Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32881484

RESUMO

Perovskite structures of organic and inorganic halides are peculiar structures with many interesting properties. Using their photoelectric effect, the structures have been used in photocells, photoelectric sensors, and light-emitting diodes. In conventional perovskite film crystallization, which is a one-step method, the MAPbI3 crystals form disordered needlelike crystals at room temperature. Such needlelike crystal films have rough surfaces and low coverage to the substrate, resulting in insignificant photoelectric effects. With the assistance of an electric field and three-dimensional (3D) printing, the direction of the perovskite needlelike crystal can be arranged to make it orderly. In this way, the photoelectric sensor of the ordered MAPbI3 perovskite needlelike crystal film can be prepared. This sensor has high sensitivity, high stability, and high response speed. Moreover, it has anisotropy and higher photoelectric sensitivity in the direction perpendicular to the needle crystal. Most interestingly, the sensors respond differently to polarized light in different directions, and this effect can be used to detect the direction and degree of polarization of polarized light.

2.
Food Chem ; 339: 127775, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916400

RESUMO

Carbon quantum dots (CQDs) prepared by a green one-step approach was used for sensitive and selective assay of Escherichia coli O157: H7 (E. coli). CQDs was synthesized from orange peel as a carbon source via a microwave-assisted method. The CQDs displayed strong green fluorescence under excitation wavelength of 420 nm. A fluorescent probe (CQDs-MNPs) for E. coli was fabricated based on CQDs labeled with aptamer (aptamer-CQDs) and magnetic nanoparticles labeled with complementary DNA (cDNA-MNPs). Fluorescent intensity of the CQDs-MNPs was decreased with addition of E. coli. The linearity between fluorescent intensity and E. coli concentration was used for developing a fluorescent method with detecting range of 500-106 CFU/mL and detection limit of 487 CFU/mL. Milk samples contaminated by E. coli were analyzed by this method, and the results agreed with that achieved by plate-counting methods. This fluorescent probe exhibits great potential in guaranteeing food quality and safety.

3.
J Agric Food Chem ; 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32886514

RESUMO

In this work, a reaction-based ratiometric and colorimetric sensor was designed and synthesized for probing bisulfite (HSO3-) by coupling coumarin (CM) with barbituric (BA) moiety. Further tests have shown that CM-BA has high selectivity and sensitivity for the recognition of HSO3-, which can be applied for the detection of HSO3- in environmental and biological systems very effectively. The fluorescence intensity ratios (F462/F568) exhibited an outstanding HSO3--dependent response with ultrafast response time (within 20 s) and a lower detection limit (105 nM). Meanwhile, the color of the CM-BA solution changed from green to colorless during the recognition process, and its fluorescence changed from green to blue. The mechanism of response is confirmed by the density functional theory (DFT) model. In summary, CM-BA has demonstrated low toxicity and good permeability, which can be applied for imaging HSO3- in cells and zebrafish safely and effectively. Besides, this novel sensor CM-BA successfully realized the quantification of the concentration of HSO3- in paper strips and food samples.

4.
J Virol ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967959

RESUMO

Selective autophagy regulates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and aggregated proteins. Furthermore, autophagy is capable of degrading avibirnavirus, but the mechanism responsible for this process is unclear. Here, we show that autophagy cargo receptor p62 regulates the degradation of the avibirnavirus capsid protein VP2. Binding of p62 to VP2 enhance autophagic induction and promotes autophagic degradation of viral protein VP2. Further study showed that the interaction of p62 with viral protein VP2 is dependent on ubiquitination at the K411 site of VP2 and the ubiquitin-associated domain of p62. Mutation analysis showed that the K411R mutation of viral protein VP2 prohibits its p62-mediated degradation. Consistently, p62 lacking the ubiquitin-associated domain or LC3-interacting region no longer promoted degradation of VP2. Virus production revealed that knockout of p62 but not overexpression of p62 promotes the replication of avibirnavirus. Collectively, our findings suggest that p62 mediates selective autophagic degradation of avibirnavirus protein VP2 in an ubiquitin-dependent manner and is an inhibitor of avibirnavirus replication.ImportanceAvibirnavirus causes severe immunosuppression and mortality in young chickens. VP2, capsid protein of avibirnavirus, is responsible for virus assembly, maturation and replication. Previous study showed that avibirnavirus particles could be engulfed into autophaogosome and degradation took apart. Selective autophagy is a highly specific and regulated degradation pathway for the clearance of damaged or unwanted cytosolic components and superfluous organelles as well as invading microbes. However, whether and how selective autophagy removes avibirnavirus capsids is largely unknown. Here, we have shown that selective autophagy specifically clears ubiquitinated avibirnavirus protein VP2 by p62 recognition and that p62 is an inhibitor of avibirnavirus replication, highlighting the role of p62 as a potential drug target for mediating the removal of ubiquitinated virus components from cells.

