Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
BMC Geriatr ; 21(1): 14, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407187

RESUMO

BACKGROUND: With the extended life expectancy of the Chinese population and improvements in surgery and anesthesia techniques, the number of aged patients undergoing surgery has been increasing annually. However, safety, effectiveness, and quality of life of aged patients undergoing surgery are facing major challenges. In order to standardize the perioperative assessment and procedures, we have developed a perioperative evaluation and auxiliary decision-making system named "Aged Patient Perioperative Longitudinal Evaluation-Multidisciplinary Trial (APPLE-MDT)". METHODS: We will conduct a perioperative risk evaluation and targeted intervention, with follow-ups at 1, 3, and 6 months after surgery. The primary objective of the study is to evaluate the effectiveness of the "Aged Patient Perioperative Longitudinal Evaluation-Multiple Disciplinary Trial Path" (hereinafter referred to as the APPLE-MDT path) in surgical decision-making for aged patients (≥75 years) undergoing elective surgery under non-local anesthesia in the operating room. The secondary objectives of the study are to evaluate the postoperative outcome and health economics of the APPLE-MDT path applied to the surgical decision-making of aged patients (≥75 years) undergoing elective surgery under non-local anesthesia and to optimize intervention strategies for aged patients undergoing surgery to reduce the occurrence of postoperative complications and improve the quality of life after surgery. DISCUSSION: It is necessary to formulate a reliable, effective, and concise evaluation tool, which can effectively predict the perioperative complications and mortality of aged patients, support targeted intervention strategies, and allow for a more comprehensive risk and benefit analysis, thereby forming an effective senile perioperative surgery management path. It is expected that the implementation of this protocol can reduce the occurrence of postoperative complications, improve the postoperative quality of life, shorten hospital stay, reduce hospitalization expenses, reduce social burden, and allow the elderly to have a good quality of life after surgery. TRIAL REGISTRATION: ChiCTR, ChiCTR1800020363 , Registered 15 December 2018.

2.
Clin Chim Acta ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33476588

RESUMO

BACKGROUND: A member of the S100 family of Ca2+-binding proteins, S100A1 is highly expressed in cardiac muscle tissue. Although this protein is considered an indicator of acute myocardial infarction (AMI), high-throughput and sensitive detection methods are still urgently needed. We constructed a rapid and sensitive method for detecting S100A1 and to investigate the clinical utility of S100A1 as a biomarker for the early diagnosis of AMI and subsequent prognostic assessments. We developed an automated chemiluminescent immunoassay to detect S100A1. We then analyzed the performance of the newly developed assay including evaluation of the analytical sensitivity, analytical selectivity, linear range, accuracy and repeatability. METHODS: We recruited 87 patients with AMI or angina pectoris to explore the value of this marker for the early diagnosis and prognostic assessment. RESULTS: The chemiluminescent-immune-based S100A1 assay had functional analytical sensitivity with a detection limit of 0.13 ng/ml, and a wide linear range of 0.13 to 31.66 ng/ml. It also exhibited good repeatability with intra-assay and inter-assay findings of < 5% and <15%, respectively. Plasma S100A1 was found to have a higher diagnostic sensitivity than conventional cardiac biomarkers (creatine kinase-MB and cardiac troponin T). The survival analysis showed that a higher concentration of plasma S100A1 (>1.02 ng/ml) was notably associated with the poor prognosis of AMI patients after first PCI. CONCLUSIONS: Measurement of circulating S100A1 concentrations with our newly developed chemiluminescent-immune-based assay shows potential for use in the clinic. This assay could enable early identification and prognostic assessment of AMI.

