Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37133670

RESUMO

Benzo[a]pyrene (B[a]P) is neurotoxic; however, the mechanism and prevention are still unclear. In this study, we assessed the intervention effect of metformin (MET) on cognitive dysfunction in mice induced by B[a]P from the perspective of glucolipid metabolism. Forty-two male healthy ICR mice were randomly categorized into 6 groups and were gavaged with B[a]P (0, 2.5, 5, or 10 mg/kg), 45 times for 90 days. The controls were gavaged with edible peanut oil, and the intervention groups were co-treated with B[a]P (10 mg/kg) and MET (200 or 300 mg/kg). We assessed the cognitive function of mice, observed the pathomorphological and ultrastructural changes, and detected neuronal apoptosis and glucolipid metabolism. Results showed that B[a]P dose-dependently induced cognitive impairment, neuronal damage, glucolipid metabolism disorder in mice, and enhanced proteins of fat mass and obesity-associated protein (FTO) and forkhead box protein O6 (FoxO6) in the cerebral cortex and liver, which were alleviated by the MET intervention. The findings indicated the critical role of glucolipid metabolism disorder in the cognitive impairment in mice caused by B[a]P and the prevention of MET against B[a]P neurotoxicity by regulating glucolipid metabolism via restraining FTO/FoxO6 pathway. The finding provides a scientific basis for the neurotoxicity and prevention strategies of B[a]P.

2.
Neural Netw ; 164: 345-356, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163850

RESUMO

Knowledge distillation (KD) has been widely used in model compression. But, in the current multi-teacher KD algorithms, the student can only passively acquire the knowledge of the teacher's middle layer in a single form and all teachers use identical a guiding scheme to the student. To solve these problems, this paper proposes a multi-teacher KD based on joint Guidance of Probe and Adaptive Corrector (GPAC) method. First, GPAC proposes a teacher selection strategy guided by the Linear Classifier Probe (LCP). This strategy allows the student to select better teachers in the middle layer. Teachers are evaluated using the classification accuracy detected by LCP. Then, GPAC designs an adaptive multi-teacher instruction mechanism. The mechanism uses instructional weights to emphasize the student's predicted direction and reduce the student's difficulty learning from teachers. At the same time, every teacher can formulate guiding scheme according to the Kullback-Leibler divergence loss of the student and itself. Finally, GPAC develops a multi-level mechanism for adjusting spatial attention loss. this mechanism uses a piecewise function that varies with the number of epochs to adjust the spatial attention loss. This piecewise function classifies the student' learning about spatial attention into three levels, which can efficiently use spatial attention of teachers. GPAC and the current state-of-the-art distillation methods are tested on CIFAR-10 and CIFAR-100 datasets. The experimental results demonstrate that the proposed method in this paper can obtain higher classification accuracy.

4.
Ultrason Sonochem ; 96: 106398, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156161

RESUMO

The performance of alkaline water electrolysis (AWE) at high current densities is limited by gas bubble generation on the surface of electrodes, which covers active sites and blocks mass transfer, resulting in lower AWE efficiency. Here, we utilize electro-etching to construct Ni electrodes with hydrophilic and aerophobic surfaces to improve the efficiency of AWE. Ni atoms on the Ni surface can be exfoliated orderly along the crystal planes by electro-etching, forming micro-nano-scale rough surfaces with multiple crystal planes exposed. The 3D-ordered surface structures increase the exposure of active sites and promote the removal of bubbles on the surface of the electrode during the AWE process. In addition, experimental results from high-speed camera reveal that rapidly released bubbles can improve the local circulation of electrolyte. Lastly, the accelerated durability test based on practical working condition demonstrates that the 3D-ordered surface structures are robust and durable during the AWE process.

