Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.796
Filtrar
1.
Eur Radiol ; 30(1): 337-345, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31338650

RESUMO

OBJECTIVES: To investigate the repeatability, reproducibility, and staging and monitoring of the performance of native T1 mapping for noninvasively assessing liver fibrosis in comparison with acoustic radiation force impulse (ARFI) elastography. METHODS: The repeatability and reproducibility were explored in 8 male Sprague-Dawley rats with intraclass correlation coefficient (ICC). Different degrees of fibrosis were induced in 52 rats by carbon-tetrachloride (CCl4) insult. Another 16 rats were used to build fibrosis progression and regression models. The native T1 values and shear wave velocity (SWV) were quantified by using native T1 mapping and ARFI elastography, respectively. The METAVIR system (F0-F4) was used for the staging of fibrosis. The area under the receiver operating characteristic curve (AUC) was determined to assess the performance of quantitative parameters for staging and monitoring fibrosis. RESULTS: Native T1 values shared similar good repeatability (ICC = 0.93) and reproducibility (ICC = 0.87) with SWV (ICC = 0.84-0.93). The AUC of native T1 values were 0.84, 0.84, and 0.75 for diagnosing significant fibrosis (≥ F2) and liver cirrhosis (F4) and detecting fibrosis progression, and those of SWV were 0.81, 0.86, and 0.7, respectively. No significant difference in performance was found between the two quantitative parameters (p ≥ 0.496). For detecting fibrosis regression, native T1 values had a better accuracy (AUC = 0.99) than SWV (AUC = 0.56; p = 0.002). CONCLUSION: Native T1 mapping may be a reliable and accurate method for noninvasively assessing liver fibrosis. Compared with ARFI elastography, it provides similar good repeatability and reproducibility, a similar high accuracy for staging fibrosis, and a better accuracy for detecting fibrosis regression. KEY POINTS: • Native T1 mapping is a valuable tool for noninvasively assessing liver fibrosis and can be measured on virtually all clinical MRI machines without additional hardware or gadolinium chelate injection. • Compared with acoustic radiation force impulse elastography, native T1 mapping yields similar good repeatability and reproducibility and a similar high accuracy for staging fibrosis. • Native T1 mapping provides a significantly better performance for detecting fibrosis regression than acoustic radiation force impulse elastography.

2.
Eur Radiol ; 30(1): 547-557, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31396730

RESUMO

OBJECTIVES: To determine the integrative value of contrast-enhanced computed tomography (CECT), transcriptomics data and clinicopathological data for predicting the survival of bladder urothelial carcinoma (BLCA) patients. METHODS: RNA sequencing data, radiomics features and clinical parameters of 62 BLCA patients were included in the study. Then, prognostic signatures based on radiomics features and gene expression profile were constructed by using least absolute shrinkage and selection operator (LASSO) Cox analysis. A multi-omics nomogram was developed by integrating radiomics, transcriptomics and clinicopathological data. More importantly, radiomics risk score-related genes were identified via weighted correlation network analysis and submitted to functional enrichment analysis. RESULTS: The radiomics and transcriptomics signatures significantly stratified BLCA patients into high- and low-risk groups in terms of the progression-free interval (PFI). The two risk models remained independent prognostic factors in multivariate analyses after adjusting for clinical parameters. A nomogram was developed and showed an excellent predictive ability for the PFI in BLCA patients. Functional enrichment analysis suggested that the radiomics signature we developed could reflect the angiogenesis status of BLCA patients. CONCLUSIONS: The integrative nomogram incorporated CECT radiomics, transcriptomics and clinical features improved the PFI prediction in BLCA patients and is a feasible and practical reference for oncological precision medicine. KEY POINTS: • Our radiomics and transcriptomics models are proved robust for survival prediction in bladder urothelial carcinoma patients. • A multi-omics nomogram model which integrates radiomics, transcriptomics and clinical features for prediction of progression-free interval in bladder urothelial carcinoma is established. • Molecular functional enrichment analysis is used to reveal the potential molecular function of radiomics signature.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117428, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31376727

RESUMO

Room temperature phosphorescence (RTP) materials have become a hot topic in fields of organic light-emitting dioes, biological sensing and imaging. The present work reports firstly that 1,3,5-trifluoro-2,4,6-triiodobenzene (TITFB) can act as a simple pure organic NIR phosphor due to its novel function in promoting n-π∗ transition. Also, TITFB crystal has longer phosphorescence lifetime than other ordinary multiiodoluminophors and TITFB powder. Based on the TITFB crystal structure, σ-hole and π-hole capture mechanism of n-electron is proposed, i.e., the excited state energy is decreased and n-electrons are stabilized to cause slower radiative decay rate due to the restriction of σ-hole and π-hole bond. Both computational and experimental studies support the mechanism. The new electron-capture mode is more conducive to understanding pure organic ultralong lifetime RTP.

