Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
1.
Dev Comp Immunol ; 126: 104207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34273355

RESUMO

Infectious bacterial and viral diseases that cause hemolysis are considered life-threatening to grass carp (Ctenopharyngodon idellus), which is a species used in aquaculture worldwide. After heme and hemeproteins (Hb) are released as a result of hemolysis, the effect of excess Hb and heme on tissues remains to be characterized. To decipher the mechanisms, after incubation with Hb, we showed that lipopolysaccharide (LPS), Hb, and heme increased the cytotoxicity and secretion of inflammatory cytokines such as interleukin (IL)-6, chemokine (C-C motif) ligand 1 (CCL1), tumor necrosis factor (TNF)-α, IL-6, and IL-1ß in vitro, which was due to stimulation of the expression of innate immune receptors, such as nucleotide-binding oligomerization domain (NOD2), toll-like receptor 2 (TLR2), TLR 4, and TLR3. The formation of reactive oxygen species (ROS) and the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB were important for increasing the cytokine production to induce heme, Hb, and LPS. Moreover, we confirmed that after LPS, Hb, and heme challenge, superoxide dismutase (SOD) and glutathione (GSH) synthetase (GSS) also caused remarkable destruction. However, catalase (CAT) and heme oxygenase-1 (HO-1) were strongly activated. In summary, our research findings present a framework through which heme and Hb concentrations amplify the secretions of inflammatory cytokines, which are induced by pattern recognition receptor (PRR) activation and present possible paths for immune intervention during infection with viral diseases and hemolytic bacterial.

2.
Front Immunol ; 12: 715098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594329

RESUMO

Escherichia coli is one of the most important pathogens that cause clinical mastitis in dairy cattle worldwide and lead to severe economic losses. Antibiotics are often used to treat this inflammatory disease; however, antimicrobial resistance and environmental pollution cannot be ignored. Probiotic is the best alternative; however, its mechanisms of action to prevent mastitis remain unclear. Moreover, the role of probiotics in regulating mitophagy, a selective autophagy that maintains mitochondrial quality, needs to be explored. E. coli infection induced NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) inflammasome assembly, Caspase-1 activation, and apoptosis in MAC-T cells. Infection also resulted in mitochondrial damage and subsequent increase in reactive oxygen species (ROS) production. Moreover, inhibition of ROS release by scavenger N-acetyl-L-cysteine (NAC) abrogated the importance of ROS in NLRP3 assembly and apoptosis in MAC-T cells. Pretreatment with Lactobacillus rhamnosus GR-1 (LGR-1), a probiotic, alleviated E. coli-induced NLRP3 inflammasome activation and apoptosis via ROS inhibition. Besides, E. coli infection inhibited mitophagy while LGR-1 pretreatment augmented PINK1/Parkin-mediated mitophagy activation, which further blocked ROS generation. To explore the effect of LGR-1 in vivo, a mouse mastitis model was established. The results showed that LGR-1 pretreatment had preventive and protective effects on E. coli induced mastitis, and could reduce cytokines levels such as IL-1ß and TNF-α. In accordance with the results in vitro, E. coli can inhibit mitophagy and activate NLRP3 inflammasome and apoptosis, while LGR-1 can weaken the effect of E. coli. Taken together, our data indicated that LGR-1 pretreatment induced PINK1/Parkin-mediated mitophagy that eliminated damaged mitochondria and reduced ROS production and NLRP3 inflammasome activation, which subsequently decreased E. coli-induced apoptosis. To conclude, our study suggests that therapeutic strategies aiming at the upregulation of mitophagy under E. coli-induced mastitis may preserve mitochondrial function and provide theoretical support for the application of probiotics in bovine mastitis.

3.
Econ Hum Biol ; 43: 101064, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34601324

RESUMO

In this paper we study the long run effects of the 1959-61 Chinese Famine on mental health outcomes. We focus on cohorts that were born during the famine and examine their mental health as adults, when they are roughly 55 years of age. We find that early-life exposure to this famine leads to a large statistically significant negative impact on women's mental health, while there is limited effect on men. This gender differential effect is observed because male fetuses experience a stronger natural selection as compared to female fetuses, which implies that in the longer run, surviving females may exhibit larger detrimental effects of early-life famine exposure. Thus, the observed effects are a composite of two well-established factors, the survival of the fittest and the Fetal Origins hypothesis.