3.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418883

RESUMO

Atmospheric Infrared Ultraspectral Sounder (AIUS) aboard the Chinese GaoFen-5 satellite was launched on 9 May 2018. It is the first hyperspectral occultation spectrometer in China. The spectral quality assessment of AIUS measurements at the full and representative spectral bands was presented by comparing the transmittance spectra of measurements with that of simulations. AIUS measurements agree well with simulations. Statistics show that more than 73% of the transmittance differences are within ±0.05 and more than 91% of the transmittance differences are within ±0.1. The spectral windows for O3, H2O, temperature, CO, CH4, and HCl were also analyzed. The comparison experiments indicate that AIUS data can provide reliable data for O3, H2O, temperature, CO, CH4, and HCl detection and dynamic monitoring. The H2O profiles were then retrieved from AIUS measurements, and the precision, resolution, and accuracy of the H2O profiles are discussed. The estimated precision is less than 1.3 ppmv (21%) below 57 km and about 0.9-2.4 ppmv (20-31%) at 60-90 km. The vertical resolution of H2O profiles is better than 5 km below 32 km and about 5-8 km at 35-85 km. Comparisons with MLS Level 2 products indicate that the mean H2O profiles of AIUS have a good agreement with those of MLS. The relative differences are mostly within ±10% at 16-75 km and about 10-15% at 16-20 km in 60∘-80∘ S. For 60∘-65 ∘ S in December, the relative differences are within ±5% between 22 km and 80 km. The H2O profiles retrieved from AIUS measurements are credible for scientific research.

4.
Anal Methods ; 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33411868

RESUMO

Screening of drug targets is critical to understand the mechanism of action of the drug. The aim of this study is to screen the drug-resistant target proteins of the anticancer drug methotrexate (MTX) by using chemical proteomics and to further study the interaction between MTX and its target protein in vitro and in vivo according to the principle of the increasing thermal stability of the target protein after binding with the drug molecule. The results showed that 21 drug resistance related proteins of MTX including phosphoglycerate kinase 1 (PGK1) were detected by quantitative proteomics. The expression of PGK1 increased with the prolongation of incubation time of MTX, indicating PGK1 protein is affected by MTX time dependently in cells. Further the results of the study on the interaction between MTX and PGK1 in vitro and in vivo using cellular thermal shift assay (CETSA) showed that the level of PGK1 in MTX-treated groups was higher than that in the control group under the stimulation of higher temperature conditions, indicating that PGK1 has direct interactions with MTX. The present study provided the data and theoretical support for the study of the resistant target proteins of MTX and a novel point for the extension application of MTX.

5.
Int J Biol Sci ; 17(1): 247-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390847

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. TNBC is enriched with breast cancer stem cells (BCSCs), which are responsible for cancer initiation, cancer progression and worse prognosis. Our previous study found that HES1 was overexpressed and promoted invasion in TNBC. However, the role of HES1 in modulating BCSC stemness of TNBC remains unclear. Here, we found that HES1 upregulates Slug both in transcriptional level and in protein level. HES1 also has a positive correlation with Slug expression in 150 TNBC patient samples. TNBC patients with high HES1 and Slug levels show worse prognosis in both progression-free survival and overall survival analyses. Survival analyses indicate that the effects of HES1 on survival prognosis may depend on Slug. Furthermore, we reveal that HES1 is a novel transcriptional activator for Slug through acting directly on its promoter. Meanwhile, HES1 knockdown reduces BCSC self-renewal, BCSC population, and cancer cell proliferation in TNBC, whereas overexpression of Slug restores the oncogenic function of HES1, both in vitro and in vivo, suggesting that HES1 performs its oncogenic role through upregulating Slug. Taken together, HES1 promotes BCSC stemness properties via targeting Slug, highlighting that HES1 might be a novel candidate for BCSC stemness regulation in TNBC and providing new clues for identifying promising prognostic biomarkers and therapeutic targets of TNBC.

6.
Gene ; 765: 145114, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891769

RESUMO

The current study aimed to investigate the role and underlying mechanisms of circ_LARP4 in diabetic nephropathy (DN). Here, mouse mesangial cells (SV40-MES13) were cultured with 30 mM glucose to establish a DN cellular model. The qRT-PCR results indicated that circ_LARP4 expression was downregulated in the DN cellular model compared to that in the control cells. As determined by an MTT assay, circ_LARP4 overexpression via the circ_LARP4 overexpression (OE) plasmids inhibited the cell proliferation rate. As determined by an Annexin V/PI kit and flow cytometry, circ_LARP4 overexpression increased the cell apoptosis rate. As measured by Western blot, circ_LARP4 overexpression enhanced BAX expression but reduced Bcl-2 expression, also suggesting an enhancement of cell apoptosis. Moreover, regarding cell fibrosis, circ_LARP4 overexpression reduced the mRNA levels of fibrosis markers, including fibronectin, collagen I and collagen IV. Interestingly, miR-424 was found to be reduced in the DN cellular model after transfection with the circ_LARP4 OE plasmids. In addition, restoration of miR-424 expression with the miR-424 mimics reversed the negative effects of circ_LARP4 overexpression on cell proliferation and fibrosis. In conclusion, circ_LARP4 was lower in the DN cellular model than in normal cells, and circ_LARP4 overexpression resulted in decreased cell proliferation and cell fibrosis but increased cell apoptosis in the DN cellular model by sponging miR-424.