5.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108521

RESUMO

Streptococcus suis, an encapsulated zoonotic pathogen, has been reported to cause a variety of infectious diseases, such as meningitis and streptococcal-toxic-shock-like syndrome. Increasing antimicrobial resistance has triggered the need for new treatments. In the present study, we found that isopropoxy benzene guanidine (IBG) significantly attenuated the effects caused by S. suis infection, in vivo and in vitro, by killing S. suis and reducing S. suis pathogenicity. Further studies showed that IBG disrupted the integrity of S. suis cell membranes and increased the permeability of S. suis cell membranes, leading to an imbalance in proton motive force and the accumulation of intracellular ATP. Meanwhile, IBG antagonized the hemolysis activity of suilysin and decreased the expression of Sly gene. In vivo, IBG improved the viability of S. suis SS3-infected mice by reducing tissue bacterial load. In conclusion, IBG is a promising compound for the treatment of S. suis infections, given its antibacterial and anti-hemolysis activity.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Camundongos , Streptococcus suis/genética , Benzeno , Guanidina , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Guanidinas/metabolismo , Proteínas Hemolisinas/metabolismo
6.
Adv Sci (Weinh) ; : e2204824, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060105

RESUMO

Neuregulin 4 (Nrg4) is an adipose tissue-enriched secreted factor that modulates glucose and lipid metabolism. Nrg4 is closely associated with obesity and preserves diet-induced metabolic disorders. However, the specific mechanisms via which Nrg4 regulates metabolic homeostasis remain incompletely understood. Here, this work finds that the Nrg4 receptor, ErbB4, is highly expressed in the hypothalamus, and the phosphorylation of hypothalamic ErbB4 is reduced in diet-induced obesity (DIO) mice. Peripheral Nrg4 can act on ErbB4 via blood circulation and excite neurons in the paraventricular nucleus of hypothalamus (PVN). Central administration of recombinant Nrg4 protein (rNrg4) reduces obesity and related metabolic disorders by influencing energy expenditure and intake. Overexpression of ErbB4 in the PVN protects against obesity, whereas its knock down in oxytocin (Oxt) neuron accelerates obesity. Furthermore, Nrg4-ErbB4 signaling excites Oxt release, and ablation of Oxt neuron considerably attenuates the effect of Nrg4 on energy balance. These data suggest that the hypothalamus is a key target of Nrg4, which partially explains the multifaceted roles of Nrg4 in metabolism.

7.
Cell Prolif ; : e13464, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37025067

RESUMO

Previous studies have revealed cellular heterogeneity in intervertebral discs (IVDs). However, the cellular and molecular alteration patterns of cell populations during degenerative progression remain to be fully elucidated. To illustrate the cellular and molecular alteration of cell populations in intervertebral disc degeneration (IDD), we perform single cell RNA sequencing on cells from four anatomic sites of healthy and degenerative goat IVDs. EGLN3+ StressCs, TGFBR3+ HomCs and GPRC5A+ RegCs exhibit the characteristics associated with resistance to stress, maintaining homeostasis and repairing, respectively. The frequencies and signatures of these cell clusters fluctuate with IDD. Notably, the chondrogenic differentiation programme of PROCR+ progenitor cells is altered by IDD, while notochord cells turn to stemness exhaustion. In addition, we characterise CAV1+ endothelial cells that communicate with chondrocytes through multiple signalling pathways in degenerative IVDs. Our comprehensive analysis identifies the variability of key cell clusters and critical regulatory networks responding to IDD, which will facilitate in-depth investigation of therapeutic strategies for IDD.