5.
Biomed Pharmacother ; 121: 109310, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710895

RESUMO

Currently, there is no effective method to prevent renal interstitial fibrosis after acute kidney injury (AKI). In this study, we established and screened a new renal interstitial fibrosis rat model after cisplatin-induced AKI. Our results indicated that rats injected with 4 mg/kg cisplatin once a week for two weeks after firstly administrated with 6.5 mg/kg loading dose of cisplatin could set up a more accurate model reflecting AKI progression to renal interstitial fibrosis. Then, we investigated the effects and possible mechanisms of human umbilical cord blood mononuclear cells (hUCBMNCs) on renal tubular interstitial fibrosis after cisplatin-induced AKI. In rats injected with hUCBMNCs for four times, level of matrix metalloproteinase 7(MMP-7)in serum and urine, urinary albumin/creatinine ratio, tubular pathological scores, the relative collagen area of the tubulointerstitial region, endoplasmic reticulum dilation and the mitochondrial ultrastructural damage were significantly improved. The level of reactive oxygen species, α-smooth muscle actin (α-SMA), [NOD]-like pyrin domain containing protein 3 and cleaved-Caspase 3 in renal tissue decreased significantly. However, in rats injected with hUCBMNCs for two times, no significant difference was discovered in MMP-7 levels and urinary albumin/creatinine ratio. Although expression of α-SMA and the percentage areas of collagen staining in tubulointerstitial tissues were ameliorated in rats injected with hUCBMNCs for two times, the effects were significantly weaker than those in rats injected with hUCBMNCs for four times. Taken together, our study constructed a highly efficient, duplicable novel rat model of renal fibrosis after cisplatin-induced AKI. Multiple injections of hUCBMNCs may prevent renal interstitial fibrosis after cisplatin-induced AKI.

6.
Sci Total Environ ; 701: 134930, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726410

RESUMO

Natural and synthetic progestogens in livestock environments have become a concern due to the frequent presence and potential adverse effects on aquatic organisms. Here we investigated the biotransformation of progestogens by wastewater-borne bacteria in the field and laboratory under oxic and anoxic conditions. The results showed that all progestogens dissipated faster under oxic conditions than under anoxic conditions, and natural progesterone transformed faster than synthetic progestogens. Meanwhile, dozens of bacterial strains capable of degrading progestogens were successfully isolated from the swine wastewater, and Bacillus sp. P19 and Bacillus sp. DGT2 were found the best for progesterone and dydrogesterone transformation, respectively. In the degradation experiments using a single bacterial strain, progesterone and dydrogesterone dissipated under oxic conditions with half-lives of 11.6 h and 18.2 h, respectively. The transformation pathways were proposed based on the identified transformation products. The findings from this study showed that progestogens can be biotransformed, but not fully mineralized in the environment.

7.
Enzyme Microb Technol ; 132: 109409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731962

RESUMO

Zygosaccharomyces rouxii is a well-known salt-tolerant yeast. In our previous study, it was interesting that Z. rouxii could produce higher levels of 4-hydroxy-2, 5-dimethyl-3(2 H)-furanone in 120 g/L D-fructose and 180 g/L NaCl involved YPD medium at 5 d. In order to explore the resistance and furanone production mechanisms of Z. rouxii under D-fructose regulation, a comparative transcriptomics method in Z. rouxii was to set to find differentially expressed genes, the physiological and biochemical indexes (growth and cell morphology, lipid peroxidation and relative electrical conductivity, the antioxidant enzymes activity), and the expression of oxidoreductase activity genes. The results indicated that a larger number of different expressed genes at transcriptome analysis, such as the series antioxidant enzymes were related to the resistance characteristics. Research had confirmed that the living cell numbers and cell areas of D-fructose regulation group were significantly lower than the controls at the initial stage, while those higher than of the controls at the late stage. During the fermentation period, the lipid peroxidation and the relative electrical conductivity of the yeast cell membrane were increased. And also the D-fructose regulation group present lower inhibition superoxide anion ability. The activity of CAT in the D-fructose regulation group was always higher than that of the control group. Only the activity of GSH-Px was found to be significantly increased at 1 d except for other enzymes activities. Most of the oxidoreductase activity genes, such as especially the GSH-Px gene under D-fructose regulation conditions were expressed at higher levels than those of control groups. Combining the levels of transcription and enzymes activity data, those could understand that exogenous D-fructose had a stress effect on Z. rouxii at the early stage of culture. With the fermentation time progress, it was no longer a stressor substance for the Z. rouxii, and changed the nutrient to promote growth of Z. rouxii in the later stages. During the whole process, GSH-Px was the main defense enzyme and CAT was the sustained defense enzyme. Therefore, the experimental results might provide effective mechanisms in Z. rouxii for practical application of furanone production in the industry under exogenous D-fructose regulation.

8.
J Nanosci Nanotechnol ; 20(1): 447-451, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383192

RESUMO

The electrical and optical properties of micro-light emitting diodes (µ-LEDs), including current-voltage (I-V), capacitance-voltage (C-V) curves, photoluminescence (PL) as well as electroluminescence (EL) spectra have been measured and analyzed. It is found that the unit area emitting intensity of small size µ-LED is stronger that of big size µ-LED at the same conditions, due to the enhancement of both the internal quantum efficiency ηint and extraction efficiency Cex. The present method of utilizing the µ-LED for improving the unit area brightness of LEDs is applicable to high efficiency surface emitting device on GaN-on-silicon platform.

9.
Chemosphere ; 238: 124602, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545211

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been known to exhibit neurotoxicity in rats; however, the underlying mechanism remains unknown and there is no available intervention. In this study, we aimed to investigate the role of oxidative and nitrosative stress in the neurotoxicity in the cerebral cortex and primary neurons in rats following the BDE-153 treatment. Compared to the untreated group, BDE-153 treatment significantly induced the neurotoxic effects in rats, as manifested by the increased lactate dehydrogenase (LDH) activities and cell apoptosis rates, and the decreased neurotrophic factor contents and cholinergic enzyme activities in rats' cerebral cortices and primary neurons. When compared to the untreated group, the oxidative and nitrosative stress had occurred in the cerebral cortex or primary neurons in rats following the BDE-153 treatment, as manifested by the increments in levels of reactive oxygenspecies (ROS), malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) mRNA and protein expressions, along with the decline in levels of superoxide dismutase (SOD) activity, glutathione (GSH) content, and peroxiredoxin I (Prx I) and Prx II mRNA and protein expressions. In addition, the ROS scavenger N-acetyl-l-cysteine (NAC) or NO scavenger NG-Nitro-l-arginine (L-NNA) significantly rescued the LDH leakage and cell survival, reversed the neurotrophin contents and cholinergic enzymes, mainly via regaining balance between oxidation/nitrosation and antioxidation. Overall, our findings suggested that oxidative and nitrosative stresses are involved in the neurotoxicity induced by BDE-153, and that the antioxidation is a potential targeted intervention.

10.
J Sci Food Agric ; 100(1): 308-314, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525267

RESUMO

BACKGROUND: Peanut is among the most common of food allergies, and one of its allergens is Ara h 2. A previous study revealed that this allergen was recognized by serum immunoglobulin E (IgE) in over 90% of a peanut-allergic patient population. Enzymatic cross-linking is a popular processing method used to tailor food functionality, such as antigenicity. RESULT: The cross-linking reactions of Ara h 2 were catalyzed by polyphenol oxidase (PPO), and the relevant reaction sites were identified using mass spectrometry and StavroX software. Two pairs of intramolecular cross-linking peptides and two intermolecular cross-linking peptides were found. Intramolecular cross-linking was speculated to occur between ARG131 (amino acids 116-131) and TYR65 (amino acids 63-80) and between TYR60 (amino acids 56-62) and ARG92 (amino acids 92-102); the intermolecular cross-linking sites were ARG31 with TYR84 or TYR89 and TYR65 or TYR72 with ARG92 or ARG102 . Three out of four cross-linking peptides were found in α-helices, and destruction of this secondary structure resulted in a loose tertiary structure. Although seven linear allergen epitopes were involved in cross-linking, the IgE binding capacity of protein changed slightly, while its sensitization potential decreased in mouse model. CONCLUSION: Exploring the structural change of Ara h 2 after cross-linking is beneficial in further understanding the influence of structure on sensitization. This result indicated the future possibility of precision processing on structure of proteins to improve their properties. © 2019 Society of Chemical Industry.