5.
Anal Chim Acta ; 1127: 29-38, 2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32800134

RESUMO

Acid-alkaline balance plays a crucial role in all biological processes. Accordingly, monitoring pH changes will help us to understand the functional status of these physiological and pathological processes. Though fluorescent probes may be a useful tool for detecting pH changes, and there are many limitations to currently available probes, such as background interference, potential cytotoxicity, and poor cell permeability, which call for a solution urgently. In this work, a rhodamine-derived colorimetric and ratiometric sensor (Rh-HN) was fabricated for monitoring pH change via the mechanism of fluorescence resonance energy transfer (FRET). Rh-HN has been shown to possess several advantages over other probes, such as high sensitivity, outstanding permeability, and low toxicity. Besides, the fluorescence intensity ratio (F526/F592) of Rh-HN displays a pH-sensitive response from 2.0 to 7.5 (pKa = 5.05) and linear response from pH 3.8 to 6.4, which was desirable for mapping pH change in the biological systems. Besides, the results indicated that Rh-HN generated a pH-dependent response regulated by switchable forms between closed and opened spirolactam ring. Overall, Rh-HN has accomplished sensing and mapping of pH in living cells, bacteria, and zebrafish. Those results demonstrated that the great potential of Rh-HN in sensing and visualizing pH in the living biosystem.

6.
Cytotechnology ; 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32623621

RESUMO

Triggering receptor expressed on myeloid cells-2 (TREM2) is an innate immune receptor that promotes phagocytosis by microglia. However, whether TREM2 is related to the stimulus-dependent phagocytic activity of microglia is unclear. In this study, the primary cultured microglia were stimulated with interferon (IFN)-γ, interleukin (IL)-4, and interleukin (IL)-10, respectively, and their phagocytic activity against microbeads and apoptotic neural stem cells (NSCs) was measured. TREM2 of microglia was detected by qPCR and western blotting. The TREM2 signal was blocked in microglia using the siRNA technique. The results showed that IL-4 or IL-10 treatment significantly increased the number of microglia gathered around the apoptotic neurosphere. IL-4 and IL-10 treatment also promoted phagocytosis of microbeads and apoptotic NSCs by primary cultured microglia. The TREM2 expression was up-regulated in IL-4- or IL-10- treated microglia. TREM2 siRNA treatment blocked the phagocytic activity of IL-4- or IL-10-treated microglia. In conclusion, these results indicated that IL-4 and IL-10 promote the phagocytic activity of microglia by the up-regulation of TREM2, which suggested a new potential therapeutic target for neurodegenerative disease.

7.
Glia ; 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652855

RESUMO

Neuroinflammation driven by interferon-gamma (IFN-γ) and microglial activation has been linked to neurological disease. However, the effects of IFN-γ-activated microglia on hippocampal neurogenesis and behavior are unclear. In the present study, IFN-γ was administered to mice via intracerebroventricular injection. Mice received intraperitoneal injection of ruxolitinib to inhibit the JAK/STAT1 pathway or injection of minocycline to inhibit microglial activation. During a 7-day period, mice were assessed for depressive-like behaviors and cognitive impairment based on a series of behavioral analyses. Effects of the activated microglia on neural stem/precursor cells (NSPCs) were examined, as was pro-inflammatory cytokine expression by activated microglia. We showed that IFN-γ-injected animals showed long-term adult hippocampal neurogenesis reduction, behavior despair, anhedonia, and cognitive impairment. Chronic activation with IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, MHC II and CD68 up-regulation, and pro-inflammatory cytokine (IL-1ß, TNF-α, IL-6) and nitric oxide (NO) release. Microglia isolated from the hippocampus of IFN-γ-injected mice suppressed NSPCs proliferation and stimulated apoptosis of immature neurons. Inhibiting of the JAK/STAT1 pathway in IFN-γ-injected animals to block microglial activation suppressed microglia-mediated neuroinflammation and neurogenic injury, and alleviated depressive-like behaviors and cognitive impairment. Collectively, these findings suggested that priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Targeting microglia by modulating levels of IFN-γ the brain may be a therapeutic strategy for neurodegenerative diseases and psychiatric disorders.

