RESUMO
Micro-sized alloy type germanium (Ge) anodes possess appealing properties for next-generation lithium ions batteries, such as desirable capacity, easy accessibility and greater tapdensity. Nevertheless, volume expansion accompanied by severe pulverization and continuous growth of solid electrolyte interlayer (SEI) still represent fundamental obstacles to their practical applications. Herein, we propose a fresh strategy of constructing robust bond linkage between boron-based coating layer and lithiated polyacrylic acid (PAALi) binder to circumvent the pulverization problems of Ge anodes. Facile pyrolysis of boric acid can introduce an amorphous boron oxide interphase on Ge microparticles (noted as Ge@B2O3). Then in situ crosslinking reaction between B2O3 and PAALi via BOC bond linkage constructs a robust Ge anode (Ge@B-PAALi), which is proved by FTIR and Raman characterizations. Post morphological and compositional investigations reveal the minimized pulverization and a thinner SEI composition. The robust bond linkage strategy endows Ge anode with ultra-stable cycling properties of 1053.8 mAh/g after 500 cycles at 1 A/g vs. 500.7 mAh/g for Ge@PAALi and 372.7 mAh/g for Ge@B2O3, respectively. The proposed bond linkage strategy via artificial coating layer and functional binders unlocks huge potential of alloys and other anodes for next-generation battery applications.
RESUMO
Despite significant advancements in the detection of cadmium (Cd(II)) based on nanomaterial adsorbability, limited research has been conducted on ultra-sensitive and selective detection mechanisms, resulting in a lack of guidance for designing efficient interface materials to detect Cd(II). Herein, reductive Fe doping on CoP facilitates an efficient Fe-Co-P electron transfer path, which renders P the electron-rich site and subsequently splits a new orbital peak that matches with that of Cd(II) for excellent electrochemical performance. The sensitivity of Cd(II) was remarkably up to 109.75 µA µM-1 on the Fe-CoP modified electrode with excellent stability and repeatability, surpassing previously reported findings. Meanwhile, the electrode exhibits exceptional selectivity towards Cd(II) ions compared to some bivalent heavy metal ions (HMIs). Moreover, X-ray absorption fine structure (XAFS) analysis reveals the interaction between P and Cd(II), which is further verified via density functional theory (DFT) calculation with the new hybrid peaks resulting from the splitting peak of P atoms coupled with the orbital energy level of Cd(II). Generally, doping engineering for specific active sites and regulation of orbital electrons not only provides valuable insights for the subsequent regulation of electronic configuration but also lays the foundation for customizing highly sensitive and selectivity sensors.
RESUMO
Over the past decade, China has experienced a decline in atmospheric reactive nitrogen (Nr) emissions. Given that China's subtropical region is a significant nitrogen (N) deposition hotspot, it is essential to accurately quantify the ten-year variations in dry and wet N depositions in the context of reductions in atmospheric Nr emissions. Here, we evaluated the spatiotemporal variation in N deposition on forest, paddy field and tea field ecosystems in a typical subtropical agricultural catchment from 2011 to 2020. Our findings indicated a significant decrease in total N deposition in both the tea field ecosystem (41.5-30.5 kg N ha-1) and the forest ecosystem (40.8-25.7 kg N ha-1) (P < 0.05), but no significant change in the paddy field ecosystem (29.3-32.9 kg N ha-1). Specifically, dry N deposition exhibited significant declines except in the paddy field ecosystem, whereas wet N deposition had no significant change. The reduction in total oxidized and reduced N depositions in forest and tea field ecosystems is attributed to the decrease in NOx and NH3 emissions. Additionally, The ratio of NHx deposition to total N deposition all exceeded 0.5 in three ecosystems and the NHx/NOy ratio had an increasing trend (P < 0.05) in the paddy field, indicating that reactive N emissions from agricultural sources were the primary contributor to overall N deposition. Our study emphasizes that despite the decreasing trend in N deposition, it still exceeds the critical loads of natural ecosystems and requires stringent N emissions control, particularly from agricultural sources, in the future.
RESUMO
It's well known that the toxicity of chemicals in the environment depends not only their concentrations, but more importantly, their bio-availability. Thus, the acute toxicity test of environmental water samples is of great importance in water quality evaluation. In this work, water acute toxicity was determined via SERS approach for the first time based on the reaction between Escherichia coli (E. coli) and p-benzoquinone (BQ). The E. coli was used as the subject of toxicity assay. Under normal conditions, the BQ molecules can be transformed into Hydroquinone (HQ) by the E. coli bacteria; subsequently, the BQ will continue to react with the resulting HQ to form Quinone hydroquinone (QHQ). This process could be impaired in the presence of many toxic chemicals. Bromide modified Ag NPs was then introduced for the highly sensitive SERS detection of the product (HQ and QHQ). Several key factors that may affect water acute toxicity evaluation have been explored, which include the initial BQ and E. coli concentration, the incubation time with BQ, and the sodium chloride concentration. Later, the established system was applied for the toxicity evaluation of Cu2+. It was found that the IC50 value of Cu2+ was 0.94 mg/L, which is superior compared with literature report. This study provides a promising SERS method for assessing acute toxicity in water bodies with high sensitivity and short detection time.
Assuntos
Escherichia coli , Nanopartículas Metálicas , Hidroquinonas/toxicidade , Análise Espectral Raman/métodos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/químicaRESUMO
Microfluidic-based analyses of single-cell dynamics in response to dynamic biochemical signals are emerging as pivotal approaches for investigating the effects of extracellular microenvironmental biochemical factors on cellular structure, function, and behavior. However, current devices often fail to consistently apply identical dynamic biochemical signals to trapped cells. In this study, we introduce a novel radially distributed single-cell trapping microfluidic array, designed to quantitatively and consistently apply identical biochemical stimulating signals to each trapped cell. Numerical simulations were employed to optimize microchannel geometry, enhancing trapping efficiency while minimizing signal distortion. Experimental validation demonstrated the trapping success rate and the single-cell trapping efficiency exceeding 99% and 85%, respectively. The microarray's capability to deliver identical dynamic biochemical stimulating signals, with various waveforms, to each unit was confirmed through fluorescein transport tests. Furthermore, we examined the intracellular calcium dynamics of U-2 OS human osteosarcoma cells in response to dynamic ATP signals, observing both single-peak calcium responses and calcium oscillations, which were modelled by a second-order system with a natural frequency of 1.6 mHz. Overall, our proposed microfluidic array offers a robust and valuable framework for advancing the understanding of single-cell dynamics.
Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Cálcio , Fluoresceína , Análise de Célula ÚnicaRESUMO
Over two-thirds of the Earth's land surface is subjected to seasonal precipitation changes along with climate warming, including the subtropical forests that represent one of the Earth's most important carbon sink and source. However, few experiments have been conducted to understand the response of soil greenhouse gas (GHGs) emissions from these forests to seasonal changes in precipitation. Herein, we conducted a field experiment in a subtropical forest of southern China including two precipitation seasonality treatments: an intensified dry-season (Oct-Mar) drought and wetter wet-season (Jun-Sep) treatment (ID) and an extended dry-season (Apr-May) length and wetter wet-season treatment (ED); for both ID and ED, the annual precipitation amount was kept the same as under ambient control (AC). Compared to AC, the decreased annual CO2 emissions for ID were mainly due to decreased WFPS in Oct-Mar of 2013-2014 and increased WFPS during Jun-Sep of 2013; the increased annual CH4 uptake for ID was predominantly attributed to decreased WFPS in Oct-Mar of 2013-2014; the decreased annual N2O emissions for ID were mainly due to decreased WFPS in Oct-Mar of 2013; the increased annual N2O emissions for ID in 2014 were mainly attributed to increased WFPS in Jun-Sep (p < 0.05). Relative to AC, the increased annual CO2 and N2O emissions from ED were predominantly attributed to decreased WFPS in Apr-May and increased WFPS in Jun-Sep during 2013-2014, respectively (p < 0.05). The average annual CO2-equivalent CH4 and N2O emissions increased under ED but decreased under ID compared to AC (p < 0.05). Although our two precipitation manipulation scenarios simulated seasonal drought impacts without changing annual precipitation amount, ED and ID had distinct impacts on soil GHGs emissions, which have important implications for modeling the subtropical forests GHG emissions and managing the forests to mitigate climate change.