11.
Dev Comp Immunol ; 103: 103529, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669309

RESUMO

The myeloid differentiation protein 2 (MD2)-related lipid-recognition (ML) proteins display diverse biological functions in host immunity and lipid metabolism by interacting with different lipids. Human MD2, an indispensable accessory protein in TLR4 signaling pathway, specifically recognizes lipopolysaccharides (LPS), thereby leading to the activation of TLR4 signaling pathway to produce many effectors that participate in inflammatory and immuneresponses against Gram-negative bacteria. Toll and immune deficiency (IMD) pathways are first characterized in Drosophila and are reportedly present in crustaceans, but the recognition and activation mechanism of these signaling pathways in crustaceans remains unclear. In the present study, a novel ML protein was characterized in mud crab (Scylla paramamosain) and designated as SpMD2. The complete SpMD2 cDNA sequence is 1114 bp long with a 465 bp open reading frame; it encodes a protein that contains 154 amino acids (aa). In the deduced protein, a signal peptide (1-21 aa residues) and a ML domain (43-151 aa residues) were predicted. SpMD2 shared a similar three-dimensional structure and a close evolutionary relationship with human MD2. SpMD2 was highly expressed in gills, hemocytes, intestine, and hepatopancreas and was upregulated in gills and hemocytes after challenges with bacteria, thereby suggesting its involvement in antibacterial defense. Western blot assay showed that SpMD2 possesses strong binding activities to different bacteria and two fungi. ELISA demonstrated that SpMD2 exhibits binding abilities to LPS, lipid A, peptidoglycan (PGN), and lipoteichoic acid (LTA). Its binding ability to LPS and lipid A were stronger than to PGN or LTA, implying that SpMD2 was an important LPS-binding protein in mud crab. Bacterial clearance assay revealed that the pre-incubation of Vibrio parahemolyticus with SpMD2 facilitates bacterial clearance in vivo and that knockdown of SpMD2 dramatically suppresses the bacterial clearance and decreases the expression of several antimicrobial peptides (AMPs). Furthermore, SpMD2 overexpression could enhance the promoter activity of SpALF2. These results revealed that SpMD2 affects bacterial clearance by regulating AMPs. Thus, by binding to LPS and by regulating AMPs, SpMD2 may function as a potential receptor, which is involved in the recognition and activation of a certain immune signaling pathway against Gram-negative bacteria. This study provides new insights into the diverse functions of ML proteins and into the antibacterial mechanisms of crustaceans.

12.
J Nanosci Nanotechnol ; 20(4): 2205-2213, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492229

RESUMO

In this study, three-dimensional (3D) networked porous polyvinyl alcohol/sodium alginate/graphene oxide (PVA/SA/GO) spherical composites were fabricated by the sol-gel method and employed as adsorbents for the adsorption of methylene blue (MB) in aqueous solution. The obtained samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal property analysis, and nitrogen adsorption/desorption isotherms. Moreover, the adsorption properties for MB were investigated by batch experiments. The pseudo-first-order and pseudo-second-order equations were used to fit the adsorption kinetics data, and the Langmuir and Freundlich isothermal models were used to analyze the adsorption isothermals. The results showed that the spherical composites had 3D porous structures, and GO, PVA and SA were fused and linked together by self-assembly, physical intertwining, hydrogen bonding, and Ca2+ and boric acid crosslinking. The maximum adsorption capacity of the 3D porous PVA/SA/GO spherical composites for MB was 759.3 mg/g. The adsorption kinetics had a better agreement with the pseudo-secondorder equation than the pseudo-first-order equation, and the equilibrium data followed the Freundlich model.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31794631