Assuntos
DNA Circular/genética , Células Mesangiais/metabolismo , Proteínas/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Nefropatias Diabéticas/genética , Fibrose , Glucose/metabolismo , Células Mesangiais/fisiologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
7.
Nanotechnology ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33291094

RESUMO

Surface-enhanced Raman scattering (SERS) has drawn attention for broad applications. We successfully fabricated highly effective SERS structures via evaporation-induced self-assembly of blend nanoparticles containing sliver nanospheres (Ag NSs) and gold nanorods (Au NRs) on a super-hydrophobic (SH) substrate. On the SH substrate, the droplets of the mixed aqueous solution of silver nanospheres (Ag NSs), gold nanorods (Au NRs), and probe molecules can preserve their spherical shape during the evaporation process, and the probe molecules (R6G) are confined into extremely small areas after solvent removal due to hydrophobicity-enhanced concentration effects. The Raman enhancement effect of the blend nanoparticles with 40 vol % Ag NSs is far higher than that of the other samples. The structure of the aggregated Ag NSs on the film-like Au NRs greatly enhances the SERS effect of Ag NSs, which is optimal for the blend system with 40 vol % Ag NSs. The SERS structure also displays excellent signal reproducibility (RSD < 10%) and low detection limits (0.5 nM). Thus, this work offers a simple and efficient strategy to fabricate a highly effective SERS structure with broad applications in environmental science, analytical chemistry, etc.

8.
Ann Transl Med ; 8(19): 1234, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33178766

RESUMO

Background: Activating transcription factor 2 (ATF2) regulates the expression of downstream target genes and is phosphorylated by the Ras-extracellular-signal-regulated kinase (ERK) pathway. Acetylation of ATF2 is necessary for this type of regulation. However, the molecular mechanism by which the Ras-ERK pathway mediates the regulation of acetylated ATF2 is unknown. This study investigates the mechanism of Ras-ERK pathway-mediated regulation of acetylated ATF2 in maintaining the characteristic phenotype of pancreatic cancer cells. Methods: This study was carried out using ASPC-1 and BXPC-3 pancreatic cancer cell lines transfected with the double mutant RasG12V/T35S. The levels of phosphorylated ERK1/2 were measured to establish the activated Ras-ERK pathway. The regulation of acetylated ATF2 was examined by detecting the protein level using western blotting, and the effects on cancer cell phenotype were measured using cell viability, proliferation, migration, and apoptosis assays. Also, chromatin immunoprecipitation (ChIP) assays were used to measure the effect on respective downstream target genes. Results: The results showed that RasG12V/T35S reduced the level of acetylated ATF2 in ASPC-1 and BXPC-3 cells. Compared to wild-type ATF2, the mutant ATF2K357Q (which mimics the irreversible acetylated form of ATF2) reduced the cancer cell phenotype and showed decreased enrichment on target genes upon transfection with Ras. Moreover, the level of acetylated ATF2 was regulated by the degradation of p300 through E3 ubiquitin ligase mouse double minute 2 homolog (MDM2). Conclusions: Activation of the Ras-ERK pathway regulates acetylated ATF2 through degradation of p300 via a proteasome-dependent pathway, which alters the transcription of downstream target genes responsible for the cancer cell phenotype.

9.
Cell Death Dis ; 11(11): 1008, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230102

RESUMO

Diabetic kidney disease (DKD) is closely associated with the high risk of cardiovascular disease and mortality. Exosomal circRNAs can exert significant roles in the pathology of various diseases. Nevertheless, the role of exosomal circRNAs in DKD progression remains barely known. Circular RNA DLGAP4 has been reported to be in involved in acute ischemic stroke. In our study, we found exosomal circ_DLGAP4 was increased in the exosomes isolated from HG-treated mesangial cells (MCs), DKD patients, and DKD rat models compared with the corresponding normal subjects. Then, we observed that exo-circ_DLGAP4 significantly promoted proliferation and fibrosis of MCs cells. Moreover, to study the underlying mechanism of circ_DLGAP4 in regulating DKD, bioinformatics method was consulted and miR-143 was predicted as its target. The direct correlation between miR-143 and circ_DLGAP4 was validated in MCs. MCs proliferation and fibrosis were increased by circ_DLGAP4, which could be decreased by mimic-miR-143. Next, elevated expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) is involved in various diseases. However, the function of ERBB3 in DKD development remains poorly known. Next, ERBB3 was predicted as the downstream target for miR-143. It was displayed that circ_DLGAP4 promoted proliferation and fibrosis of MCs by sponging miR-143 and regulating ERBB3/NF-κB/MMP-2 axis. Meanwhile, the loss of exo-circ_DLGAP4 induced miR-143 and repressed ERBB3/NF-κB/MMP-2 expression in MCs. Subsequently, in vivo assays were performed and it was proved that overexpression of circ_DLGAP4 markedly promoted DKD progression in vivo via modulating miR-143/ERBB3/NF-κB/MMP-2. In conclusion, we indicated that exosomal circ_DLGAP4 could prove a novel insight for DKD development.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33214191

RESUMO

INTRODUCTION: To investigate the risk factors for the death in patients with COVID-19 with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS: We retrospectively enrolled inpatients with COVID-19 from Wuhan Jinyintan Hospital (Wuhan, China) between December 25, 2019, and March 3, 2020. The epidemiological and clinical data were compared between non-T2DM and T2DM or between survivors and non-survivors. Univariable and multivariable Cox regression analyses were used to explore the effect of T2DM and complications on in-hospital death. RESULTS: A total of 1105 inpatients with COVID-19, 967 subjects with without T2DM (n=522 male, 54.0%) and 138 subjects with pre-existing T2DM (n=82 male, 59.4%) were included for baseline characteristics analyses. The complications were also markedly increased in patients with pre-existing T2DM, including acute respiratory distress syndrome (ARDS) (48.6% vs 32.3%, p<0.001), acute cardiac injury (ACI) (36.2% vs 16.7%, p<0.001), acute kidney injury (AKI) (24.8% vs 9.5%, p<0.001), coagulopathy (24.8% vs 11.1%, p<0.001), and hypoproteinemia (21.2% vs 9.4%, p<0.001). The in-hospital mortality was significantly higher in patients with pre-existing T2DM compared with those without T2DM (35.3% vs 17.4%, p<0.001). Moreover, in hospitalized patients with COVID-19 with T2DM, ARDS and coagulopathy were the main causes of mortality, with an HR of 7.96 (95% CI 2.25 to 28.24, p=0.001) for ARDS and an HR of 2.37 (95% CI 1.08 to 5.21, p=0.032) for coagulopathy. This was different from inpatients with COVID-19 without T2DM, in whom ARDS and cardiac injury were the main causes of mortality, with an HR of 12.18 (95% CI 5.74 to 25.89, p<0.001) for ARDS and an HR of 4.42 (95% CI 2.73 to 7.15, p<0.001) for cardiac injury. CONCLUSIONS: Coagulopathy was a major extrapulmonary risk factor for death in inpatients with COVID-19 with T2DM rather than ACI and AKI, which were well associated with mortality in inpatients with COVID-19 without T2DM.