8.
New Phytol ; 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32583535

RESUMO

Powdery mildew, a fungal disease caused by Blumeria graminis f. sp. tritici (Bgt), has a serious impact on wheat production. Loss of resistance in cultivars prompts a continuing search for new sources of resistance. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW), the progenitor of both modern tetraploid and hexaploid wheats, harbors many powdery mildew resistance genes. We report here the positional cloning and functional characterization of Pm41, a powdery mildew resistance gene derived from WEW, which encodes a coiled-coil, nucleotide-binding site and leucine-rich repeat protein (CNL). Mutagenesis and stable genetic transformation confirmed the function of Pm41 against Bgt infection in wheat. We demonstrated that Pm41 was present at a very low frequency (1.81%) only in southern WEW populations. It was absent in other WEW populations, domesticated emmer, durum, and common wheat, suggesting that the ancestral Pm41 was restricted to its place of origin and was not incorporated into domesticated wheat. Our findings emphasize the importance of conservation and exploitation of the primary WEW gene pool, as a valuable resource for discovery of resistance genes for improvement of modern wheat cultivars.

9.
Psychopharmacology (Berl) ; 237(8): 2531-2545, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488348

RESUMO

AIM: Indoleamine 2,3-dioxygenase 1 (IDO) is responsible for the progression of the kynurenine pathway, which has been implicated in the pathophysiology of inflammation-induced depression. It has been reported that asperosaponin VI (ASA VI) could play a neuroprotective role through anti-inflammatory and antioxidant. In this study, we examined the antidepressant effect of ASA VI in lipopolysaccharide (LPS)-treated mice and further explored its molecular mechanism by looking into the microglial kynurenine pathway. METHODS: To generate the model, LPS (0.83 mg/kg) was administered intraperitoneally to mice. The mice received ASA VI (10 mg/kg, 20 mg/kg, 40 mg/kg, and 80 mg/kg, i.p.) 30 min before LPS injection. Depressive-like behaviors were evaluated based on the duration of immobility in the forced swim test. Microglial activation and inflammatory cytokines were detected by immunohistochemistry, real-time PCR, and ELISA. The TLR4/NF-κB signaling pathway and the expression of IDO, GluA2, and CamKIIß were also measured by western blotting. RESULTS: ASA VI exhibited significant antidepressant activity in the presence of LPS on immobility and latency times in the forced swim test. The LPS-induced activation of microglia and inflammatory response were inhibited by ASA VI, which showed a dose-dependent pattern. TLR4/NF-κB signaling pathway also was suppressed by ASA VI in the hippocampus and prefrontal cortex of LPS-treated mice. Furthermore, ASA VI inhibited the increase in IDO protein expression and normalized the aberrant glutamate transmission in the hippocampus and prefrontal cortex caused by LPS administration. CONCLUSION: Our results propose a promising antidepressant effect for ASA VI possibly through the downregulation of IDO expression and normalization of the aberrant glutamate transmission. This remedying effect of ASA VI could be attributed to suppress microglia-mediated neuroinflammatory response via inhibiting the TLR4/NF-κB signaling pathway.

10.
New Phytol ; 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32569398

RESUMO

Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.

11.
Nanoscale ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32400793

RESUMO

Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag10(StBu)6(CH3CN)8(Mo6O19)2·2CH3CN]n (abbreviated as Ag10-Mo6) was observed to feature chain-like structures containing Ag10 clusters linked by [Mo6O19]2- anions through Ag-O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag18(StBu)12(CH3CN)5(Mo6O19)2·Mo6O19·2CH3CN]n (abbreviated as Ag18-Mo6) was found to contain 20-membered cycle-Ag10S10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag-S sheet by interstitial the Ag3StBu and AgCH3CN motifs, and to also contain [Mo6O19]2- counter ions filling in the spaces made by the cycle-Ag10S10 and strengthening the structure by forming Ag-O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported.

12.
J Org Chem ; 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348132

RESUMO

An efficient synthesis of indolizine derivatives from propargylic pyridines and aroyl chlorides was developed. The 5-endo-dig cyclization was initiated by the in situ formed acylpalladium species from the facile oxidative addition of aroyl chloride to Pd(0) complex. This transformation successfully occurred in the presence of an N-nucleophilic moiety and acid chlorides, a good electrophilic partner, affording highly functionalized indolizines in good-to-excellent yields.