RESUMO

In this article, we describe an in-house polymerase chain reaction-sequence specific priming (PCR-SSP) assay designed for undergraduate medical students as part of the experimental pathogen biology and immunology (EPBI) course. It screens human leukocyte antigen (HLA)-DR2 allotype from genomic DNA samples using a rapid and single-tube PCR technique, yielding definitive typing result without conventional post-amplification step like probing or Sanger sequencing. This laboratory exercise offers the undergraduate medical students an opportunity to learn about current molecular biology techniques in HLA genotyping with limited effort and cost, in addition to a better understanding of concepts presented in the classroom lectures. Upon completing this experiment module, the students show statistically significant improvement in several key indexes, such as the knowledge about the mainstream HLA DNA typing techniques, awareness of the relevance of this knowledge for their future scientific research, immunogenetics-related basic laboratory skills they acquire, and interest and desire for mastering this assay (all p < .05). This easy to implement set of experiments is composed of a two-session lab module occupying eight teaching hours, and has been run successfully in our laboratory.

14.
Parasit Vectors ; 12(1): 568, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783771

RESUMO

BACKGROUND: Giardia duodenalis causes giardiasis, with diarrhea as the primary symptom. The trophozoite proliferation of this zoonotic parasite is mainly affected by telomerase, although the mechanism of telomerase regulation has not been thoroughly analyzed. METHODS: This study was performed to identify the telomerase RNA-binding domain (TRBD)-interacting protein in G. duodenalis and its regulation of telomerase. Interaction between TRBD and interacting proteins was verified via pulldown assays and co-immunoprecipitation (co-IP) techniques, and the subcellular localization of the protein interactions was determined in vivo via split SNAP-tag labeling. The hammerhead ribozyme was designed to deplete the mRNA of TRBD-interacting proteins. RESULTS: Using TRBD as bait, we identified zinc-finger domain (ZFD)-containing proteins and verified it via pulldown and co-IP experiments. Protein-protein interaction occurred in the nuclei of 293T cells and both nuclei of G. duodenalis. The hammerhead ribozyme depleted ZFD mRNA levels, which reduced the reproduction rate of G. duodenalis, telomerase activity and telomere length. CONCLUSIONS: Our findings suggest that ZFD may regulate telomere function in G. duodenalis nuclei.

15.
Cell Prolif ; : e12735, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797479

RESUMO

Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.

16.
Bioorg Chem ; : 103448, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31785858

RESUMO

Eight new highly oxygenated fungal polyketides, namely, 15-hydroxy-1,4,5,6-tetra-epi-koninginin G (1), 14-hydroxykoninginin E (2), koninginin U (3), 4'-hydroxykoninginin U (4), koninginin V (5), 14-ketokoninginin B (6), 14-hydroxykoninginin B (7), and 7-O-methylkoninginin B (8), together with six known related analogues (9-14), were isolated from Trichoderma koningiopsis QA-3, a fungus obtained from the inner root tissue of the well known medicinal plant Artemisia argyi. All these compounds are bicyclic polyketides, with compound 1 contains unusual hemiketal moiety at C-5 and compounds 2-14 having ketone group at C-1 and double bond at C-5(6). The structures and absolute configurations of the new compounds were established by spectroscopic analysis, X-ray crystal diffraction, modified Mosher's method, and ECD calculation. The absolute configurations of the known compounds 9, 10, and 12 were determined by X-ray crystal diffractions for the first time. The antimicrobial activities against human pathogen, marine-derived aquatic bacteria, and plant-pathogenic fungi of compounds 1-14 were evaluated, and compound 1 showed remarkable activity against aquatic pathogen Vibrio alginolyticus with MIC value 1 µg/mL, which is as active as that of the positive control.