RESUMO
Hepialus xiaojinensis is a Lepidopteran insect and one of the hosts for the artificial cultivation of Cordyceps. Ophiocordyceps sinensis can infect and coexist with H. xiaojinensis larvae for a long time. Little studies focused on the interaction process through its early infection stage. In this research, we particularly study the interaction of infected and uninfected larvae in the 3rd (OS-3, CK-3) and 4th (OS-4, CK-4) instars. O. sinensis was distributed within the larvae and accompanied by pathological changes in some tissue structures. In response to O. sinensis infection, OS-3 enhanced the antioxidant defense ability, while OS-4 decreased. The transcriptome analysis showed that OS-3 resisted the invasion of O. sinensis by the immune and nervous systems. Correspondingly, OS-4 reduced immune response and utilized more energy for growth and development. This study provides a comprehensive resource for analyzing the mechanism of H. xiaojinensis and O. sinensis interaction.
Assuntos
Cordyceps , Lepidópteros , Animais , Cordyceps/genética , Larva , Insetos , Perfilação da Expressão GênicaRESUMO
Constructed wetlands are extensively applied in wastewater treatment and water ecosystem restoration. However, the characteristics of heavy metals accumulation and migration in a long-running large-scale constructed wetland for wastewater treatment remain unclear. In this study, the variation of heavy metals (Cu, Zn, Pb, Cd, Cr, and As) in the sediment-plant system of a wetland that has been operating for 14 years was quantified. Results show that the sediments of the constructed wetland were the sink for heavy metals. All heavy metals, except As, significantly increased (P < 0.05) in sediments within 0-40 cm depth, and Zn and Cr had leaked to 40-60 cm depth (P < 0.05). Along with the surface flow direction, heavy metal concentrations mostly showed a declining trend, and in comparison, Cu and Cr transported longer distances. Bioconcentration factors show that the two common wetland plants, Phragmites australis and Typha latifolia, exhibited obvious differences in enrichment performance of heavy metals, with the orders of Zn > Cr > Cd > Cu > Pb > As and Cd > Zn > Cr > Cu > As > Pb, respectively. The translocation factors of the two kinds of plants were less than 1 suggesting that they are suitable for phytostabilization. Redundancy analysis indicates that sediment organic matter was the primary environmental factor affecting the distribution and migration of heavy metals in the wetland system. The discrepancy in the migration characteristics of pollutants, especially heavy metals, should be seriously considered in the design and management of wetland systems, including highly-enrichment plants, appropriate hydraulic residence time, and effective surficial filling medium.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Esgotos/análise , Ecossistema , Cádmio , Chumbo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Plantas , Sedimentos GeológicosRESUMO
The cross section values of the 109Ag(n,2n)108mAg reaction at four neutron energies 13.5, 14.1, 14.4 and 14.8 Me were measured relative to those of the monitor reaction 93Nb(n,2n)92mNb by using the activation technique and using off-line γ-ray spectrometry. Fast neutrons were produced by the T(d,n)4He reaction. The excitation function of this reaction in the neutron energies from the reaction threshold to 20 MeV was obtained based on the nuclear theoretical model program system TALYS-1.95 with the adjusted relevant parameters. The measured results were discussed and compared with the experimental data of literature, and the evaluated data from the evaluated libraries of TENDL-2021 and JEFF-3.1.2, as well as with the theoretical values based on TALYS-1.95.
RESUMO
The functions of nanomaterials are closely linked with their fine structures and compositions. Precisely processing nanoparticles into morphology- and composition-varied nanostructures can a cutting-edge technology for producing complex nanostructures. Herein, we develop an interface-confined precise processing strategy towards toluene/water-interfacial Ag nanowires. Interfacial Ag nanowires are transformed into AgPd-nanoparticle-sealed AgAu nanotroughs with abundant AgPd/AgAu hetero-junctions (i.e., AgPdAu hetero-junction nanostructures). By adjusting the reaction conditions, composition-varied AgPdAu hetero-junction nanostructures can be obtained. The formation of AgPdAu hetero-junction nanostructures can be attributed to interface-confined precise etching towards Ag nanowires separately from the two subphases of the water and the toluene. Composition-optimized Ag13Pd67Au20 hetero-junction nanostructure shows satisfactory catalytic performance towards ethanol electrooxidation: â¼4 and 2 times in electrochemical-activity-surface-area-normalized activities; â¼6 and 5 times in mass-normalized activities higher than commercial Pd/C and Pt/C, respectively. The outstanding catalytic capability of Ag13Pd67Au20 may be attributed to optimized composition, porous nanostructures as well as abundant AgPd/AgAu hetero-junctions. This work demonstrates the feasibility of precisely processing interfacial nanoparticles, opening the way for creating morphology-well-defined composition-varied complex nanostructures.