8.
J Neuroinflammation ; 20(1): 91, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029422

RESUMO

BACKGROUND: Retinal ischemia-reperfusion (RIR) injury refers to an obstruction in the retinal blood supply followed by reperfusion. Although the molecular mechanism underlying the ischemic pathological cascade is not fully understood, neuroinflammation plays a crucial part in the mortality of retinal ganglion cells. METHODS: Single-cell RNA sequencing (scRNA-seq), molecular docking, and transfection assay were used to explore the effectiveness and pathogenesis of N,N-dimethyl-3ß-hydroxycholenamide (DMHCA)-treated mice with RIR injury and DMHCA-treated microglia after oxygen and glucose deprivation/reoxygenation (OGD/R). RESULTS: DMHCA could suppress inflammatory gene expression and attenuate neuronal lesions, restoring the retinal structure in vivo. Using scRNA-seq on the retina of DMHCA-treated mice, we provided novel insights into RIR immunity and demonstrated nerve injury-induced protein 1 (Ninjurin1/Ninj 1) as a promising treatment target for RIR. Moreover, the expression of Ninj1, which was increased in RIR injury and OGD/R-treated microglia, was downregulated in the DMHCA-treated group. DMHCA suppressed the activation of the nuclear factor kappa B (NF-κB) pathways induced by OGD/R, which was undermined by the NF-κB pathway agonist betulinic acid. Overexpressed Ninj1 reversed the anti-inflammatory and anti-apoptotic function of DMHCA. Molecular docking indicated that for Ninj1, DMHCA had a low binding energy of - 6.6 kcal/mol, suggesting highly stable binding. CONCLUSION: Ninj1 may play a pivotal role in microglia-mediated inflammation, while DMHCA could be a potential treatment strategy against RIR injury.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Oxigênio , Células Ganglionares da Retina/patologia , Traumatismo por Reperfusão/metabolismo , Inflamação/tratamento farmacológico , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
9.
Opt Lett ; 48(8): 2018-2021, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058631

RESUMO

A vortex beam interferometer based on Doppler frequency shift is proposed to retrieve the dynamic non-uniform phase shift from the petal-like fringes produced by the coaxial superposition of high-order conjugated Laguerre-Gaussian modes. Unlike the uniform phase shift measurement in which the petal-like fringes rotate as a whole, the fringes due to the dynamic non-uniform phase shift rotate at different angles at different radii, resulting in highly twisted and stretched petals; this hinders rotation angle identification and phase retrieval via image morphological operation. To address the problem, a rotating chopper combined with a collecting lens and a point photodetector are placed at the exit of the vortex interferometer to introduce a carrier frequency in the absence of the phase shift. Once the phase starts to shift non-uniformly, the petals at different radii generate different Doppler frequency shifts, owing to their different rotation velocities. Thus, identification of spectral peaks near the carrier frequency immediately indicates the rotation velocities of the petals and the phase shifts at those radii. The results verified a relative error of phase shift measurement to be within 2.2% at the surface deformation velocities of 1, 0.5, and 0.2 µm/s. The method manifests itself to have potential in exploiting mechanical and thermophysical dynamics from the nanometer to micrometer scale.

10.
Microb Cell Fact ; 22(1): 67, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041591

RESUMO

BACKGROUND: Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS: In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION: Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.


Assuntos
Leucócitos Mononucleares , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Ligantes , Ligante 4-1BB/uso terapêutico , Células Matadoras Naturais , Anticorpos , Neoplasias Ovarianas/tratamento farmacológico , Mamíferos
11.
mBio ; 14(2): e0054923, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37010434

RESUMO

Intrinsic immunity is the frontline of host defense against invading pathogens. To combat viral infection, mammalian hosts deploy cell-intrinsic effectors to block viral replication prior to the onset of innate and adaptive immunity. In this study, SMCHD1 is identified as a pivotal cellular factor that restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation through a genome-wide CRISPR-Cas9 knockout screen. Genome-wide chromatin profiling revealed that SMCHD1 associates with the KSHV genome, most prominently the origin of lytic DNA replication (ORI-Lyt). SMCHD1 mutants defective in DNA binding could not bind ORI-Lyt and failed to restrict KSHV lytic replication. Moreover, SMCHD1 functioned as a pan-herpesvirus restriction factor that potently suppressed a wide range of herpesviruses, including alpha, beta, and gamma subfamilies. SMCHD1 deficiency facilitated the replication of a murine herpesvirus in vivo. These findings uncovered SMCHD1 as a restriction factor against herpesviruses, and this could be harnessed for the development of antiviral therapies to limit viral infection. IMPORTANCE Intrinsic immunity represents the frontline of host defense against invading pathogens. However, our understanding of cell-intrinsic antiviral effectors remains limited. In this study, we identified SMCHD1 as a cell-intrinsic restriction factor that controlled KSHV lytic reactivation. Moreover, SMCHD1 restricted the replication of a wide range of herpesviruses by targeting the origins of viral DNA replication (ORIs), and SMCHD1 deficiency facilitated the replication of a murine herpesvirus in vivo. This study helps us to better understand intrinsic antiviral immunity, which may be harnessed to develop new therapeutics for the treatment of herpesvirus infection and the related diseases.


Assuntos
Herpesvirus Humano 8 , Replicação Viral , Camundongos , Animais , Replicação Viral/genética , Replicação do DNA , Sistemas CRISPR-Cas , DNA Viral/genética , Herpesvirus Humano 8/fisiologia , Regulação Viral da Expressão Gênica , Mamíferos/metabolismo , Proteínas Cromossômicas não Histona/genética
12.
Cancer Commun (Lond) ; 43(5): 582-612, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37005481

RESUMO

BACKGROUND: Nuclear Yes1-associated transcriptional regulator (YAP1) promotes tumor progression. However, the function of cytoplasmic YAP1 in breast cancer cells and its impact on the survival of breast cancer patients remain unclear. Our research aimed to explore the biological function of cytoplasmic YAP1 in breast cancer cells and the possibility of cytoplasmic YAP1 as a predictive marker of breast cancer survival. METHODS: We constructed cell mutant models, including NLS-YAP15SA (nuclear localized), YAP1S94A (incapable of binding to the TEA domain transcription factor family) and YAP1S127D (cytoplasmic localized), and used Cell Counting Kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, and Western blotting (WB) analysis to detect cell proliferation and apoptosis. The specific mechanism of cytoplasmic YAP1-mediated endosomal sorting complexes required for transport III (ESCRT-III) assembly was studied by co-immunoprecipitation, immunofluorescence staining, and WB analysis. Epigallocatechin gallate (EGCG) was used to simulate YAP1 retention in the cytoplasm in in vitro and in vivo experiments to study the function of cytoplasmic YAP1. YAP1 binding to NEDD4-like E3 ubiquitin protein ligase (NEDD4L) was identified using mass spectrometry and was verified in vitro. Breast tissue microarrays were used to analyze the relationship between cytoplasmic YAP1 expression and the survival of breast cancer patients. RESULTS: YAP1 was mainly expressed in the cytoplasm in breast cancer cells. Cytoplasmic YAP1 promoted autophagic death of breast cancer cells. Cytoplasmic YAP1 bound to the ESCRT-III complex subunits charged multivesicular body protein 2B (CHMP2B) and vacuolar protein sorting 4 homolog B (VPS4B), promoting assembly of CHMP2B-VPS4B and activating autophagosome formation. EGCG retained YAP1 in the cytoplasm, promoting the assembly of CHMP2B-VPS4B to promote autophagic death of breast cancer cells. YAP1 bound to NEDD4L, and NEDD4L mediated ubiquitination and degradation of YAP1. Breast tissue microarrays revealed that high levels of cytoplasmic YAP1 were beneficial to the survival of breast cancer patients. CONCLUSIONS: Cytoplasmic YAP1 mediated autophagic death of breast cancer cells by promoting assembly of the ESCRT-III complex; furthermore, we established a new breast cancer survival prediction model based on cytoplasmic YAP1 expression.


Assuntos
Morte Celular Autofágica , Neoplasias da Mama , Feminino , Humanos , Citoplasma/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/genética
13.
Liver Int ; 43(6): 1170-1182, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37017559

RESUMO

Hepatocytic ballooning is a key histological feature in the diagnosis of non-alcoholic steatohepatitis (NASH) and is an essential component of the two most widely used histological scoring systems for diagnosing and staging non-alcoholic fatty liver disease (NAFLD) [namely, the NAFLD activity score (NAS), and the steatosis, activity and fibrosis (SAF) scoring system]. As a result of the increasing incidence of NASH globally, the diagnostic challenges of hepatocytic ballooning are unprecedented. Despite the clear pathological concept of hepatocytic ballooning, there are still challenges in assessing hepatocytic ballooning in 'real life' situations. Hepatocytic ballooning can be confused with cellular oedema and microvesicular steatosis. Significant inter-observer variability does exist in assessing the presence and severity of hepatocytic ballooning. In this review article, we describe the underlying mechanisms associated with hepatocytic ballooning. Specifically, we discuss the increased endoplasmic reticulum stress and the unfolded protein response, as well as the rearrangement of the intermediate filament cytoskeleton, the appearance of Mallory-Denk bodies and activation of the sonic Hedgehog pathway. We also discuss the use of artificial intelligence in the detection and interpretation of hepatocytic ballooning, which may provide new possibilities for future diagnosis and treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Fígado/patologia , Inteligência Artificial , Proteínas Hedgehog , Índice de Gravidade de Doença , Biópsia
14.
Org Lett ; 25(16): 2756-2760, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37058322

RESUMO

The N-functionalization of free sulfoximines is an important approach to modifying their chemical and biological properties for downstream applications. Here, we report a rhodium-catalyzed N-allylation of free sulfoximines (═NH) with allenes under mild conditions. The redox-neutral and base-free process enables chemo- and enantioselective γ-hydroamination of allenes and gem-difluoroallenes. Synthetic applications of sulfoximine products obtained thereof have been demonstrated.

17.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36991919

RESUMO

Glucose sensors based blood glucose detection are of great significance for the diagnosis and treatment of diabetes because diabetes has aroused wide concern in the world. In this study, bovine serum albumin (BSA) was used to cross-link glucose oxidase (GOD) on a glassy carbon electrode (GCE) modified by a composite of hydroxy fullerene (HFs) and multi-walled carbon nanotubes (MWCNTs) and protected with a glutaraldehyde (GLA)/Nafion (NF) composite membrane to prepare a novel glucose biosensor. The modified materials were analyzed by UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The prepared MWCNTs-HFs composite has excellent conductivity, the addition of BSA regulates MWCNTs-HFs hydrophobicity and biocompatibility, and better immobilizes GOD on MWCNTs-HFs. MWCNTs-BSA-HFs plays a synergistic role in the electrochemical response to glucose. The biosensor shows high sensitivity (167 µA·mM-1·cm-2), wide calibration range (0.01-3.5 mM), and low detection limit (17 µM). The apparent Michaelis-Menten constant Kmapp is 119 µM. Additionally, the proposed biosensor has good selectivity and excellent storage stability (120 days). The practicability of the biosensor was evaluated in real plasma samples, and the recovery rate was satisfactory.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Nanotubos de Carbono , Glucose/química , Nanotubos de Carbono/química , Glucose Oxidase/química , Soroalbumina Bovina/química , Técnicas Biossensoriais/métodos , Eletrodos , Nanocompostos/química , Enzimas Imobilizadas/química , Técnicas Eletroquímicas/métodos
18.
J Agric Food Chem ; 71(11): 4561-4570, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945880