13.
Methods Appl Fluoresc ; 8(3): 034001, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32235056

RESUMO

Facultative intracellular pathogens are able to live inside and outside host cells. It is highly desirable to differentiate their cellular locations for the purposes of fundamental research and clinical applications. In this work, we developed a novel analysis platform that allows users to choose two analysis models: amplitude weighted lifetime (τ A) and intensity weighted lifetime (τ I) for fluorescence lifetime imaging microscopy (FLIM). We applied these two models to analyse FLIM images of mouse Raw macrophage cells that were infected with bacteria Shigella Sonnei, adherent and invasive E. coli (AIEC) and Lactobacillus. The results show that the fluorescence lifetimes of bacteria depend on their cellular locations. The τ A model is superior in visually differentiating bacteria that are in extra- and intra-cellular and membrane-bounded locations, whereas the τ I model show excellent precision. Both models show speedy performances that analysis can be performed within 0.3 s. We also compared the proposed models with a widely used commercial software tool (τ C, SPC Image, Becker & Hickl GmbH), showing similar τ I and τ C results. The platform also allows users to perform phasor analysis with great flexibility to pinpoint the regions of interest from lifetime images as well as phasor plots. This platform holds the disruptive potential of replacing z-stack imaging for identifying intracellular bacteria.

14.
Eur Radiol ; 30(7): 3852-3861, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32162000

RESUMO

OBJECTIVES: It is challenging to early differentiate biliary atresia from other causes of cholestasis. We aimed to develop an algorithm with risk stratification to distinguish biliary atresia from infantile cholestasis. METHODS: In this study, we enrolled infants with cholestasis into 2 subgroups from January 2010 to April 2019. A prospective cohort (subgroup 2) of 187 patients (107 with biliary atresia and 80 without biliary atresia) underwent acoustic radiation force impulse elastography. Stepwise regression was used to identify significant predictors of biliary atresia. A sequential algorithm with risk stratification was constructed. RESULTS: Among 187 patients, shear wave speed > 1.35 m/s and presence of the triangular cord sign were considered high risk for biliary atresia (red), in which 73 of 78 patients (accuracy of 93.6%) with biliary atresia were identified. Afterwards, γ-GT, abnormal gallbladder, and clay stool were introduced into the algorithm and 55 intermediate-risk infants were identified (yellow) with a diagnostic accuracy of 60% for biliary atresia. Of the remaining 54 infants who were classified as low-risk patients (green), the accuracy for excluding biliary atresia was 98.1%. By applying a three-color risk stratification tool, 70.6% patients were identified as either high risk or low risk for biliary atresia (area under the curve, 0.983; sensitivity, 98.7%; specificity, 91.4%). We also estimated the risk of biliary atresia in different color groups, which was 94.7% (95%CI, 94.3-95.5%) in the red group and 7.2% (95%CI, 6.6-8.3%) in the green group. CONCLUSIONS: Our simple noninvasive approach was able to identify biliary atresia with high accuracy. KEY POINTS: • Five predictors, namely shear wave speed, triangle cord sign, γ-glutamyl transferase, abnormal gallbladder, and clay stool, were selected to identify biliary atresia in cholestasis. • Shear wave speed > 1.35 m/s and presence of the triangle cord sign were considered high-risk patients with a diagnostic accuracy of 93.6% for biliary atresia. • Risk for biliary atresia was high (red), intermediate (yellow), or low (green). In the red and green group, we achieved an extremely high diagnostic performance (area under the curve, 0.983; sensitivity, 98.7%; specificity, 91.4%).

15.
Inorg Chem ; 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32052961

RESUMO

The alkali-metal molybdate iodate Na3(MoO4)(IO3) (I) and mixed-alkali-metal fluoromolybdate Na3Cs(MoO2F4)2 (II) were obtained via a mild hydrothermal reaction using a "Teflon-pouch" method. I crystallizes in the triclinic space group P1, whose structure comprises a 3D backbone made up of isolated [IO3]- pyramids and [MoO4]2- tetrahedra connected via 5- and 6-fold coordinated sodium cations. II crystallizes in the monoclinic space group P21/c and comprises isolated [MoO2F4]2- octahedra with strong out-of-center distortions and the Na+ as well as Cs+ cations acting as interstitial ions. Both compounds have been characterized by infrared (IR) spectra and ultraviolet-visible-near-infrared (UV-vis-NIR) diffuse reflectance spectra. First-principles calculations respectively reveal that they exhibit birefringence values with Δn = 0.078 and 0.210 at 1064 nm for I and II, and the origin of the birefringence is discussed.

16.
Nat Commun ; 11(1): 680, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015344

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.


Assuntos
Resistência à Doença/genética , Mutação com Ganho de Função , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Ascomicetos/patogenicidade , China , Peróxido de Hidrogênio/metabolismo , Mutagênese , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Quinases/genética , Transformação Genética
17.
Plant Dis ; 104(3): 743-751, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31967507

RESUMO

Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), a biotrophic fungal species. It is very important to mine new powdery mildew (Pm) resistance genes for developing resistant wheat cultivars to reduce the deleterious effects of the disease. This study was carried out to characterize the Pm gene in Qingxinmai, a winter wheat landrace from Xinjiang, China. Qingxinmai is resistant to many Bgt isolates collected from different wheat fields in China. F1, F2, and F2:3 generations of the cross between Qingxinmai and powdery mildew susceptible line 041133 were developed. It was confirmed that a single recessive gene, PmQ, conferred the seedling resistance to a Bgt isolate in Qingxinmai. Bulked segregant analysis-RNA-Seq (BSR-Seq) was performed on the bulked homozygous resistant and susceptible F2:3 families, which detected 57 single nucleotide polymorphism (SNP) variants that were enriched in a 40 Mb genomic interval on chromosome arm 2BL. Based on the flanking sequences of the candidate SNPs extracted from the Chinese Spring reference genome, 485 simple sequence repeat (SSR) markers were designed. Six polymorphic SSR markers, together with nine markers that were anchored on chromosome arm 2BL, were used to construct a genetic linkage map for PmQ. This gene was placed in a 1.4 cM genetic interval between markers Xicsq405 and WGGBH913 corresponding to 4.9 Mb physical region in the Chinese Spring reference genome. PmQ differed from most of the other Pm genes identified on chromosome arm 2BL based on its position and/or origin. However, this gene and Pm63 from an Iranian common wheat landrace were located in a similar genomic region, so they may be allelic.


Assuntos
Resistência à Doença , Triticum , China , Mapeamento Cromossômico , Genes de Plantas , Genes Recessivos , Marcadores Genéticos , Humanos , Irã (Geográfico) , Doenças das Plantas
18.
J Hazard Mater ; 388: 122029, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954303

RESUMO

Hypochlorous acid (HOCl)/hypochlorite (ClO-) was a biologically important component of reactive oxygen species (ROS) and plays a key role in human immune function systems. HOCl/ClO- can destroy invasive bacteria and pathogens, and mediate the physiological balance of the organism with low concentrations, and cause oxidation of the biomolecules such as proteins, cholesterol and nucleic acid in biological cells, leading to a series of diseases with over capacity. Therefore, quantifying the content of HOCl/ClO- in organisms are extremely urgent. In this work, coumarin-salicylic hydrazide Schiff base (CMSH), a ratiometric and colorimetric fluorescent probe for ClO- detection based on coumarin as the fluorophore unit was rationally designed and synthesized. The results indicated that CMSH exhibits high selectivity and sensitivity for ClO- identification. Additionally, the ratios (I470/I532) displayed brilliant ClO--dependent quick and sensitive performance within 40 s and limitation of 128 nM, respectively. As well as the color of the solution changes from green to colorless accompanied by the fluorescence form green turns into blue with addition of ClO-. Totally, CMSH has been successfully employed as ratiometric sensor to image in living cells, bacteria and zebrafish with low cytotoxicity and good permeability.

19.
Chem Commun (Camb) ; 56(14): 2091-2094, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31960846

RESUMO

Silver chalcogenide wires are assembled for the first time using a linear fluorinated carboxylate ligand into a metal-organic framework (MOF) with multifunctional properties. Fluorinated ligands in the host framework endow the MOF with excellent hydrophobicity. More interestingly, it displays typical semiconductivity due to the ordered nanoarray of non-discrete helical (-Ag-S-)n chains.

20.
Chem Commun (Camb) ; 56(16): 2411-2414, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31994560

RESUMO

Herein, polymerization-induced electrostatic self-assembly (PIESA) is conducted to mediate the self-assembly behavior of short interfering RNA (siRNA) for the first time. In PIESA, siRNA not only formed a simple electrostatic polyplex with positively charged polycations, but also facilitated directed self-assembly due to the molecular rigidity of siRNA, leading to appealing nanotubes.


Assuntos
RNA Interferente Pequeno/síntese química , Estrutura Molecular , Tamanho da Partícula , Polimerização , RNA Interferente Pequeno/química , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA