RESUMO
Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Naftalenos , China , Naftalenos/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricosRESUMO
The rapid variation of influenza challenges vaccines and treatments, which makes an urgent task to develop the high-efficiency and low-toxicity new anti-influenza virus drugs. Selenium is one of the essential trace elements for the human body that possesses a good antiviral activity. In this study, we assessed anti-influenza A virus (H1N1) activity of polyethylene glycol (PEG)-modified gray selenium nanoparticles (PEG-SeNPs) on Madin-Darby Canine Kidney (MDCK) cells in vitro. CCK-8 assay showed that PEG-SeNPs had a protective effect on H1N1-infected MDCK cells. Moreover, PEG-SeNPs significantly reduced the mRNA level of H1N1. TUNEL-DAPI test showed that DNA damage reached a high level but effectively prevented after PEG-SeNPs treatment. Meanwhile, JC-1, Annexin V-FITC and cell cycle assay demonstrated the apoptosis induced by H1N1 was reduced greatly when treated with PEG-SeNPs. Furthermore, the downregulation of p-ATM, p-ATR and P53 protein, along with the upregualation of AKT protein indicated that PEG-SeNPs could inhibit H1N1-induced cell apoptosis through reactive oxygen species (ROS)-mediated related signaling pathways. Finally, Cytokine detection demonstrated PEG-SeNPs inhibited the production of pro-inflammatory factors after infection, including IL-1ß, IL-5, IL-6, and TNF-α. To sum up, PEG-SeNPs might become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.
Assuntos
Apoptose , Vírus da Influenza A Subtipo H1N1 , Polietilenoglicóis , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cães , Células Madin Darby de Rim Canino , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Inflamação/tratamento farmacológico , Antivirais/farmacologia , Selênio/farmacologia , Selênio/química , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Humanos , Dano ao DNA/efeitos dos fármacosRESUMO
OBJECTIVES: To explore early diagnostic biological markers for Leigh syndrome caused by the m.8993T>G mutation. METHODS: A retrospective analysis was performed on the clinical data of four children diagnosed with m.8993T>G mutation-related mitochondrial disease at the Children's Hospital of Chongqing Medical University from January 2014 to January 2024. Additionally, a literature review was conducted. RESULTS: All four children had plasma amino acid and acylcarnitine analyses that revealed decreased citrulline levels, and one child was initially identified through neonatal genetic metabolic disease screening. According to the literature review, there were 26 children with mitochondrial disease and hypocitrullinemia caused by the m.8993T>G mutation (including the four children in this study). Among these, 12 children exhibited clinical phenotypes of Leigh syndrome or Leigh-like syndrome, while 18 children were identified with hypocitrullinemia and/or elevated levels of 3-hydroxyisovalerylcarnitine (C5-OH) during neonatal genetic metabolic disease screening. CONCLUSIONS: Hypocitrullinemia may serve as a potential biomarker for the early diagnosis of m.8993T>G mutation-associated Leigh syndrome, detectable as early as during neonatal genetic metabolic disease screening.
Assuntos
Citrulina , Doença de Leigh , Mutação , Humanos , Doença de Leigh/genética , Masculino , Feminino , Lactente , Citrulina/sangue , Pré-Escolar , Recém-Nascido , Carnitina/análogos & derivados , Carnitina/sangue , Estudos RetrospectivosRESUMO
The adzuki bean is a mature seed of the red bean leguminous plant, and people like to eat it because of its nutritious properties and moderate proportion of amino acids. Adzuki bean germination and the enrichment of GABA greatly improve the health effects of the adzuki bean. The effects of the GABA-rich adzuki bean on the expression of insulin-pathway-related genes and proteins in the liver of T2DM mice were studied via Western blotting and qPCR. The results showed that a GABA-rich adzuki bean diet could promote glycogen synthesis in the liver of T2DM mice, inhibit the activities of PEPCK and G-6-Pase, and significantly down-regulate the gene expression levels of PEPCK, G6PC and FOXO1 (p < 0.05) and the phosphorylation levels of FOXO1 and GSK3ß. In addition, it can also up-regulate the expression of the AMPKα gene and down-regulate the expression of the SREBP1c gene to inhibit the synthesis of triglycerides and cholesterol in T2DM mice. Lipid accumulation in mice can alleviate glucose and lipid metabolism disorders and play an effective role in regulating blood glucose at liver tissue targets. This study suggested that the GABA-rich adzuki bean can improve hyperglycemia in type 2 diabetic mice by activating the IRS/PI3K/AKT signaling pathway in the liver.
RESUMO
The causal association of circulating metabolites with dementia remains uncertain. We assessed the causal association of circulating metabolites with dementia utilizing Mendelian randomization (MR) methods. We performed univariable MR analysis to evaluate the associations of 486 metabolites with dementia, Alzheimer's disease (AD), and vascular dementia (VaD) risk. For secondary validation, we replicated the analyses using an additional dataset with 123 metabolites. We observed 118 metabolites relevant to the risk of dementia, 59 of which were lipids, supporting the crucial role of lipids in dementia pathogenesis. After Bonferroni adjustment, we identified nine traits of HDL particles as potential causal mediators of dementia. Regarding dementia subtypes, protective effects were observed for epiandrosterone sulfate on AD (OR = 0.60, 95% CI: 0.48-0.75) and glycoproteins on VaD (OR = 0.89, 95% CI: 0.83-0.95). Bayesian model averaging MR (MR-BMA) analysis was further conducted to prioritize the predominant metabolites for dementia risk, which highlighted the mean diameter of HDL particles and the concentration of very large HDL particles as the predominant protective factors against dementia. Moreover, pathway analysis identified 17 significant and 2 shared metabolic pathways. These findings provide support for the identification of promising predictive biomarkers and therapeutic targets for dementia.
Assuntos
Doença de Alzheimer , Biomarcadores , Demência , Análise da Randomização Mendeliana , Humanos , Demência/sangue , Demência/genética , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Biomarcadores/sangue , Fatores de Risco , Teorema de Bayes , Demência Vascular/sangue , Demência Vascular/genética , Masculino , FemininoRESUMO
Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.
Assuntos
Doença das Coronárias , Ácidos Graxos Voláteis , Fezes , Alimentos Fermentados , Microbioma Gastrointestinal , Lactobacillus plantarum , Humanos , Fezes/microbiologia , Doença das Coronárias/microbiologia , Camundongos , Animais , Alimentos Fermentados/microbiologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Masculino , Fermentação , Feminino , Pessoa de Meia-Idade , Células RAW 264.7 , Idoso , Probióticos/farmacologiaRESUMO
Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.
RESUMO
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
RESUMO
BACKGROUND: Hypokalemia has been associated with an increased risk of peritoneal dialysis (PD)-associated peritonitis. However, hypokalemia is commonly associated with malnutrition, inflammation, and severe coexisting comorbidities, which thus are suspected of being potential confounders. This study was aimed at testing whether hypokalemia was independently associated with the occurrence and prognosis of PD-associated peritonitis. METHODS: A national-level dataset from the Peritoneal Dialysis Telemedicine-assisted Platform Cohort (PDTAP) Study was used to explore the independent association of serum potassium with PD-associated peritonitis. Unmatched and propensity score-adjusted multivariate competing risk models, as well as univariate competing risk models following 1:1 propensity score matching, were conducted to balance potential biases between patients with and without hypokalemia. The association between potassium levels prior to peritonitis and treatment failure due to peritonitis was also investigated. RESULTS: During a median follow-up of 25.7 months in 7220 PD patients, there was a higher incidence of peritonitis in patients with serum potassium below 4.0 mmol/L compared to those with higher serum levels (677 [0.114/patient-year] vs. 914 [0.096/patient-year], P = 0.001). After adjusting for demographics, laboratory tests, residual renal function, and medication use, baseline potassium levels below 4.0 mmol/L were not linked to an increased risk of peritonitis, with a hazard ratio of 0.983 (95% CI 0.855-1.130, P = 0.810). This result remained consistent in both the propensity score adjusted multivariate competing risk regression (HR = 0.974, 95% CI 0.829-1.145, P = 0.750) and the univariate competing risk regression after 1:1 propensity score matching (Fine-Gray test, P = 0.218). The results were similar when analyzing patients with serum potassium level above or below 3.5 mmol/L. Lastly, hypokalemia before the occurrence of peritonitis was not independently associated with treatment failure. CONCLUSION: Hypokalemia was not found to be an independent risk factor for PD-associated peritonitis or treatment failure of peritonitis in China.
RESUMO
Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome sequencing on wheat roots under well-watered and moderate soil drying conditions. The genes upregulated in wheat roots under soil drying were mainly involved in starch and sucrose metabolism and benzoxazinoid biosynthesis. Various plant hormone-related genes were differentially expressed during soil drying. Quantification of the plant hormones under these conditions showed that the concentrations of abscisic acid (ABA), cis-zeatin (CZ), and indole-3-acetic acid (IAA) significantly increased during soil drying, whereas the concentrations of salicylic (SA), jasmonic (JA), and glycosylated salicylic (SAG) acids significantly decreased. Correlation analysis of total root length and phytohormones indicated that CZ, ABA, and IAA are positively associated with wheat root length. These results suggest that changes in metabolic pathways and plant hormones caused by moderate soil drying help wheat roots grow into deeper soil layers.
Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Raízes de Plantas , Solo , Transcriptoma , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Solo/química , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica/métodos , DessecaçãoRESUMO
The mitigation mechanisms of a kind of controlled-release nitrogen fertilizer (sulfur-coated controlled-release nitrogen fertilizer, SCNF) in response to O3 stress on a winter wheat (Triticum aestivum L.) variety (Nongmai-88) were studied in crop physiology and soil biology through the ozone-free-air controlled enrichment (O3-FACE) simulation platform and soil microbial metagenomics. The results showed that SCNF could not delay the O3-induced leaf senescence of winter wheat but could enhance the leaf size and photosynthetic function of flag leaves, increase the accumulation of nutrient elements, and lay the foundation for yield by regulating the release rate of nitrogen (N). By regulating the soil environment, SCNF could maintain the diversity and stability of soil bacterial and archaeal communities, but there was no obvious interaction with the soil fungal community. By alleviating the inhibition effects of O3 on N-cycling-related genes (ko00910) of soil microorganisms, SCNF improved the activities of related enzymes and might have great potential in improving soil N retention. The results demonstrated the ability of SCNF to improve leaf photosynthetic function and increase crop yield under O3-polluted conditions in the farmland ecosystem, which may become an effective nitrogen fertilizer management measure to cope with the elevated ambient O3 and achieve sustainable production.
Assuntos
Fertilizantes , Nitrogênio , Ozônio , Fotossíntese , Folhas de Planta , Microbiologia do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/microbiologia , Triticum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Ozônio/farmacologia , Estresse Fisiológico , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genéticaRESUMO
Activating FLT3 mutations plays a crucial role in leukemogenesis, but identifying the optimal candidates for FLT3 inhibitor therapy remains controversial. This study aims to explore the impacts of FLT3 mutations in pediatric acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) and to compare the mutation profiles between the two types to inspire the targeted application of FLT3 inhibitors. We retrospectively analyzed 243 ALL and 62 AML cases, grouping them into FLT3-mutant and wild-type categories, respectively. We then assessed the associations between FLT3 mutations and the clinical manifestations, genetic characteristics, and prognosis in ALL and AML. Additionally, we compared the distinct features of FLT3 mutations between ALL and AML. In ALL patients, those with FLT3 mutations predominantly exhibited hyperdiploidy (48.6% vs. 14.9%, p < 0.001) and higher FLT3 expression (108.02 [85.11, 142.06] FPKM vs. 23.11 [9.16, 59.14] FPKM, p < 0.001), but lower expression of signaling pathway-related genes such as HRAS, PIK3R3, BAD, MAP2K2, MAPK3, and STAT5A compared to FLT3 wild-type patients. There was no significant difference in prognosis between the two groups. In contrast, AML patients with FLT3 mutations were primarily associated with leucocytosis (82.90 [47.05, 189.76] G/L vs. 20.36 [8.90, 55.39] G/L, p = 0.001), NUP98 rearrangements (30% vs. 4.8%, p = 0.018), elevated FLT3 expression (74.77 [54.31, 109.46] FPKM vs. 34.56 [20.98, 48.28] FPKM, p < 0.001), and upregulated signaling pathway genes including PIK3CB, AKT1, MTOR, BRAF, and MAPK1 relative to FLT3 wild-type, correlating with poor prognosis. Notably, internal tandem duplications were the predominant type of FLT3 mutation in AML (66.7%) with higher inserted base counts, whereas they were almost absent in ALL (6.3%, p < 0.001). In summary, our study demonstrated that the forms and impacts of FLT3 mutations in ALL differed significantly from those in AML. The gene expression profiles of FLT3-related pathways may provide a rationale for using FLT3 inhibitors in AML rather than ALL when FLT3 mutations are present.
Assuntos
Leucemia Mieloide Aguda , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Criança , Masculino , Feminino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pré-Escolar , Prognóstico , Transcriptoma , Lactente , Adolescente , Estudos Retrospectivos , Transdução de Sinais/genética , Terapia de Alvo Molecular , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacosRESUMO
With the increasing shortage of water resources and the aggravation of water pollution, solar-driven interfacial steam generation (SISG) technology has garnered considerable attention because of its low energy consumption, simple operation, and environmental friendliness. The popular multi-layer SISG evaporator is composed of two basic structures: a photothermal layer and a support layer. Herein, the support layer underlies the photothermal layer and carries out thermal management, supports the photothermal layer, and transports water to the evaporation interface to improve the stability of the evaporator. While most research focuses on the photothermal layer, the support layer is typically viewed as a supporting object for the photothermal layer. This review focuses on the support layer, which is relatively neglected in evaporator development. It summarizes existing progress in the field of multi-layer interface evaporators, based on various polymers and biomaterials, along with their advantages and disadvantages. Specifically, mainly polymer-based support layers are reviewed, including polymer foams, gels, and their corresponding functional materials, while biomaterial support layers, including natural plants, carbonized biomaterials, and other innovation biomaterials are not. Additionally, the corresponding structure design strategies for the support layer were also involved. It was found that the selection and optimal design of the substrate also played an important role in the efficient operation of the whole steam generation system. Their evolution and refinement are vital for advancing the sustainability and effectiveness of interfacial evaporation technology. The corresponding potential future research direction and application prospects of support layer materials are carefully presented to enable effective responses to global water challenges.
RESUMO
Protein glutaminases (PG; EC = 3.5.1.44) are enzymes known for enhancing protein functionality. In this study, we cloned and expressed the gene chryb3 encoding protein glutaminase PG3, exhibiting 39.4 U/mg specific activity. Mature-PG3 featured a substrate channel surrounded by aromatic and hydrophobic amino acids at positions 38-45 and 78-84, with Val81 playing a pivotal role in substrate affinity. The dynamic opening and closing motions between Gly65, Thr66, and Cys164 at the catalytic cleft greatly influence substrate binding and product release. Redesigning catalytic pocket and cocatalytic region produced combinatorial mutant MT6 showing a 2.69-fold increase in specific activity and a 2.99-fold increase at t65 °C1/2. Furthermore, MT6 boosted fish myofibrillar protein (MP) solubility without NaCl. Key residues such as Thr3, Asn54, Val81, Tyr82, Asn107, and Ser108 were vital for PG3-myosin interaction, particularly Asn54 and Asn107. This study sheds light on the catalytic mechanism of PG3 and guided its rational engineering and utilization in low-salt fish MP product production.
RESUMO
Metal-Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure-activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe)-MOF structural evolution, accompanied by the elongation of Ni-O bonds, monitored by in-situ Raman and UV-visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO6 octahedra augments the metal ds-Op hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe)-MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3.3 A cm-2 at 2.2 V while maintaining equally stable operation for 160 h spanning from 0.5 A cm-2 to 1 A cm-2. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.
RESUMO
Current pharmacotherapy remains futile in acute alveolar inflammation induced by Gram-negative bacteria (GNB), eliciting consequent respiratory failure. The release of lipid polysaccharides after antibiotic treatment and subsequent progress of proinflammatory cascade highlights the necessity to apply effective inflammation management simultaneously. This work describes modular self-assembling peptides for rapid anti-inflammatory programming (SPRAY) to form nanoparticles targeting macrophage specifically, having anti-inflammation and bactericidal functions synchronously. SPRAY nanoparticles accelerate the self-delivery process in macrophages via lysosomal membrane permeabilization, maintaining anti-inflammatory programming in macrophages with efficacy close to T helper 2 cytokines. By pulmonary deposition, SPRAY nanoparticles effectively suppress inflammatory infiltration and promote alveoli regeneration in murine aseptic acute lung injury. Moreover, SPRAY nanoparticles efficiently eradicate multidrug-resistant GNB in alveoli by disrupting bacterial membrane. The universal molecular design of SPRAY nanoparticles provides a robust and clinically unseen local strategy in reverse acute inflammation featured by a high accumulation of proinflammatory cellularity and drug-resistant bacteria.
Assuntos
Infecções por Bactérias Gram-Negativas , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Bactérias Gram-Negativas/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Administração por Inalação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologiaRESUMO
The Competitor, Stress Tolerator, and Ruderal (CSR) theory delineates the ecological strategies of plant species. Nevertheless, how these ecological strategies shift at the levels of individuals, functional groups and plant communities to cope with increasing nitrogen deposition remains unclear. In this study, simulated nitrogen deposition experiments were performed in high-altitude grasslands of alpine meadows and alpine steppe on the Qinghai-Tibetan Plateau (QTP) by employing the strategy and functional type framework (StrateFy) methodology to evaluate plant CSR strategies. Our results indicated that the dominant ecological strategy of the high-altitude grassland on the QTP were predominantly aligned with the R-strategy. In both alpine meadow and alpine steppe grasslands, the community-weighted mean (CWM) of C scores were increased with nitrogen addition, while CWM of R and S scores were not significantly correlated with nitrogen addition. Remarkably, the increase in C scores due to nitrogen enrichment was observed solely in non-legumes, suggesting an enhanced competitive capability of non-legumes in anticipation of future nitrogen deposition. Leymus secalinus was dominated in both alpine meadow and alpine steppe grasslands across all levels of nitrogen deposition, with increasing C scores along the nitrogen gradients. Furthermore, the sensitivity of C scores of individual plant, functional group and plant community to nitrogen deposition rates was more pronounced in alpine steppe grassland than in alpine meadow grassland. These findings furnish novel insights into the alterations of ecological strategies in high-altitude alpine grasslands on the QTP and similar regions worldwide in cope with escalating nitrogen deposition.
RESUMO
BACKGROUND: We aimed to evaluate microaneurysms (MAs) after treatment with anti-vascular endothelial growth factor (anti-VEGF) therapy to understand causes of chronic edema and anti-VEGF resistance. METHODS: Patients with non-proliferative diabetic retinopathy, with or without macular edema were recruited. Optical coherence tomography angiography (OCTA) MAs-related parameters were observed, including the maximum diameter of overall dimensions, material presence, and flow signal within the lumen. OCTA parameters also included central macular thickness (CMT), foveal avascular zone, superficial and deep capillary plexuses, and non-flow area measurements on the superficial retinal slab. RESULTS: Overall, 48 eyes from 43 patients were evaluated. CMT differed significantly between the diabetic macular edema (DME ) and non-DME (NDME) groups at 1st, 2nd, 3rd, and 6th months of follow-up (P < 0.001; <0.001; 0.003; <0.001, respectively). A total of 55 and 59 MAs were observed in the DME (mean = 99.40 ± 3.18 µm) and NDME (mean maximum diameter = 74.70 ± 2.86 µm) groups at baseline, respectively (significant between-group difference: P < 0.001). Blood flow signal was measurable for 46 (83.6%) and 34 (59.3%) eyes in the DME and NDME groups, respectively (significant between-group difference: P < 0.001). CONCLUSIONS: Compared to the NDME group, the DME group had larger MAs and a higher blood-flow signal ratio. Following anti-VEGF therapy, changes in the diameter of MAs were observed before changes in CMT thickness.
Assuntos
Inibidores da Angiogênese , Retinopatia Diabética , Angiofluoresceinografia , Injeções Intravítreas , Edema Macular , Microaneurisma , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Humanos , Tomografia de Coerência Óptica/métodos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/diagnóstico , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Edema Macular/diagnóstico por imagem , Edema Macular/diagnóstico , Masculino , Microaneurisma/diagnóstico , Feminino , Pessoa de Meia-Idade , Inibidores da Angiogênese/uso terapêutico , Angiofluoresceinografia/métodos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Idoso , Ranibizumab/uso terapêutico , Ranibizumab/administração & dosagem , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Fundo de Olho , SeguimentosRESUMO
BACKGROUND: Factors related to depression differ depending on the population studied, and studies focusing on the population of non-manual workers are lacking. Thus, we aimed to identify the risk factors related to depression in non-manual workers in China. METHOD: A large-scale cross-sectional survey was conducted between January 1, 2015 and December 31, 2020, which included 264,557 non-manual workers from one large physical examination institution in China. The Patient Health Questionnaire (PHQ-2) was used to measure depression. A total of 73 variables covering aspects of sociodemographic characteristics, general examination data, health history, symptoms, eating habits, work situation, general sleep conditions and laboratory findings were included in the collection and analysis. Machine learning algorithms of neural networks and logistic regressions were used to assess the risk of depression and explore its factors. RESULTS: Age, feeling fatigue, sleep quality, overeating, waist-to-hip ratio (WHR), and high-density lipoprotein cholesterol (HDLC) were found to be factors of depression. Two prediction models for depression among Chinese non-manual workers were developed with good AUC (0.820), accuracy (0.943), sensitivity (0.743-0.773), and specificity (0.700-0.729). LIMITATIONS: Data were collected at one time point only, meaning that this study cannot explain the causality of the factor on depression. CONCLUSIONS: Our finding that age, feeling fatigue, sleep quality, overeating, WHR, and HDL-C were risk factors for depression in non-manual workers may provide strong evidence for health care facilities to develop preventive measures or government policies for non-manual workers.