4.
Plant J ; 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643010

RESUMO

Auxin signaling is essential for the development of grain size and grain weight, two important components for crop yield. However, no AUX/IAA has been functionally characterized to be involved in the development of wheat grains to date. Here, we identified a wheat AUX/IAA gene, TaIAA21, and studied its regulatory pathway. We found that TaIAA21 mutation significantly increased grain length, grain width, and grain weight. Cross-section of mutant grains observed elongated outer pericarp cells than those of the wild type where the expression of TaIAA21 was detected by in situ hybridization. Screening of auxin response factor (ARF) genes highly expressed in early developing grains identified TaARF25 that interacted with TaIAA21. In contrast, mutation of the tetraploid wheat (Triticum turgidum) ARF25 gene significantly reduced grain size and weight. RNA-seq analysis revealed up-regulation of several ethylene response factor genes (ERFs) in taiaa21 mutants which carried AuxRE cis-elements in their promoter. One of them, ERF3, was up-regulated in the taiaa21 mutant and down-regulated in ttarf25 mutant. Transactivation assays showed that ARF25 promoted ERF3 transcription, while mutation of TtERF3 resulted in reduced grain size and weight. Analysis of natural variations identified three TaIAA21-A haplotypes with increased allele frequency in cultivars relative to landraces, a signature of breeding selection. Our work demonstrated that TaIAA21 worked as a negative regulator in grain size and weight development via the ARF25-ERFs module and is useful for yield improvement in wheat.

5.
J Nanobiotechnology ; 19(1): 293, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579725

RESUMO

BACKGROUND: Breast cancer is the fastest-growing cancer among females and the second leading cause of female death. At present, targeted antibodies combined with hyperthermia locally in tumor has been identified as a potential combination therapy to combat tumors. But in fact, the uniformly deep distribution of photosensitizer in tumor sites is still an urgent problem, which limited the clinical application. We reported an HER2-modified thermosensitive liposome (immunoliposome)-assisted complex by reducing gold nanocluster on the surface (GTSL-CYC-HER2) to obtain a new type of bioplasma resonance structured carrier. The HER2 decoration on the surface enhanced targeting to the breast cancer tumor site and forming irregular, dense, "petal-like" shells of gold nanoclusters. Due to the good photothermal conversion ability under near-infrared light (NIR) irradiation, the thermosensitive liposome released the antitumor Chinese traditional medicine, cyclopamine, accompanied with the degradation of gold clusters into 3-5 nm nanoparticles which can accelerate renal metabolism of the gold clusters. With the help of cyclopamine to degrade the tumor associated matrix, this size-tunable gold wrapped immunoliposome was more likely to penetrate the deeper layers of the tumor, while the presence of gold nanoparticles makes GTSL-CYC-HER2 multimodal imaging feasible. RESULTS: The prepared GTSL-CYC-HER2 had a size of 113.5 nm and displayed excellent colloidal stability, photo-thermal conversion ability and NIR-sensitive drug release. These GTSL-CYC-HER2 were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. As for the in vivo experiments, compared to the other groups, under near-infrared laser irradiation, the temperature of GTSL-CYC-HER2 rises rapidly to the phase transition temperature, and released the cyclopamine locally in the tumor. Then, the released cyclopamine destroyed the stroma of the tumor tissue while killing the tumor cells, which in turn increased the penetration of the liposomes in deep tumor tissues. Moreover, the GTSL-CYC-HER2 enhanced the performance of multimodal computed tomography (CT) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. CONCLUSIONS: This optically controlled biodegradable plasmonic resonance structures not only improves the safety of the inorganic carrier application in vivo, but also greatly improves the anti-tumor efficiency through the visibility of in vivo CT and PT imaging, as well as chemotherapy combined with hyperthermia, and provides a synergistic treatment strategy that can broaden the conventional treatment alone.

6.
Respir Res ; 22(1): 254, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565362

RESUMO

OBJECTIVE: Iron and steel industry workers are exposed to high levels of inhalable dust particles that contain various elements, including metals, and cause occupational lung diseases. We aim to assess the relationship between occupational dust exposure, systemic inflammation, and spirometric decline in a cohort of Chinese iron and steel workers. METHODS: We studied 7513 workers who participated in a Health Surveillance program at Wugang Institute for Occupational Health between 2008 and 2017. Time-weighted exposure intensity (TWEI) of dust was quantified based on self-reported dust exposure history, the experience of occupational hygienists, and historical data of dust exposure for workers with certain job titles. A linear mixed-effects model was used for association analyses. RESULTS: The average annual change of lung function was - 50.78 ml/year in forced expiratory volume in 1 s (FEV1) and - 34.36 ml/year in forced vital capacity (FVC) in males, and - 39.06 ml/year in FEV1 and - 26.66 ml/year in FVC in females. Higher TWEI prior to baseline was associated with lower longitudinal measurements of FEV1 and FVC but not with their decline rates. Higher WBC and its differential at baseline were associated with lower longitudinal measurements and a more rapid decline of FEV1 and FVC in a dose-dependent monotonically increasing manner. Moreover, the increase of WBC and its differential post-baseline was also associated with a more rapid decline of FEV1 and FVC. CONCLUSIONS: Our findings support the important role of systemic inflammation in affecting the temporal change of lung function in iron and steel industry workers.