11.
Aging (Albany NY) ; 122020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231561

RESUMO

Acute kidney injury (AKI) is a complex renal disease. Long non-coding RNAs (lncRNAs) have frequently been associated with AKI. In the present study, we aimed to investigate the molecular mechanism(s) of LINC00052 in AKI. We found that LINC00052 expression was significantly decreased in AKI patient serum. In addition, in a hypoxic AKI cell model, LINC00052 expression was strongly elevated. In an I/R-triggered AKI rat model, the expression of TNF-α, IL-6 and IL-1ß mRNA was strongly elevated. Moreover, we predicted miR-532-3p to be targeted by LINC00052 in AKI. Overexpression of LINC00052 increased hypoxia-induced inhibition of NRK-52E cell proliferation and reversed hypoxia-triggered apoptosis. Furthermore, we found that induction of TNF-α, IL-6 and IL-1ß was repressed by overexpression of LINC00052. LINC00052 decreased hypoxia-induced ROS and MDA accumulation in vitro and increased SOD activity. Decreased levels of c-myc and cyclin D1 were observed in renal tissues of AKI rats. Lastly, Wnt/ß-catenin signaling was inactivated in NRK-52E cells experiencing hypoxia, and LINC00052 upregulation reactivated Wnt/ß-catenin signaling by sponging miR-532-3p. Taken together, these results suggest that LINC00052 ameliorates AKI by sponging miR-532-3p and activating Wnt signaling.

12.
J Cell Mol Med ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33216456

RESUMO

Long non-coding RNAs (lncRNAs) are well known as crucial regulators to breast cancer development and are implicated in controlling autophagy. LncRNAs are also emerging as valuable prognostic factors for breast cancer patients. It is critical to identify autophagy-related lncRNAs with prognostic value in breast cancer. In this study, we identified autophagy-related lncRNAs in breast cancer by constructing a co-expression network of autophagy-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA). We evaluated the prognostic value of these autophagy-related lncRNAs by univariate and multivariate Cox proportional hazards analyses and eventually obtained a prognostic risk model consisting of 11 autophagy-related lncRNAs (U62317.4, LINC01016, LINC02166, C6orf99, LINC00992, BAIAP2-DT, AC245297.3, AC090912.1, Z68871.1, LINC00578 and LINC01871). The risk model was further validated as a novel independent prognostic factor for breast cancer patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, based on the risk model, the low-risk and high-risk groups displayed different autophagy and oncogenic statues by principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation. Taken together, these findings suggested that the risk model of the 11 autophagy-related lncRNAs has significant prognostic value for breast cancer and might be autophagy-related therapeutic targets in clinical practice.

13.
J Cell Mol Med ; 2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33009725

RESUMO

Diabetic nephropathy (DN) is a serious kidney disease resulted from diabetes. Dys-regulated proliferation and extracellular matrix (ECM) accumulation in mesangial cells contribute to DN progression. In this study, we tested expression level of MIAT in DN patients and mesangial cells treated by high glucose (HG). Up-regulation of MIAT was observed in DN. Then, functional assays displayed that silence of MIAT by siRNA significantly repressed the proliferation and cycle progression in mesangial cells induced by HG. Meanwhile, we found that collagen IV, fibronectin and TGF-ß1 protein expression was obviously triggered by HG, which could be rescued by loss of MIAT. Then, further assessment indicated that MIAT served as sponge harbouring miR-147a. Moreover, miR-147a was decreased in DN, which exhibited an antagonistic effect of MIAT on modulating mesangial cell proliferation and fibrosis. Moreover, bioinformatics analysis displayed that E2F transcription factor 3 (E2F3) could act as direct target of miR-147a. We demonstrated that E2F3 was greatly increased in DN and the direct binding association between miR-147a and E2F3 was evidenced using luciferase reporter assay. In summary, our data explored the underlying mechanism of DN pathogenesis validated that MIAT induced mesangial cell proliferation and fibrosis via sponging miR-147a and regulating E2F3.

14.
Diabetes Metab Res Rev ; : e3416, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33120435

RESUMO

Patients with type 2 diabetes mellitus (T2DM) are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and chronic kidney disease (CKD), which are important causes of disabling and death in patients with T2DM. For the prevention and management of ASCVD or CKD, cardiovascular risk factors should be systematically evaluated, and ASCVD and CKD should be screened in patients with T2DM. In this consensus, we recommended that metformin should be used as the first-line therapy for patients with T2DM and ASCVD or very high cardiovascular risk, heart failure (HF) or CKD, and should be retained in the treatment regimen unless contraindicated or not tolerated. In patients with T2DM and established ASCVD or very high cardiovascular risk, addition of a glucagon-like peptide 1 receptor agonist (GLP-1RA) or sodium-glucose cotransporter type 2 (SGLT2) inhibitor with proven cardiovascular benefits should be considered independent of individualised glycated haemoglobin (HbA1C ) targets. In patients with T2DM and HF, an SGLT2 inhibitor should be preferably added regardless of HbA1C levels. In patients with T2DM and CKD, SGLT2 inhibitors should be preferred for the combination therapy independent of individualised HbA1C targets, and GLP-1RAs with proven renal benefits would be alternative if SGLT2 inhibitors are contraindicated. Moreover, the prevention of hypoglycaemia and management of multiple risk factors by comprehensive regimen, including lifestyle intervention, antihypertensive therapies, lipid-lowering treatment and antiplatelet therapies, should be kept in mind in treating patients with T2DM and ASCVD, HF or CKD.

15.
Plants (Basel) ; 9(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126554

RESUMO

Degradation of permafrost with a thin overlying active layer can greatly affect vegetation via changes in the soil water and nutrient regimes within the active layer, while little is known about the presence or absence of such effects in areas with a deep active layer. Here, we selected the northeastern Qinghai-Tibet Plateau as the study area. We examined the vegetation communities and biomass along an active layer thickness (ALT) gradient from 0.6 to 3.5 m. Our results showed that plant cover, below-ground biomass, species richness, and relative sedge cover declined with the deepening active layer, while the evenness, and relative forb cover showed a contrary trend. The vegetation indices and the dissimilarity of vegetation composition exhibited significant changes when the ALT was greater than 2.0 m. The vegetation indices (plant cover, below-ground biomass, evenness index, relative forb cover and relative sedge cover) were closely associated with soil water content, soil pH, texture and nutrient content. Soil water content played a key role in the ALT-vegetation relationship, especially at depths of 30-40 cm. Our results suggest that when the ALT is greater than 2.0 m, the presence of underlying permafrost still benefits vegetation growth via maintaining adequate soil water contents at 30-40 cm depth. Furthermore, the degradation of permafrost may lead to declines of vegetation cover and below-ground biomass with a shift in vegetation species.

16.
Sleep Breath ; 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33128178

RESUMO

OBJECTIVE: To explore the effect of minimally invasive surgical treatment on the sleep quality and work ability of patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). METHODS: Fifty-one patients who underwent minimally invasive surgery in the Sleep Respiratory Disease Diagnostic and Treatment Center of the West China Fourth Hospital of Sichuan University from January 2017 to January 2019 were selected as study subjects. All subjects completed polysomnography monitoring (PSG), an Epworth sleepiness scale (ESS), and a work ability index (WAI) before and 1 year after the minimally invasive surgery so that the changes could be compared. RESULTS: (1) The apnea-hypopnea index (AHI), microarousal index (MAI), ESS, longest duration of apnea, and longest duration of hypoventilation in OSAHS patients decreased, while the lowest blood oxygen saturation (LsaO2) increased after minimally invasive surgery. The differences were statistically significant (p < 0.05). (2) The WAI questionnaire score increased from (37.76 ± 4.46) to (40.00 ± 4.53) after minimally invasive surgery (P < 0.05). (3) The change in the WAI questionnaire score after minimally invasive surgery was influenced by the occupational category and the change in ESS. CONCLUSION: Minimally invasive surgical treatment shows significant benefit in improving the sleep quality and working ability of patients with OSAHS.

17.
Protein Sci ; 29(12): 2468-2481, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33078460

RESUMO

The viral cytotoxic T lymphocyte (CTL) epitope peptides presented by classical MHC-I molecules require the assembly of a peptide-MHC-I-ß2m (pMHC-I) trimolecular complex for T cell receptor (TCR) recognition, which is the critical activation link for triggering antiviral T cell immunity. Research on T cell immunology in the Ursidae family, especially structural immunology, is still lacking. In this study, the structure of the key trimolecular complex pMHC-I, which binds a peptide from canine distemper virus, was solved for the first time using giant panda as a representative species of Ursidae. The structural characteristics of the giant panda pMHC-I complex (pAime-128), including the unique pockets in the peptide-binding groove (PBG), were analyzed in detail. Comparing the pAime-128 to others in the bear family and extending the comparison to other mammals revealed distinct features. The interaction between MHC-I and ß2m, the features of pAime-128 involved in TCR docking and cluster of differentiation 8 (CD8) binding, the anchor sites in the PBG, and the CTL epitopes of potential viruses that infect pandas were clarified. Unique features of pMHC-I viral antigen presentation in the panda were revealed by solving the three-dimensional (3D) structure of pAime-128. The distinct characteristics of pAime-128 indicate an unusual event that emerged during the evolution of the MHC system in the bear family. These results provide a new platform for research on panda CTL immunity and the design of vaccines for application in the bear family.