RESUMO

Antibiotics are used to control certain bacterial diseases in plant agriculture. Understanding antibiotic uptake by edible vegetables after application and associated risks on plant microbiome and human health is critical. In this study, oxytetracycline and streptomycin, the two most commonly used antibiotics in plant agriculture, were applied to cherry radish via continuous soil drenching to study their translocations into plant tissues, influence on radish microbiome, and the potential health risk to mice. The results demonstrated that oxytetracycline induced hormesis in radish plants and both antibiotics were translocated into the leaves, fruits, and roots of radishes from the soil, with significantly higher plant uptake of streptomycin than oxytetracycline. Interestingly, the proportion of culturable oxytetracycline or streptomycin-resistant bacteria in the antibiotic-accumulated radish tissues was significantly higher than that in the antibiotic-free radish tissues, although both bacterial and fungal communities in different radish tissues were not affected by the accumulated antibiotics, demonstrating that antibiotic application could enrich antibiotic resistance in the plant microbiome. Feeding mice with antibiotics-accumulated radish tissues did not show significant effects on the weight and blood glucose levels of mice. Overall, this study provides important insights into the risk of using antibiotics in plant agriculture.


Assuntos
Microbiota , Oxitetraciclina , Humanos , Animais , Camundongos , Antibacterianos/farmacologia , Oxitetraciclina/farmacologia , Estreptomicina/farmacologia , Agricultura , Plantas , Bactérias/genética , Solo
19.
J Transl Med ; 21(1): 206, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941725

RESUMO

BACKGROUND: Papillary thyroid microcarcinoma (PTMC) incidence has significantly increased, and some cases still exhibit invasive traits. The entire molecular landscape of PTMC, which can offer hints for the etiology of cancer, is currently absent. METHODS: We compared our findings with those for PTMC in the TCGA by analyzing the largest study at the current stage of whole exome sequencing and RNA-sequencing data from 64 patients with PTMC. Then, we systematically demonstrated the differences between the two PTMC subtypes based on multi-omics analyses. Additionally, we created a molecular prediction model for the PTMC subtypes and validated them among TCGA patients for individualized integrative assessment. RESULTS: In addition to the presence of BRAF mutations and RET fusions in the TCGA cohort, we also discovered a new molecular signature named PTMC-inflammatory that implies a potential response to immune intervention, which is enriched with AFP mutations, IGH@-ext fusions, elevated immune-related genes, positive peroxidase antibody, and positive thyroglobulin antibody. Additionally, a molecular prediction model for the PTMC-inflammatory patients was created and validated among TCGA patients, while the prognosis for these patients is poor. CONCLUSIONS: Our findings comprehensively define the clinical and molecular features of PTMC and may inspire new therapeutic hypotheses.


Assuntos
Neoplasias da Glândula Tireoide , Transcriptoma , Humanos , Transcriptoma/genética , Multiômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação/genética , Estudos Retrospectivos
20.
Bioresour Technol ; 377: 128962, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966944

RESUMO

The high cost and process complexity limit the enzymatic extraction of ß-glucan. In this study, ß-glucan was extracted from oat bran in a two-step enzymatic pathway using a recombinant strain of Aspergillus niger AG11 overexpressing the endogenous xylanase (xynA) and amylolytic enzyme. First, co-optimization of promoter and signal peptide and a fusion of glucoamylase (glaA) fragment were integrated into the ß-glucosidase (bgl) locus to improve xynA expression. Then, the optimized expression cassette was simultaneously integrated into bgl, α-amylase amyA, and acid α-amylase ammA loci, yielding the Rbya with 3,650-fold and 31.2% increase in xynA and amylolytic enzyme activity than the wild-type strain, respectively. Finally, Rbya's supernatants at 72 h (rich in xynA and amylolytic enzyme) and 10 d (rich in proteases) were used to decompose xylan/starch and proteins in oat bran, respectively, to obtain 85.1% pure ß-glucan. Rbya could be a robust candidate for the cost-effective extraction of ß-glucan.


Assuntos
Aspergillus niger , beta-Glucanas , Avena/metabolismo , Fibras na Dieta/metabolismo , alfa-Amilases/metabolismo , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...