7.
Sci Prog ; 104(3): 368504211040911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34519571

RESUMO

OBJECTIVE: This study aims to explore the effectiveness and safety of the new-type ultrasound-guided hydrostatic reduction for children with acute intussusception. METHODS: The clinical data of 364 children with primary acute intussusception who underwent nonsurgical reduction in our hospital between January 2016 and May 2019 were retrospectively analyzed. Among the 364 children, 119 formed the hydrostatic reduction group. There were 89 males and 30 females, and the average age of admission was 25.13 ± 1.43 months. Among the pneumatic reduction group of 245 patients, there were 163 males and 82 females. The average age of admission was 22.47 ± 1.52 months. The reduction rate, length of stay, and perforation rate were compared between the two groups. RESULTS: Univariate analysis showed that the reduction rate in the hydrostatic group (94.96%) was higher than in the pneumatic group (85.31%) (p = 0.007), and the hospital stay (2.76 ± 0.15 days) of the hydrostatic reduction group was shorter than that of the pneumatic reduction group (3.56 ± 0.35 days) (p = 0.038). In children with intussusception time >48 h, the reduction rate was 95.45% in the hydrostatic reduction group and 86.20% in the pneumatic reduction group. CONCLUSION: The new-type ultrasound-guided hydrostatic reduction has a higher reduction rate in the treatment of acute intussusception in children results in a shortened hospital stay, It is effective, safe, and avoids radiation exposure.

9.
Fish Shellfish Immunol ; 119: 19-30, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34560286

RESUMO

The regulation of host redox homeostasis is critically important in the immune response to pathogens. The "mammalian sterile 20-like" kinase 2 (MST2) has been shown to play a role in apoptosis, cell proliferation, and cancer; however, few studies have examined its ability to modulate redox homeostasis during innate immunity, especially in teleost fish. In this study, we cloned the MST2 gene of Ctenopharyngodon idella (CiMST2) and analyzed its tissue distribution. CiMST2 was present in most of the studied tissues, and it was most highly expressed in brain tissue. Expression patterns analysis revealed that MST2 mRNA and protein were significantly up-regulated under bacterial infection, suggesting that it is involved in the immune response. Bacterial stimulation significantly increased the level of antioxidases. To explore the interplay between CiMST2 and antioxidant regulation, we examined the effects of CiMST2 overexpression and conducted RNA interference assays in vitro. CiMST2 overexpression significantly increased the expression levels of nuclear factor E2-related factor 2 (Nrf2) and other antioxidases and vice versa, revealing that CiMST2 regulated host redox homeostasis via Nrf2-antioxidant responsive element (ARE) signaling. Overall, our findings provide a new perspective on the role of MST2 in innate immunity in teleosts as well as insights that will aid the prevention and control of disease in the grass carp farming industry.

10.
Nat Commun ; 12(1): 5092, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429430

RESUMO

Development of a versatile, sustainable and efficient photosynthesis system that integrates intricate catalytic networks and energy modules at the same location is of considerable future value to energy transformation. In the present study, we develop a coenzyme-mediated supramolecular host-guest semibiological system that combines artificial and enzymatic catalysis for photocatalytic hydrogen evolution from alcohol dehydrogenation. This approach involves modification of the microenvironment of a dithiolene-embedded metal-organic cage to trap an organic dye and NADH molecule simultaneously, serving as a hydrogenase analogue to induce effective proton reduction inside the artificial host. This abiotic photocatalytic system is further embedded into the pocket of the alcohol dehydrogenase to couple enzymatic alcohol dehydrogenation. This host-guest approach allows in situ regeneration of NAD+/NADH couple to transfer protons and electrons between the two catalytic cycles, thereby paving a unique avenue for a synergic combination of abiotic and biotic synthetic sequences for photocatalytic fuel and chemical transformation.


Assuntos
Etanol/química , Fotossíntese/fisiologia , Luz Solar , Catálise , Corantes , Elétrons , Hidrogênio/química , Hidrogenase/química , Cinética , Ligantes , Simulação de Acoplamento Molecular
11.
Environ Microbiol ; 23(9): 5605-5620, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390618

RESUMO

Persister cells are dormant variants of regular cells that are multidrug tolerant and have heterogeneous phenotypes; these cells are a potential threat to hosts because they can escape the immune system or antibiotic treatments and reconstitute infectious. Skin ulcer syndrome (SUS) frequently occurs in the sea cucumber (Apostichopus japonicus), and Vibrio splendidus is one of the main bacterial pathogens of SUS. This study found that the active cells of V. splendidus became persister cells more readily in the presence of A. japonicus coelomic fluids. We showed that the A. japonicus coelomic fluids plus antibiotics induce 100-fold more persister cells in V. splendidus compared with antibiotics alone via nine sets of experiments including assays for antibiotic resistance, metabolic activity, and single-cell phenotypes. Furthermore, the coelomic fluids-induced persister cells showed similar phenotypes as the antibiotic-induced persister cells. Further investigation showed that guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) and SOS response pathway involved in the formation of persister cells as determined using real-time RT-PCR. In addition, single-cell observations showed that, similar to the antibiotic-induced V. splendidus persister cells, the coelomic fluids-induced persister cells have five resuscitation phenotypes: no growth, expansion, elongation, elongation and then division, and elongation followed by death/disappearance. In addition, dark foci formed in the majority of persister cells for both the antibiotic-induced and coelomic fluids-induced persister cells. Our results highlight that the pathogen V. splendidus might escape from the host immune system by entering the persister state during the process of infection due to exposure to coelomic fluids.

12.
Antonie Van Leeuwenhoek ; 114(10): 1735-1744, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392432

RESUMO

A Gram-positive, acid-fast and rapidly growing rod, designated S2-37 T, that could form yellowish colonies was isolated from one soil sample collected from cotton cropping field located in the Xinjiang region of China. Genomic analyses indicated that strain S2-37 T harbored T7SS secretion system and was very likely able to produce mycolic acid, which were typical features of pathogenetic mycobacterial species. 16S rRNA-directed phylogenetic analysis referred that strain S2-37 T was closely related to bacterial species belonging to the genus Mycolicibacterium, which was further confirmed by pan-genome phylogenetic analysis. Digital DNA-DNA hybridization and the average nucleotide identity presented that strain S2-37 T displayed the highest values of 39.1% (35.7-42.6%) and 81.28% with M. litorale CGMCC 4.5724 T, respectively. And characterization of conserved molecular signatures further supported the taxonomic position of strain S2-37 T belonging to the genus Mycolicibacterium. The main fatty acids were identified as C16:0, C18:0, C20:3ω3 and C22:6ω3. In addition, polar lipids profile was mainly composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Phylogenetic analyses, distinct fatty aids and antimicrobial resistance profiles indicated that strain S2-37 T represented genetically and phenotypically distinct from its closest phylogenetic neighbour, M. litorale CGMCC 4.5724 T. Here, we propose a novel species of the genus Mycolicibacterium: Mycolicibacterium gossypii sp. nov. with the type strain S2-37 T (= JCM 34327 T = CGMCC 1.18817 T).


Assuntos
Mycobacterium , Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genômica , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
13.
Fish Shellfish Immunol ; 118: 94-101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34450271

RESUMO

Superoxide dismutases (SODs) are the main antioxidant enzymes involved in alleviating oxidative stress. Although mitochondrial manganese SOD (mMnSOD) has been reported to be correlated with the immune response in crustaceans, its biological properties and role in the immune response remain unclear. Here, we cloned the Macrobrachium rosenbergii mMnSOD (MrmMnSOD), analyzed its activity and expression pattern under Staphylococcus aureus and Vibrio parahaemolyticus infection, and further explored its possible mechanism during antibacterial immune response. The results showed that both enzyme activity and the expression of MrmMnSOD were significantly up-regulated by bacterial infection. MrmMnSOD knockdown made the prawn susceptible to Vibrio infection, which increased the mortality rate and the number of bacteria in haemocytes. The bacterial agglutination assay confirmed that MrmMnSOD decreases bacterial abundance via agglutination. Overall, this work identified antibacterial function of MrmMnSOD in the immune response. In addition to contributing to immunological theory, these findings aid disease prevention and control in crustacean aquaculture.

14.
Biotechnol J ; : e2100207, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379353

RESUMO

BACKGROUND: The emergence of COVID-19 pandemic resulted in an urgent need for the development of therapeutic interventions. Of which, neutralizing antibodies play a crucial role in the prevention and resolution of viral infection. METHODS: We generated antibody libraries from 18 different COVID-19 recovered patients and screened neutralizing antibodies to SARS-CoV-2 and its mutants. After 3 rounds of panning, 456 positive phage clones were obtained with high affinity to RBD (receptor binding domain). Clones were then reconstituted into whole human IgG for epitope binning assay and all 19 IgG were classified into 6 different epitope groups or Bins. RESULTS: Although all antibodies were found to bind RBD, the antibodies in Bin2 had superior inhibitory ability of the interaction between spike protein and angiotensin converting enzyme 2 receptor (ACE2). Most importantly, the antibodies from Bin2 showed stronger binding affinity or ability to mutant RBDs (N501Y, W463R, R408I, N354D, V367F, and N354D/D364Y) derived from different SARS-CoV-2 strains as well, suggesting the great potential of these antibodies in preventing infection of SARS-CoV-2 and its mutations. Furthermore, such neutralizing antibodies strongly restricted the binding of RBD to hACE2 overexpressed 293T cells. Consistently, these antibodies effectively neutralized wildtype and more transmissible mutant pseudovirus entry into hACE2 overexpressed 293T cells. In Vero-E6 cells, one of these antibodies can even block the entry of live SARS-CoV-2 into cells at 12.5 nM. CONCLUSIONS: These results indicate that the neutralizing human antibodies from the patient-derived antibody libraries have the potential to fight SARS-CoV-2 and its mutants in this global pandemic.

15.
Eur J Pediatr ; 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405301

RESUMO

T cell receptor excision circles (TRECs) are small circularized DNA elements produced during rearrangement of T cell receptor (TCR) genes. Because TRECs are fairly stable, do not replicate during mitosis, and are not diluted during division of naïve T cells (Dion et al. [1]), they are suitable for assessing the number of newly formed T cells (Ping and Denise [2]). In this study, we detected TRECs in 521 healthy Chinese children aged 0-18 years in different clinical settings. The TRECs decrease with aging and show lower levels in preterm and low birth weight (BW) babies compared to those in full-term infants, while the preterm babies can also show comparable levels of TRECs when they have a gestation age (GA)-matched BW. We found a strong correlation between TRECs and peripheral CD4 naïve T cell numbers, which was age-related. We also analyzed the TRECs in different PIDs. Since T cell defects vary in PIDs, TREC levels change inconsistently. For example, in Wiskott-Aldrich syndrome (WAS), combining the level of TREC with lymphocyte subsets can help to distinguish subtypes of disease.Conclusion: We established the reference value range for TRECs by evaluating children below 18 years old in China, which could be used to screen for PIDs during early life. What is Known: • The TREC levels are decreased with age, and there is a positive correlation between TRECs and the numbers of naïve T cells. What is New: • This is the largest study to determine TREC reference levels in healthy Chinese pediatric, we provide solid data showing a correlation between CD4 naïve T cell counts and TREC levels according to age. We point out the GA matched BW is need to be considered during the SCID newborn screening. We are the first group showed that TREC levels can help clinician distinguish different WAS phenotype.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34343063

RESUMO

A Gram-negative bacterium, designated S1-65T, was isolated from soil samples collected from a cotton field located in the Xinjiang region of PR China. Results of 16S rRNA gene sequence analysis revealed that strain S1-65T was affiliated to the genus Steroidobacter with its closest phylogenetic relatives being 'Steroidobacter cummioxidans' 35Y (98.4 %), 'Steroidobacter agaridevorans' SA29-B (98.3 %) and Steroidobacter agariperforans KA5-BT (98.3 %). 16S rRNA-directed phylogenetic analysis showed that strain S1-65T formed a unique phylogenetic subclade next to 'S. agaridevorans' SA29-B and S. agariperforans KA5-BT, suggesting that strain S1-65T should be identified as a member of the genus Steroidobacter. Further, substantial differences between the genotypic properties of strain S1-65T and the members of the genus Steroidobacter, including average nucleotide identity and digital DNA-DNA hybridization, resolved the taxonomic position of strain S1-65T and suggested its positioning as representing a novel species of the genus Steroidobacter. The DNA G+C content of strain S1-65T was 62.5 mol%, based on its draft genome sequence. The predominant respiratory quinone was ubiquinone-8. The main fatty acids were identified as summed feature 3 (C16:1ω6c/C16:1ω7c), C16 : 0 and iso-C15 : 0. In addition, its polar lipid profile was composed of aminophospholipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Here, we propose a novel species of the genus Steroidobacter: Steroidobacter gossypii sp. nov. with the type strain S1-65T (=JCM 34287T=CGMCC 1.18736T).


Assuntos
Gammaproteobacteria/classificação , Gossypium/microbiologia , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
17.
Chem Commun (Camb) ; 57(68): 8512-8515, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34351332

RESUMO

N-Phenylphenothiazine as an inexpensive, highly reductive and oxygen tolerant organophotocatalyst has exhibited potential in various challenging photochemical transformations. Here we report a general and straightforward method to access structurally diverse N-phenylphenothiazine derivatives by means of a novel electrochemical tool. The introduction of a 2-naphthylamine moiety with an extended π-system and an amine group led to the variation of spectral characterization. Photochemical verification experiments demonstrated that the formed N-arylation products with good efficacy and chemo/site-control displayed competitive catalytic activity in challenging transformations.

18.
Front Endocrinol (Lausanne) ; 12: 720466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456875

RESUMO

Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.

19.
Appl Microbiol Biotechnol ; 105(16-17): 6183-6197, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34402938

RESUMO

Research on the roles of the bacteria in tumor development and progression is a rapidly emerging field. Increasing evidence links bacteria with the modification of the tumor immune microenvironment, which greatly influences the antitumor response. In view of the individual immune effects of various bacteria in various tumors, developing personalized bacteria-modulating therapy may be a key to successful antitumor treatment. This review emphasizes the critical role of the bacteria in immune regulation, including both the tumor bacteria and gut bacteria. Aiming at tumor-related bacteria, we focus on various precise modulation strategies and discuss their impact and potential for tumor suppression. Finally, engineered bacteria with tumor-targeting ability could achieve precise delivery of various payloads into tumors, acting as a precision tool. Therefore, a precise tumor-related bacteria therapy may be a promising approach to suppress the development of tumors, as well as an adjuvant therapy to improve the antitumor efficacy of other approaches. KEY POINTS: • The mini-review updates the knowledge on complex effect of bacteria in TME. • Insight into the interaction and adjustment of bacteria in gut for TME. • Prospects and limitations of bacteria-related personalized therapy in the clinical anticancer therapy.


Assuntos
Neoplasias , Bactérias , Terapia Combinada , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
20.
BMC Musculoskelet Disord ; 22(1): 735, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452610

RESUMO

OBJECTIVES: The aim of this study was to evaluate the postoperative analgesia effect of ultrasound-guided single popliteal sciatic nerve block for calcaneal fracture. METHODS: A total of 120 patients scheduled for unilateral open reduction and internal fixation of calcaneal fracture were enrolled in this prospective randomized study. Patients in group B received ultrasound-guided single popliteal sciatic nerve block after operation, but Patients in group A did not. All patients received patient-controlled intravenous analgesia (PCIA) after operation. The time to initiation of PCIA, the time of first pressing the analgesia pump, duration of analgesia pump use and the total number of times the patient pressed the analgesia pump were recorded. The time of rescue analgesia and the adverse reactions were recorded. Pain magnitude of the patients immediately after discharge from operating room (T1), and at 4th (T2), 8th (T3), 12th (T4), 16th (T5), 24th (T6) and 48th (T7) h after the operation were assessed with visual analog scale (VAS). In addition, patient, surgeon and nurse satisfaction were recorded. RESULTS: The VAS scores at T2 ~ T5, the time of rescue analgesia and the adverse reactions, the total number of times the patient pressed the analgesia pump were significantly declined in group B (p < 0.001). The time to initiation of PCIA, the time of first pressing the analgesia pump, duration of analgesia pump use were prolonged and patient surgeon and nurse satisfaction were improved in group B (p < 0.05). CONCLUSION: Ultrasound-guided single popliteal sciatic nerve block is an effective postoperative analgesia strategy for calcaneal fracture. TRIAL REGISTRATION: ChiCTR, ChiCTR2100042340. Registered 19 January 2021, URL of trial registry record: http://www.chictr.org.cn/showproj.aspx?proj=66526 .


Assuntos
Bloqueio Nervoso , Analgesia Controlada pelo Paciente , Humanos , Bloqueio Nervoso/efeitos adversos , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Estudos Prospectivos , Nervo Isquiático/diagnóstico por imagem , Ultrassonografia de Intervenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...