18.
Kaohsiung J Med Sci ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33089927

RESUMO

Preeclampsia (PE) is a major cause of perinatal and maternal mortality and morbidity, which affects 2% to 8% of pregnancies in the world. The aberrant maternal inflammation and angiogenic imbalance have been demonstrated to contribute to the pathogenesis of PE. This research aimed to investigate the effect of Astragaloside IV (AsIV) in the treatment of PE and the underlying mechanisms. A rat PE-like model was established by tail vein injection of lipopolysaccharide (LPS) and different doses of AsIV (40 and 80 mg/kg) were treated at the same time. Systolic blood pressure, total urine protein and urine volume were observed. Serum and placenta inflammatory cytokines were measured by ELISA kit. The mRNA and protein expression of relative genes were analyzed by qRT-PCR and Western blotting. In PE-like rats, there were obvious increases in systolic blood pressure, total urine protein and urine volume, which were obviously alleviated by treatment with AsIV. Serum levels of interleukin (IL)-1ß, tumor necrosis factor alpha (TNF-α), IL-6 and IL-18, as well as IL-4, IL-10, PIGF, VEGF and sFlt-1, were all reversed by treatment with AsIV. Meanwhile, AsIV treatment improved abnormal pregnancy outcomes, such as low litter size and low fetal weight. In addition, AsIV treatment downregulated the mRNA expression of inflammatory gene IL-1ß and IL-6 in PE rats model, and AsIV treatment inhibited the activation of TLR-4, NF-κB, and sFlt-1 in the placenta of PE rats. Our findings indicated the first evidence that AsIV alleviated PE-like signs, and this improvement effect is possibly through inhibition of inflammation response via the TLR4/NF-κB signaling pathway.

19.
J Int Med Res ; 48(9): 300060520952621, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32883129

RESUMO

Mastocytosis is an accumulation of clonal mast cells within tissues and it is most commonly caused by an activating mutation in the KIT gene. In this study, we report a neonatal case who presented with diffuse cutaneous mastocytosis (CM) at birth. In China, nine other cases of neonatal-onset CM have been reported in the literature since 2006. In those cases, diffuse CM and urticaria pigmentosa were the main symptoms, and mutations in exon 17 at codon 816 in KIT were identified.

20.
J Transl Med ; 18(1): 331, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867770

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as crucial contributors to the development of breast cancer and are involved in the stemness regulation of breast cancer stem cells (BCSCs). LncRNAs are closely associated with the prognosis of breast cancer patients. It is critical to identify BCSC-related lncRNAs with prognostic value in breast cancer. METHODS: A co-expression network of BCSC-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA) was constructed. Univariate and multivariate Cox proportional hazards analyses were used to identify a stemness risk model with prognostic value. Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and receiver operating characteristic (ROC) curve analysis were performed to validate the risk model. Principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation were conducted to analyze the risk model. RESULTS: In this study, BCSC-related lncRNAs in breast cancer were identified. We evaluated the prognostic value of these BCSC-related lncRNAs and eventually obtained a prognostic risk model consisting of 12 BCSC-related lncRNAs (Z68871.1, LINC00578, AC097639.1, AP003119.3, AP001207.3, LINC00668, AL122010.1, AC245297.3, LINC01871, AP000851.2, AC022509.2 and SEMA3B-AS1). The risk model was further verified as a novel independent prognostic factor for breast cancer patients based on the calculated risk score. Moreover, based on the risk model, the low- risk and high-risk groups displayed different stemness statuses. CONCLUSIONS: These findings suggested that the 12 BCSC-related lncRNA signature might be a promising prognostic factor for breast cancer and can promote the management of BCSC-related therapy in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA