RESUMO
A wearable antenna functioning in the 2.4 GHz band for health monitoring and sensing is proposed. It is a circularly polarized (CP) patch antenna made from textiles. Despite its low profile (3.34 mm thickness, 0.027 λ0), an enhanced 3-dB axial ratio (AR) bandwidth is achieved by introducing slit-loaded parasitic elements on top of analysis and observations within the framework of Characteristic Mode Analysis (CMA). In detail, the parasitic elements introduce higher-order modes at high frequencies that may contribute to the 3-dB AR bandwidth enhancement. More importantly, additional slit loading is investigated to preserve the higher-order modes while relaxing strong capacitive coupling invoked by the low-profile structure and the parasitic elements. As a result, unlike conventional multilayer designs, a simple single-substrate, low-profile, and low-cost structure is achieved. While compared to traditional low-profile antennas, a significantly widened CP bandwidth is realized. These merits are important for the future massive application. The realized CP bandwidth is 2.2-2.54 GHz (14.3%), which is 3-5 times that of traditional low-profile designs (thickness < 4 mm, 0.04 λ0). A prototype was fabricated and measured with good results.
RESUMO
This paper proposes a new interatomic potential energy neural network, AisNet, which can efficiently predict atomic energies and forces covering different molecular and crystalline materials by encoding universal local environment features, such as elements and atomic positions. Inspired by the framework of SchNet, AisNet consists of an encoding module combining autoencoder with embedding, the triplet loss function and an atomic central symmetry function (ACSF), an interaction module with a periodic boundary condition (PBC), and a prediction module. In molecules, the prediction accuracy of AisNet is comparabel with SchNet on the MD17 dataset, mainly attributed to the effective capture of chemical functional groups through the interaction module. In selected metal and ceramic material datasets, the introduction of ACSF improves the overall accuracy of AisNet by an average of 16.8% for energy and 28.6% for force. Furthermore, a close relationship is found between the feature ratio (i.e., ACSF and embedding) and the force prediction errors, exhibiting similar spoon-shaped curves in the datasets of Cu and HfO2. AisNet produces highly accurate predictions in single-commponent alloys with little data, suggesting the encoding process reduces dependence on the number and richness of datasets. Especially for force prediction, AisNet exceeds SchNet by 19.8% for Al and even 81.2% higher than DeepMD on a ternary FeCrAl alloy. Capable of processing multivariate features, our model is likely to be applied to a wider range of material systems by incorporating more atomic descriptions.
RESUMO
Introduction: After adulthood, as a person grows older, the secretion of sex hormones in the body gradually decreases, and the risk of periodontitis increases. But the relationship between sex hormones and periodontitis is still controversial. Methods: We investigated the association between sex hormones and periodontitis among Americans over 30 years old. 4,877 participants containing 3,222 males and 1,655 postmenopausal females who had had periodontal examination and detailed available sex hormone levels, were included in our analysis from the 2009-2014 National Health and Nutrition Examination Surveys cycles. We applied multivariate linear regression models to estimate the connection between sex hormones and periodontitis after converting sex hormones into categorical variables through tertile. Additionally, to ensure the stability of the analysis results, we carried out a trend test, subgroup analysis, and interaction test. Results: After fully adjusting the covariates, estradiol levels were not associated with periodontitis in both males and females with a P for trend = 0.064 and 0.064, respectively. For males, we found that sex hormone-binding globulin was positively associated with periodontitis (tertile3 vs tertile1: OR=1.63, 95% CI=1.17-2.28, p = 0.004, P for trend = 0.005). Congruously, free testosterone (tertile3 vs tertile1: OR=0.60, 95% CI=0.43-0.84, p = 0.003), bioavailable testosterone (tertile3 vs tertile1: OR=0.51, 95% CI=0.36-0.71, p < 0.001), and free androgen index (tertile3 vs tertile1: OR=0.53, 95% CI=0.37-0.75, p < 0.001) was found to be negatively associated with periodontitis. Moreover, subgroup analysis of age found a closer relationship between sex hormones and periodontitis in those younger than 50 years. Conclusion: Our research suggested that males with lower bioavailable testosterone levels affected by sex hormone-binding globulin were at a higher risk of periodontitis. Meanwhile, estradiol levels were not associated with periodontitis in postmenopausal women.
Assuntos
Periodontite , Globulina de Ligação a Hormônio Sexual , Masculino , Humanos , Adulto , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Hormônios Esteroides Gonadais , Testosterona , Periodontite/epidemiologia , EstradiolRESUMO
Background: Dysregulation of long noncoding RNAs (lncRNAs) has been reported to be associated with multiple tumors where they act as tumor suppressors or accelerators. The lncRNA CYTOR was identified as an oncogene involved in many cancers, such as gastric cancer, colorectal cancer, hepatocellular carcinoma, and renal cell carcinoma. However, the role of CYTOR in bladder cancer (BCa) has rarely been reported. Methods: Using cancer datasets from The Cancer Genome Atlas (TCGA) program, we analyzed the association between CYTOR expression and prognostic value, oncogenic pathways, antitumor immunity and immunotherapy response in BCa. The influence of CYTOR on the immune infiltration pattern in the urothelial carcinoma microenvironment was further verified in our dataset. Single-cell analysis revealed the role of CYTOR in the tumor microenvironment (TME) of BCa. Finally, we evaluated the expression of CYTOR in BCa in the Peking University First Hospital (PKU-BCa) dataset and its correlation with the malignant phenotype of BCa in vitro and in vivo. Results: The results indicated that CYTOR was highly expressed in multiple cancer samples, including BCa, and increased CYTOR expression contributed to poor overall survival (OS). Additionally, elevated CYTOR expression was significantly correlated with clinicopathological features of BCa, such as female sex, advanced TNM stage, high histological grade and non-papillary subtype. Functional characterization revealed that CYTOR may be involved in immune-related pathways and the epithelial mesenchymal transformation (EMT) process. Moreover, CYTOR had a significant association with infiltrating immune cells, including M2 macrophages and regulatory T cells (Tregs). CYTOR facilitates the crosstalk between cancer-associated fibroblasts (CAFs) and macrophages, and mediates M2 polarization of macrophages. Correlation analysis revealed a positive correlation between CYTOR expression and programmed cell death-1 (PD-1)/programmed death ligand 1 (PD-L1)/expression and other targets for specific immunotherapy in BCa, which are recognized to predict the efficacy of immunotherapy. Conclusions: These results suggest that CYTOR serves as a potential biomarker for predicting survival outcome, TME cell infiltration characteristics and immunotherapy response in BCa.
RESUMO
To comprehensively clarify the pollution characteristics of persistent toxic substances, the Soil and Air Monitoring Program Phase III (SAMP-III) was conducted in 2019 in China. In total, 154 surface soil samples were collected across China, and 30 unsubstituted polycyclic aromatic hydrocarbons (U-PAHs) and 49 methylated PAHs (Me-PAHs) were analyzed in this study. The mean concentrations of total U-PAHs and Me-PAHs were 540⯱â¯778 and 82.0⯱â¯132â¯ng/g dw, respectively. Northeastern China and Eastern China are the two regions of concern with high PAH and BaP equivalency levels. Compared with SAMP-I (2005) and SAMP-II (2012), an obvious upward temporal trend followed by a downward trend of PAH levels was observed in the past 14â¯years for the first time. The mean concentrations of 16 U-PAHs were 377⯱â¯716, 780⯱â¯1010, and 419⯱â¯611â¯ng/g dw in surface soil across China for the three phases, respectively. Considering rapid economic growth and energy consumption, an increasing trend from 2005 to 2012 was expected. From 2012 to 2019, the PAH levels in soils across China decreased by 50â¯%, which was consistent with the decline in PAH emissions. The period of reduction of PAHs in surface soil coincided with the implementation of Air and Soil Pollution Control Actions in China after 2013 and 2016, respectively. Along with the pollution control actions in China, the pollution control of PAHs and the increase in soil quality can be expected in the near future.
RESUMO
Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.
RESUMO
BACKGROUND: Blau syndrome is a rare autoinflammatory disease caused by autosomal dominant mutations in the CARD15/NOD2 gene. Vascular involvement is a rare phenotype in Blau syndrome patients. In this study, we aimed to describe a 20-year- old Chinese girl with Blau syndrome complicated by renal arteritis. In addition, we summarized a literature review of published cases of vascular involvement in patients with Blau syndrome. CASE PRESENTATION: We describe a 20-year-old girl who was initially misdiagnosed with juvenile idiopathic arthritis (JIA) almost 15 years prior. In October 2019, she developed renal arteritis at the age of 17 years and was eventually diagnosed with Blau syndrome. A de-novo M513T mutation was found in her gene testing. A review of the literature on patients with Blau syndrome and vasculitis showed that a total of 18 cases were reported in the past 40 years. The vast majority of them were predominantly involved medium and large vessel arteritis. Of the 18 patients included in our literature review, 14 patients had aorto-arteritis, and 4 of them had renal artery involvement. Two patients presented with renal artery stenosis, 1with a sinus of Valsalva aneurysm, and 1 with retinal vasculitis. CONCLUSION: A detailed medical history inquiry and a careful physical examination are helpful for the early identification of Blau syndrome, especially for infant onset refractory JIA. Medium-and large-vessel arteritis is a rare clinical manifestation in Blau syndrome patients. Careful examination of the peripheral pulse and measurement of blood pressure at every regular visit may be helpful in the early identification of Blau syndrome-arteritis. Early diagnosis and appropriate treatment may prevent or delay the occurrence of severe symptoms in patients to improve the patient's quality of life.
Assuntos
Arterite , Artrite , Sarcoidose , Sinovite , Uveíte , Feminino , Humanos , Artrite/etiologia , Artrite/genética , População do Leste Asiático , Mutação , Proteína Adaptadora de Sinalização NOD2/genética , Qualidade de Vida , Sarcoidose/complicações , Sarcoidose/diagnóstico , Sarcoidose/genética , Sinovite/diagnóstico , Sinovite/genética , Uveíte/etiologia , Uveíte/genética , Adulto JovemRESUMO
Ammonia recovery from wastewater is crucial, yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed. Herein, a membrane-based hybrid process of the Donnan dialysis-electrodialysis process (DD-ED) was proposed for sustainable and efficient ammonia recovery. In principle, DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 + and driven cation (Na+) across the cation exchange membrane, given industrial sodium salt as a driving chemical. An additional ED stage driven by solar energy realizes a further removal of ammonia, recovery of driven cation, and replenishment of OH- toward ammonia stripping. Our results demonstrated that the hybrid DD-ED process achieved ammonia removal efficiency >95%, driving cation (Na+) recovery efficiency >87.1% for synthetic streams, and reduced the OH- loss by up to 78% compared to a standalone DD case. Ammonia fluxes of 98.2 gN m-2 d-1 with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN -1. With verified mass transfer modeling, reasonably controlled operation, and beneficial recovery performance, the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural, remote area.
RESUMO
The pore architecture of porous scaffolds is a critical factor in osteogenesis, but it is a challenge to precisely configure strut-based scaffolds because of the inevitable filament corner and pore geometry deformation. This study provides a pore architecture tailoring strategy in which a series of Mg-doped wollastonite scaffolds with fully interconnected pore networks and curved pore architectures called triply periodic minimal surfaces (TPMS), which are similar to cancellous bone, are fabricated by a digital light processing technique. The sheet-TPMS pore geometries (s-Diamond, s-Gyroid) contribute to a 3â4-fold higher initial compressive strength and 20%-40% faster Mg-ion-release rate compared to the other-TPMS scaffolds, including Diamond, Gyroid, and the Schoen's I-graph-Wrapped Package (IWP) in vitro. However, we found that Gyroid and Diamond pore scaffolds can significantly induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Analyses of rabbit experiments in vivo show that the regeneration of bone tissue in the sheet-TPMS pore geometry is delayed; on the other hand, Diamond and Gyroid pore scaffolds show notable neo-bone tissue in the center pore regions during the early stages (3-5 weeks) and the bone tissue uniformly fills the whole porous network after 7 weeks. Collectively, the design methods in this study provide an important perspective for optimizing the pore architecture design of bioceramic scaffolds to accelerate the rate of osteogenesis and promote the clinical translation of bioceramic scaffolds in the repair of bone defects.
RESUMO
Subjective tinnitus is the perception of sound in the absence of external stimulation. Neuromodulation is a novel method with promising properties for application in tinnitus management. This study sought to review the types of non-invasive electrical stimulation in tinnitus to provide the foothold for further research. PubMed, EMBASE, and Cochrane databases were searched for studies on the modulation of tinnitus by non-invasive electrical stimulation. Among the four forms of non-invasive electrical modulation, transcranial direct current stimulation, transcranial random noise stimulation, and transauricular vagus nerve stimulation yielded promising results, whereas the effect of transcranial alternating current stimulation in the treatment of tinnitus has not been confirmed. Non-invasive electrical stimulation can effectively suppress tinnitus perception in some patients. However, the heterogeneity in parameter settings leads to scattered and poorly replicated findings. Further high-quality studies are needed to identify optimal parameters to develop more acceptable protocols for tinnitus modulation.
RESUMO
PURPOSE: Studies have indicated that the observed association between vitamin D and myopia was confounded by time spent outdoors. This study aimed to elucidate this association using a national cross-sectional dataset. METHODS: Participants with 12 to 25 years who participated in non-cycloplegic vision exam from National Health and Nutrition Examination Survey (NHANES) 2001 to 2008 were included in the present study. Myopia was defined as spherical equivalent of any eyes ≤ -0.5 diopters (D). RESULTS: 7,657 participants were included. The weighted proportion of emmetropes, mild myopia, moderate myopia, and high myopia were 45.5%, 39.1%, 11.6%, and 3.8%, respectively. After adjusting for age, gender, ethnicity, TV/computer usage, and stratified by education attainment, every 10â nmol/L increment of serum 25(OH)D concentration was associated with a reduced risk of myopia (odds ratio [OR] = 0.96, 95% confidence interval [95%CI] 0.93-0.99 for any myopia; OR = 0.96, 95%CI 0.93-1.00 for mild myopia; OR = 0.99, 95%CI 0.97-1.01 for moderate myopia; OR = 0.89, 95%CI 0.84-0.95 for high myopia). Serum 25(OH)D level was closely correlated with time spent outdoors. After categorizing time spent outdoors into quarters (low, low-medium, medium-high, and high), every 1 quarter increment of time spent outdoors was associated with 2.49â nmol/L higher serum 25(OH)D concentration. After adjusting for time spent outdoors, serum 25(OH)D level did not show significant association with myopia (OR = 1.01, 95%CI 0.94-1.06 for 10â nmol/L increment). CONCLUSIONS: The association between high serum vitamin D and reduced risk of myopia is confounded by longer time spent outdoors. Evidence from the present study does not support that there is a direct association between serum vitamin D level with myopia.
RESUMO
Anaerobic roasting combined with the persulfate-leaching process was used to treat cyanide tailings. In this study, the effect of the roasting conditions on the iron leaching rate was investigated by the response surface methodology. Additionally, this study was focusing on the effect of roasting temperature on the physical phase transformation of cyanide tailings and the persulfate-leaching process of roasted products. The results showed that roasting temperature had significant influences on the leaching of iron. The roasting temperature determined the physical phase changes of iron sulfides in roasted cyanide tailings, which in turn affected the leaching of iron. At the temperature of 700 °C, all pyrite was converted to pyrrhotite, and the leaching rate of iron reached a maximum of 93.62%. At this point, the weight loss rate of cyanide tailings and the recovery rate of sulfur were 43.50% and 37.73%, respectively. The sintering of the minerals became more severe when the temperature raised to 900 °C, and the iron leaching rate gradually decreased. The leaching of iron was mainly attributed to the indirect oxidation by SO4-Ë and OHË rather than the direct oxidation by S2O82-. The oxidation of iron sulfides by persulfate produced iron ions along with a certain amount of SO4-Ë. Iron ions continuously activated persulfate to produce SO4-Ë and OHË under the mediation of sulfur ions in iron sulfides.
RESUMO
The human aldo-keto reductase (AKRs) superfamily is involved in the development of various tumors. However, the different expression patterns of AKRs and their prognostic value in gastric cancer (GC) have not been clarified. In this study, we analyzed the gene expression and gene methylation level of AKRs in GC patients and the survival data and immune infiltration based on AKRs expression, using data from different databases. We found that the expression levels of AKR1B10, AKR1C1, AKR1C2, and AKR7A3 in GC tissues were lower and the expression level of AKR6A5 was higher in GC tissues than in normal tissue. These differentially expressed genes (AKR1B10, AKR1C1, AKR1C2, AKR7A3, and AKR6A5) were significantly correlated with the infiltration level. The expression of SPI1 and AKR6A5 in GC was positively correlated. Survival analysis showed that GC levels of AKR6A5 reduced or increased mRNA levels of AKR7A3, and AKR1B10 was expected to have higher overall survival (OS), first progression (FP) survival, and postprogression survival (PPS) rates and a better prognosis. Moreover, the expression of AKR1B1 was found to be correlated with the staging of GC. The methylation of AKR6A5 (KCNAB2) at cg05307871 and cg01907457 was significantly associated with the classification of GC. Meta-analysis and ROC curve analysis show that the expression level of AKR1B1 and the methylation of cg16156182 (KCNAB1), cg11194299 (KCNAB2), cg16132520 (AKR1B1), and cg13801416 (AKR1B1) had a high hazard ratio and a good prognostic value. These data suggest that the expression and methylation of AKR1B1 and AKR6A5 are significantly related to the prognosis.
Assuntos
Neoplasias Gástricas , Humanos , Aldo-Ceto Redutases , Prognóstico , Neoplasias Gástricas/patologia , Análise de Sobrevida , Modelos de Riscos Proporcionais , Aldeído RedutaseRESUMO
The object was to enhance the bioactivity of pure polyether-ether-ketone (PEEK) by incorporating nano-TiO2 (n-TiO2) and investigate its potential mechanism. PEEK/n-TiO2 composite was manufactured using a 3D PEEK printer and characterized by scanning electron microscopy (SEM), 3D profiler, energy-dispersive spectroscopy, and Fourier-transform infrared (FT-IR) analyses. Cytocompatibility was tested using SEM, fluorescence, and cell counting kit-8 assays. Osteogenic differentiation was evaluated by osteogenic gene and mineralized nodule levels. The expression of the candidate miRNAs were detected in composite group, and its role in osteogenic differentiation was studied. As a results the 3D-printed PEEK/n-TiO2 composite (Φ = 25 mm, H = 2 mm) was successfully fabricated, and the TiO2 nanoparticles were well distributed and retained the nanoscale size of the powder. The Ra value of the composite surface was 2.69 ± 0.29, and Ti accounted for 22.29 ± 12.09% (in weight), and FT-IR analysis confirmed the characteristic peaks of TiO2. The cells in the composite group possessed better proliferation and osteogenic differentiation abilities than those in the PEEK group. miR-154-5p expression was decreased in the composite group, and the inhibition of miR-154-5p significantly enhanced the proliferation and osteogenic differentiation abilities. In conclusion, 3D-printed PEEK/n-TiO2 composite enhanced cytocompatibility and osteogenic induction ability by downregulating miR-154-5p, which provides a promising solution for improving the osteointegration of PEEK.
RESUMO
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2 RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N-Cu1 -S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2 RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1â µmol g-1 h-1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300â h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N-Cu1 -S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2 RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
RESUMO
BACKGROUND: Insecticide resistance continuously poses a threat to agricultural production. Chemosensory protein-mediated resistance is a new mechanism of insecticide resistance discovered in recent years. In-depth research on resistance mediated by chemosensory proteins (CSPs) provides new insight into aid insecticide resistance management. RESULTS: Chemosensory protein 1 in Plutella xylostella (PxCSP1) was overexpressed in the two indoxacarb-resistant field populations and PxCSP1 has a high affinity with indoxacarb. PxCSP1 was upregulated when exposed to indoxacarb and the knockdown of this gene elevated sensitivity to indoxacarb, which demonstrate that PxCSP1 is involved in the indoxacarb resistance. Considering that CSPs may confer resistance in insects via binding or sequestering, we explored the binding mechanism of indoxacarb in PxCSP1-mediated resistance. Using molecular dynamics simulations and site-directed mutation, we found that indoxacarb forms a solid complex with PxCSP1 mainly through van der Waals interactions and electrostatic interactions. Between these, the electrostatic interaction provided by the Lys100 side chain in PxCSP1, and especially the hydrogen bonding between the NZ atom and the O of the carbamoyl carbonyl group of indoxacarb, are the key factors for the high affinity of PxCSP1 to indoxacarb. CONCLUSIONS: The overexpression of PxCPS1 and its high affinity to indoxacarb is partially responsible for indoxacarb resistance in P. xylostella. Modification of indoxacarb's carbamoyl group has the potential to alleviate indoxacarb resistance in P. xylostella. These findings will contribute to solving chemosensory protein-mediated indoxacarb resistance and provide a better understanding of the insecticide resistance mechanism. © 2023 Society of Chemical Industry.
RESUMO
Indoor window films can represent short-term air pollution conditions of indoor environment through rapidly capturing organic contaminants as effective passive air samplers. To investigate the temporal variation, influence factors of polycyclic aromatic hydrocarbons (PAHs) in indoor window films, and the exchange behavior with gas phase in college dormitories, 42 pairs window films of interior and exterior window surfaces and corresponding indoor gas phase and dust samples were collected monthly in six selected dormitories, Harbin, China, from August to December 2019 and September 2020. The average concentration of ∑16PAHs in indoor window films (398 ng/m2) was significantly (p < 0.01) lower than that in outdoors (652 ng/m2). In addition, the median indoor/outdoor ∑16PAHs concentration ratio was close to 0.5, showing that outdoor air acted as a major PAH source to indoor environment. The 5-ring PAHs were mostly dominant in window films whereas the 3-ring PAHs contributed mostly in gas phase. 3-ring PAHs and 4-ring PAHs were both important contributors for dormitory dust. Window films showed stable temporal variation, i.e. PAH concentrations in heating months were higher than those in non-heating months. The atmospheric O3 concentration was the main influence factor of PAHs in indoor window films. PAHs with low molecular weight in indoor window films rapidly reached film/air equilibrium phase within in dozens of hours. The large deviation in the slope of the log KF-A versus log KOA regression line from that in reported equilibrium formula might be the difference between the window film composition and octanol.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , PoeiraRESUMO
Silicate-based biomaterials-clinically applied fillers and promising candidates-can act as a highly biocompatible substrate for osteostimulative osteogenic cell growth in vitro and in vivo. These biomaterials have been proven to exhibit a variety of conventional morphologies in bone repair, including scaffolds, granules, coatings and cement pastes. Herein, we aim to develop a series of novel bioceramic fiber-derived granules with core-shell structures which have a hardystonite (HT) shell layer and changeable core components-that is, the chemical compositions of a core layer can be tuned to include a wide range of silicate candidates (e.g., wollastonite (CSi)) with doping of functional ions (e.g., Mg, P, and Sr). Meanwhile, it is versatile to control the biodegradation and bioactive ion release sufficiently for stimulating new bone growth after implantation. Our method employs rapidly gelling ultralong core-shell CSi@HT fibers derived from different polymer hydrosol-loaded inorganic powder slurries through the coaxially aligned bilayer nozzles, followed by cutting and sintering treatments. It was demonstrated that the nonstoichiometric CSi core component could contribute to faster bio-dissolution and biologically active ion release in tris buffer in vitro. The rabbit femoral bone defect repair experiments in vivo indicated that core-shell bioceramic granules with an 8% P-doped CSi-core could significantly stimulate osteogenic potential favorable for bone repair. It is worth concluding that such a tunable component distribution strategy in fiber-type bioceramic implants may develop new-generation composite biomaterials endowed with time-dependent biodegradation and high osteostimulative activities for a range of bone repair applications in situ.