17.
Ecotoxicol Environ Saf ; : 109959, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31787383

RESUMO

The Phytotoxicity of and mechanism underlying selenite-mediated tolerance to Cd stress in Typha angustifolia were studied hydroponically with respect to metal uptake and translocation, photosynthesis-related parameters, contents of proline and O2•-, products of lipid peroxidation, cell viability, enzymatic and non-enzymatic antioxidants, glyoxalases and phytochelatins. T. angustifolia were exposed to 25, 50 and 100 µM of Cd alone and in conjunction with 5 mg L-1 of selenite in full-strength Hoagland's nutrient solution for 30 days. Results showed that Cd contents in T. angustifolia leaves and roots increased in a dose-dependent manner and were higher in roots, but those of BAC, BCF and TF changed in a contrary pattern. Addition of selenite to Cd-containing treatments further reduced Cd levels in T. angustifolia leaves and roots, as well as BAC, BCF and TF. A diphasic effect was found in T. angustifolia for the contents of total chlorophyll, GSH, PC and GSSG, as well as activities of CAT, POD, SOD and GR, in response to Cd stress alone and in conjunction with selenite supplementation, but the same effect was not observed for Pn, Cond, Tr, Ci, Fv/Fm and ϕPSII. In contrast, exogenous selenite supplementation enhanced the contents of total chlorophyll and the non-enzymatic antioxidants, as well as activities of enzymatic antioxidants, while the values of photosynthetic fluorescence parameters were rescued. Selenite addition decreased Cd-induced cell death. Proline contents and Gly I activities in T. angustifolia leaves kept increasing in a dose-dependent manner of Cd concentrations in the growth media and selenite addition further enhanced both parameters. Addition of selenite could quench Cd-mediated generation of MDA, O2•- and MG in T. angustifolia leaves and reduce Cd-induced Gly II activity. A U-shaped GSH/GSSG ratio in T. angustifolia leaves suggests a possible trade-off between PC synthesis and GR activity since both share the same substrate GSH. Therefore, confined BAC, BCF and TF were a mechanism that confers T. angustifolia tolerance to Cd stress, and that exogenous selenite supplementation could depress Cd-induced stress in T. angustifolia by rescuing the photosynthetic fluorescence, enhancing non-enzymatic and enzymatic antioxidants that scavenge O2•- and MG, and potentiating PC synthesis that chelates Cd.

18.
Anal Chem ; 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789017

RESUMO

Pulmonary fibrosis (PF) is a fatal disease with increasing prevalence. Non-radioactive and non-invasive diagnosis of PF at an early stage can improve the prognosis but represents a daunting challenge. Up-regulation of nitric oxide (NO) is a typical micro-environmental feature of PF. Here we report a small-molecule probe, PNO1, that can fluorogenically sense this micro-environmental feature for PF diagnosis. We demonstrate that PNO1 fluorescence is 6-fold higher in PF-diseased mice lungs than in normal-control groups. In addition to this in vivo result, PNO1 can also be applied in vitro to detect PF-diseased cells and ex vivo to detect PF-diseased tissues from clinical patients. These results highlight PNO1 as a complement to the traditional immunostaining-based methods for PF detection to facilitate quick screening for anti-PF drug candidates.

19.
Nat Plants ; 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792396

RESUMO

Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (Tannin1 and Tannin2) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and Quelea quelea supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals.

20.
J Food Biochem ; : e13109, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793675

RESUMO

High-fat diet (HFD) and sucrose intake can lead to hyperlipidemia, hypercholesterolemia, and nonalcoholic fatty liver disease (NAFLD) as well as disturbed gastrointestinal microbiota and dysfunctional intestinal barrier. In the present study, we showed that Ganoderma lucidum polysaccharide and chitosan (PC) significantly mitigated the hyperlipidemia in HFD-fed hamsters via lowering the contents of serum total triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (AST). Furthermore, PC changed the composition of gastrointestinal microbiota and elevated the relative abundances of beneficial bacteria, such as Prevotella, Oscillibacter, and SCFA-producers. Interestingly, we also found that the abundances of Prevotella, Alloprevotella, Bifidobacterium, and Alistipes were negatively associated with serum lipid profiles. Collectively, the above-mentioned findings indicated that PC could improve lipid metabolic disorders, at least in part, by modulating gastrointestinal microbiota, suggesting that PC could be used as a potential lipid-lowering ingredient in functional foods. PRACTICAL APPLICATIONS: PC could ameliorate lipid metabolism disorder, at least in part, by regulating specific gut microbiota, suggesting its potential as a novel lipid-lowering ingredient in functional foods. We believed that our findings could be of interest to the readers because they help others further understand the gut microbiota alterations that occurred after PC supplementation in the context of metabolic syndrome (MetS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA