citations, citation densities, languages, and global contributions were analyzed. The highly cited countries, authors, institutions, and journals were visualized by bibliographic coupling analysis. The highly cited authors and journals in the references were visualized by co-citation analysis. The research hotspots were revealed by co-occurrence analysis and burst detection of author keywords. Results: The top 100 cited articles were published during the period 1988 to 2019. The peak of publication occurred in 2005 and 2006. The yearly total citations presented a rising trend. The highly cited articles were contributed by 26 countries, the United States was the country with the overwhelming number of publications and cited times. Stevens, Beth was the author with the largest number of cited times. Mcgeer PL was the author most frequently cited in the references. Harvard University was the institution with the greatest number of cited times and publications. Nature was the journal with the largest number of cited times. Journal of neuroscience was both the most often published and most frequently cited journal in the references. "Microglia", "inflammation", "Alzheimer's disease" were the most frequently used keywords, and their average occurred time was around 2005. "Dementia," "delirium," "priming" were keywords that averagely occurred around 2010. The burst detection revealed that "TNF-beta," "macrophage," and "inflammation" were keywords that frequently burst in recent years. Conclusion: This bibliometric and visualized study revealed the top 100 cited original research that discussed the role of microglia in NDs. The United States was the biggest contributor, Harford University was the most influential institution. Journal of Neuroscience was the most often published and cited journal. Alzheimer's disease was the hotspot in microglia and NDs. Recent research mainly focused on inflammation.

11.
Br J Pharmacol ; 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393687

RESUMO

Sodium glucose co-transporter 2 inhibitors (SGLT-2is) improve cardiovascular outcomes in both diabetic and non-diabetic patients. Preclinical studies suggest that SGLT-2is directly affect endothelial function in a glucose-independent manner. The effects of SGLT-2is include decreased oxidative stress and inflammatory reactions in endothelial cells. Furthermore, SGLT2is restore endothelium-related vasodilation and regulate angiogenesis. The favourable cardiovascular effects of SGLT-2is could be mediated via a number of pathways: (1) inhibition of the overactive sodium-hydrogen exchanger; (2) decreased expression of nicotinamide adenine dinucleotide phosphate oxidases; (3) alleviation of mitochondrial injury; (4) suppression of inflammation-related signalling pathways (e.g., by affecting NF-κB); (5) modulation of glycolysis; and (6) recovery of impaired NO bioavailability. This review focuses on the most recent progress and existing gaps in preclinical investigations concerning the direct effects of SGLT-2is on endothelial dysfunction and the mechanisms underlying such effects.

12.
Food Funct ; 13(9): 4839-4860, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416186

RESUMO

Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.


Assuntos
Antineoplásicos , Cisplatino , Antineoplásicos/efeitos adversos , Apoptose , Cisplatino/efeitos adversos , Humanos , Rim , Nutrientes
13.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35260907

RESUMO

Cardiomyocyte elongation and alignment, a critical step in cardiomyocyte maturation starting from the perinatal stage, is crucial for formation of the highly organized intra- and inter-cellular structures for spatially and temporally ordered contraction in adult cardiomyocytes. However, the mechanism(s) underlying the control of cardiomyocyte alignment remains elusive. Here, we report that SIRT1, the most conserved NAD+-dependent protein deacetylase highly expressed in perinatal heart, plays an important role in regulating cardiomyocyte remodeling during development. We observed that SIRT1 deficiency impairs the alignment of cardiomyocytes/myofibrils and disrupts normal beating patterns at late developmental stages in an in vitro differentiation system from human embryonic stem cells. Consistently, deletion of SIRT1 at a late developmental stage in mouse embryos induced the irregular distribution of cardiomyocytes and misalignment of myofibrils, and reduced the heart size. Mechanistically, the expression of several genes involved in chemotaxis, including those in the CXCL12/CXCR4 and CCL2/CCR2/CCR4 pathways, was dramatically blunted during maturation of SIRT1-deficient cardiomyocytes. Pharmacological inhibition of CCL2 signaling suppressed cardiomyocyte alignment. Our study identifies a regulatory factor that modulates cardiomyocyte alignment at the inter-cellular level during maturation.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Animais , Diferenciação Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
14.
Bioengineered ; 13(4): 8503-8514, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332852

RESUMO

Cervical squamous cell carcinoma (CSCC), the most common cervical malignancy, is more likely to invade and metastasize than other cervical cancers. miR-125a, a tumor suppressor gene, has been confirmed to be associated with cancer metastasis. However, the role of miR-125a in CSCC and the underlying mechanism are unknown. miR-125a expression was confirmed by real-time quantitative PCR (RT-qPCR), and the Rad51 expression level was measured by western blotting analysis. CSCC cell proliferation, migration and invasion were assessed with functional assays, including CCK-8, colony formation, wound healing and Transwell assays. Our data confirmed that miR-125a is expressed at low levels in CSCC tissues and cells. Functionally, the overexpression of miR-125a greatly prevented the proliferation, migration and invasion of CSCC cells, and the inhibition of miR-125a expression strongly enhanced these behaviors in CSCC cells. Moreover, the expression of Rad51, a miR-125a target gene, greatly reversed the miR-125-mediated inhibition of CSCC cell proliferation, migration and invasion. In addition, we discovered that miR-125a downregulated the levels of phosphorylated PI3K, AKT and mTOR through Rad51 in CSCC cells. miR-125a, a tumor suppressor, can attenuate the malignant behaviors of CSCC cells by targeting Rad51. Therefore, the miR-125a/Rad51 axis might be a target for CSCC therapy.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Rad51 Recombinase , Neoplasias do Colo do Útero , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , MicroRNAs/genética , Rad51 Recombinase/genética , Neoplasias do Colo do Útero/genética
15.
Nat Commun ; 13(1): 1481, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304461

RESUMO

Immune checkpoint blockade (ICB) is a powerful approach for cancer therapy although good responses are only observed in a fraction of cancer patients. Breast cancers caused by deficiency of breast cancer-associated gene 1 (BRCA1) do not have an improved response to the treatment. To investigate this, here we analyze BRCA1 mutant mammary tissues and tumors derived from both BRCA1 mutant mouse models and human xenograft models to identify intrinsic determinants governing tumor progression and ICB responses. We show that BRCA1 deficiency activates S100A9-CXCL12 signaling for cancer progression and triggers the expansion and accumulation of myeloid-derived suppressor cells (MDSCs), creating a tumor-permissive microenvironment and rendering cancers insensitive to ICB. These oncogenic actions can be effectively suppressed by the combinatory treatment of inhibitors for S100A9-CXCL12 signaling with αPD-1 antibody. This study provides a selective strategy for effective immunotherapy in patients with elevated S100A9 and/or CXCL12 protein levels.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Calgranulina B/genética , Calgranulina B/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Imunoterapia , Camundongos , Oncogenes , Microambiente Tumoral/genética
16.
J Periodontal Res ; 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35266182

RESUMO

AIM(S): The objective of this study was to evaluate the changes in the physical and chemical properties of titanium surfaces contaminated by a Nd:YAG laser with different levels of energy and the regulation of macrophage polarization. MATERIALS AND METHODS: The titanium specimens were divided into four groups. The blank control group consisted of the above-mentioned contaminated titanium specimens, and the conditioned control group consisted of sandblasted and acid-etched (SLA) titanium surfaces. The blank control and condition control groups were sealed and preserved in a sterile dark box. There were two experimental groups treated with the Nd:YAG laser-one with 0.5 W and the second with 1.0 W. Surface characteristics were evaluated using scanning electron microscopy, surface profilometry, and contact angle assays. The macrophage viability and proliferation of mouse RAW246.7 were analysed, and the macrophage surface markers, macrophage cytokines, and inflammatory and anti-inflammatory genes were expressed. RESULTS: The Nd:YAG laser increased the hydrophilicity and roughness of the titanium surface after decontamination. Fewer RAW264.7 cells were observed on the titanium surface after Nd:YAG decontamination than on the contaminated titanium surface expressing the M1-type macrophage marker CCR7, whereas more cells were observed after decontamination than on the contaminated titanium surface expressing the M2-type macrophage marker CD206. Following Nd:YAG laser treatment, the secretion of the inflammatory cytokines IL-1ß and TNF-α by RAW264.7 cells on the titanium surface was decreased, whereas the secretion of the anti-inflammatory cytokines IL-4 and IL-10 was increased. RAW264.7 cells cultured for 3 days on the titanium surface after Nd:YAG decontamination treatment expressed significantly reduced levels of the inflammation-related genes IL-1ß, TNF-α, IL-6 and iNOS. The expression of the anti-inflammatory genes Arg-1, IL-4, IL-10 and TGF-ß by RAW264.7 cells was significantly up-regulated after 3 days of incubation on the titanium surface after Nd:YAG decontamination treatment. CONCLUSION(S): The Nd:YAG laser increased the hydrophilicity and roughness of the titanium surface after decontamination, and this change inhibited M1-type macrophage polarization and promoted M2-type macrophage polarization.

17.
J Healthc Eng ; 2022: 7797484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265305

RESUMO

Ectopic pregnancy (EP) is associated with significant morbidity and mortality, but the molecular mechanism of this condition is still unclear. miR-196b, a hot research direction for the past few years, participates in the occurrence of various diseases but whether it plays a regulatory role in EP is still unclear. This research was set to investigate the expression and potential value of miR-196b in EP. qRT-PCR was utilized to determine the relative expression of miR-196b in peripheral blood of EP patients and to observe the expression changes of miR-196b before and after treatment. Correlation analysis of miR-196b with HCG and progesterone was performed. Logistic regression analysis was applied to independent risk factors affecting EP patients. TargetScan was utilized to predict the downstream target genes of miR-196b, and GO and KEGG analysis was carried out using the R language pack. qRT-PCR showed that miR-196b expression in peripheral blood of EP patients was lower than that of normal people. miR-196b expression in patients after treatment was notably higher than that before treatment. In addition, correlation analysis showed that miR-196b was positively correlated with the expression of HCG, progesterone, and estradiol. Risk factor analysis revealed that abortion history, pelvic inflammatory disease history, lower abdominal surgery history, and miR-196b were independent risk factors for EP, and the AUC of the combined ROC curve was 0.899. GO function enrichment and KEGG signal pathway enrichment found 10 potential functions and 2 potential signal pathways of miR-196b. miR-196b is expressed in EP patients, is differentially expressed according to the change in EP condition, and is expected to become a promising index for clinical diagnosis of EP.


Assuntos
MicroRNAs , Gravidez Ectópica , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Gravidez Ectópica/genética , Progesterona , Curva ROC , Transdução de Sinais
18.
Adv Mater ; 34(16): e2200048, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35170102

RESUMO

Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), is presented, which allows a cathepsin-B-triggered stealthy-to-sticky structural transformation. The compositions and ratios are optimized through dissipative particle dynamics simulations. GFLG-DP displays tumor-specific transformation and the consequently released dendron-Ppa is found to effectively accumulate on the tumor cell membrane. The interaction between the dendron-Ppa and the tumor cell membrane results in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in the solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with the endoplasmic reticulum disrupts cell homeostasis, making tumor cells more vulnerable and susceptible to photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Antracenos , Linhagem Celular Tumoral , Dendrímeros/química , Homeostase , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros
19.
BMC Psychiatry ; 22(1): 91, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130845

RESUMO

BACKGROUND: Obesity is a serious worldwide public health problem, especially for people with mental disorders. AIM: To explore the related factors of obesity by analyzing the metabolic indexes of patients with common mental disorders in stable stage. METHODS: Five hundred seventy-six subjects with major depressive disorder (MDD), bipolar disorder (BD) or schizophrenia (SCZ) were included, who received fixed drug dose and routine drug treatment for 2 years or more. Their venous blood was collected, and the blood metabolic indexes were analyzed. RESULTS: BD and SCZ are more prone to obesity than MDD. Multiple linear regression analysis showed that the value of BMI increased with the increase of age(B = 0.084, p < 0.001), TG(B = 0.355, p = 0.024), LDL(B = 0.697, p < 0.001), LDH(B = 0.011, p = 0.002), SCr(B = 0.051, p < 0.001), UA(B = 0.014, p < 0.001), HbA1c(B = 0.702, p = 0.004) and hsCRP(B = 0.101, p < 0.001). And It decreased with the increase of HDL(B = -1.493, p < 0.001). DISCUSSION: People with mental disorders should regularly check blood indicators and strengthen weight management to reduce the risk of obesity and promote their health.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Esquizofrenia , Transtorno Bipolar/complicações , Transtorno Bipolar/tratamento farmacológico , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Transtornos Mentais/complicações , Obesidade/complicações , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico
20.
Front Cell Infect Microbiol ; 12: 821596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155279

RESUMO

Protein palmitoylation-a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group-is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins' palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.


Assuntos
Lipoilação , Viroses , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...