RESUMO
Reprogramming immunosuppressive M2 macrophages into M1 macrophages in tumor site provides a new strategy for the immunotherapy of colorectal cancer. In this study, M1 macrophage-derived exosome nanoprobe (M1UC) with Ce6-loaded upconversion material is designed to enhance the photodynamic performance of Ce6 while reprogramming M2 macrophages at tumor site and producing NO gas for three-mode synergistic therapy. Under the excitation of near-infrared light at 808 nm, the probe can generate 660 nm up-conversion fluorescence, which enables the photosensitizer Ce6 to produce ROS efficiently. In addition, the probe leads the production of NO by nitric oxide synthase on exosomes. Confocal laser and flow cytometry results show that M1UC probe reprograms M2 macrophages into M1 macrophages with an efficiency of 95.12%. The cell experiments show that the apoptosis rate of the three-mode synergistic therapy group is 78.8%, and the therapeutic effect is significantly higher than those of the other single treatment groups. In vivo experiments results show that M1UC probes maximally gather at the tumor site after 12 h of intravenous injection in orthotopic colorectal cancer mice. After 808 nm laser irradiation, the survival rate of mice is 100% and the recurrence rate was 0 within 60 d, and the therapeutic effect is significantly higher than those of other single treatment groups, which is also confirmed by immunohistochemistry. This M1 macrophage-derived exosome nanoplatform which is based on the three modes of immunotherapy, gas therapy and photodynamic therapy, provides a new design idea for the diagnosis and treatment of deep tumors.
Assuntos
Neoplasias Colorretais , Exossomos , Fotoquimioterapia , Camundongos , Animais , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologiaRESUMO
The characterization of peach metabolites and carotenoids during canning and storage remains unclear. The present study identified 658 metabolites and 40 carotenoids in peach fruits throughout the canning and storage using ESI-MS/MS and APCI-MS/MS based metabolome approach. A total of 282 differentially accumulated metabolites were found, mainly including 78 phenolic acids, 74 lipids, 61 flavonoids. Five esterified carotenoids (rubixanthin palmitate, ß-cryptoxanthin oleate, ß-cryptoxanthin laurate, ß-cryptoxanthin palmitate, and ß-cryptoxanthin myristate) were the main peach carotenoids, with a proportion of approximately 90%, while free carotenoids accounted for 4.22-5.95% during the entire processing period. Moreover, the total carotenoid loss rates for canning and storage were 56.67% and 46.55%, respectively. Compared to the loss of free carotenoids, esterified carotenoids were more stable during storage, while canning led to a greater loss of esterified carotenoids. The results provided new insights into the maintenance of health-related phytochemicals from canning processes.
Assuntos
Prunus persica , Espectrometria de Massas em Tandem , beta-Criptoxantina/análise , Frutas/química , Carotenoides/análise , MetabolômicaRESUMO
Cities play an important role in achieving sustainable development goals (SDGs) to promote economic growth and meet social needs. Especially satellite imagery is a potential data source for studying sustainable urban development. However, a comprehensive dataset in the United States (U.S.) covering multiple cities, multiple years, multiple scales, and multiple indicators for SDG monitoring is lacking. To support the research on SDGs in U.S. cities, we develop a satellite imagery dataset using deep learning models for five SDGs containing 25 sustainable development indicators. The proposed dataset covers the 100 most populated U.S. cities and corresponding Census Block Groups from 2014 to 2023. Specifically, we collect satellite imagery and identify objects with state-of-the-art object detection and semantic segmentation models to observe cities' bird's-eye view. We further gather population, nighttime light, survey, and built environment data to depict SDGs regarding poverty, health, education, inequality, and living environment. We anticipate the dataset to help urban policymakers and researchers to advance SDGs-related studies, especially applying satellite imagery to monitor long-term and multi-scale SDGs in cities.
RESUMO
BACKGROUND: Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, which has been a major cause of end-stage renal failure. Diagnosing diabetic kidney disease is important to prevent long-term kidney damage and determine the prognosis of patients with diabetes. In this study, we investigated the clinical significance of combined detection of urine orosomucoid and retinol-binding protein for early diagnosis of diabetic kidney disease. METHODS: We recruited 72 newly diagnosed patients with type 2 diabetes and 34 healthy persons from August 2016 to July 2018 at the First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital). Using the Mogensen grading criteria, participants were classified as having diabetes or diabetic kidney disease, and healthy persons constituted the control group. Urine orosomucoid and retinol-binding protein levels were measured and correlated with other variables. RESULTS: With the aggravation of renal damage, the level of urinary mucoid protein gradually increased. Urinary retinol-binding protein and microalbumin levels were significantly higher in the diabetes group than in control and nephropathy groups. Orosomucoid and retinol-binding protein might be independent risk factors for diabetes and diabetic kidney disease. Urinary orosomucoid significantly correlated with retinol-binding protein and microalbumin levels in the diabetic kidney disease group. CONCLUSION: Elevated urine orosomucoid and retinol-binding protein levels can be detected in the early stages of type 2 diabetic kidney disease. Both of these markers are important for diabetic kidney disease detection and early treatment.
RESUMO
Gelidocalamusalbozonatus W. G. Zhang, S. R. Yi & Y. L. Li, a new species of Gelidocalamus, collected from Pengshui County of Chongqing City in China, was described and illustrated herein. In this study, key morphological characters were compared between the new species and other eight "gelido-" members of Gelidocalamus. By using scanning electron microscopy (SEM), its leaf epidermal characters were observed in comparison with those of another three Gelidocalamus representatives. Our results show that the new taxon has the typical characteristics of the genus Gelidocalamus, both macromorphologically and micromorphologically. Moreover, it was most similar to G.tessellatus, but differed by a ring of white tomenta below per node, culm sheath base with densely purple verrucous setae and foliage leaf blades mesophyll.
RESUMO
Artemisia capillaris (Asteraceae) is an annual herb found in Ë10 provinces in China. It is cultivated on Ë670 ha, with annual production around 2,500 tons. Its shoot is used in traditional Chinese medicine (Liu et al. 2021). From April to May 2023, Sclerotinia rot symptoms were seen at the Institute of Medicinal Plant Development (40.04°N, 116.28°E), Beijing, China. Disease incidence was up to 10% in the field through investigation of 300 plants. Initial symptoms were irregular tan-brown lesions (0.5 to 5.0 mm) that expended to circumferential necrosis on the roots and basal stem, aerial mycelia and sclerotia were developed on them. The leaves and stem tips were withered and droopy in severe cases. Twelve symptomatic primary roots of 12 plants from two sites were cut into 5 × 5 mm pieces, surface sterilized with 75% ethanol for 30 s and 5% NaClO for 60 s, rinsed with distilled water for three times, dried with sterile filter paper, put on potato dextrose agar (PDA), and incubated at 25°C in the dark for 2 days. Two Sclerotinia-like isolates were obtained using the hyphaltip method. White aerial mycelia were sparse and appressed for isolate YC1-3 and dense for isolate YC1-7. After incubated at 25°C in the dark for 15 days, 10 to 25 sclerotia were developed near the colony margin. Sclerotia of isolate YC1-3 were 1.0 to 3.9 × 1.2 to 4.5 (mean 1.8 × 2.2) mm (n = 60), ovoid or arc-shaped. Sclerotia of isolate YC1-7 were 1.5 to 3.4 × 2.7 to 9.2 (mean 2.3 × 4.3) mm (n = 60), ovoid, dumbbell shaped or curved. The isolates were identified as Sclerotinia sclerotiorum based on morphology (Maas 1998). To further identify the pathogens, molecular identification was performed with isolates YC1-3 and YC1-7. DNA of the two isolates were extracted by the cetyltrimethylammonium bromide (CTAB) method. Polymerase chain reaction was performed with primers ITS1/ITS4 for the internal transcribed spacer (ITS) region (Choi et al. 2020; White et al. 1990) and primers G3PDHfor/G3PDHrev for the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene (Garfinkel. 2021). BLAST search analysis revealed that the ITS sequence (GenBank OR229758 and OR229762) was ≥99% similar to S. sclerotiorum (MN099281, MZ379265, KX781301, etc.), and the G3PDH sequence (OR778388 and OR761975) was too (MZ493894, JQ036048, OQ790148, etc.). Phylogenetic trees were computed with ITS and G3PDH sequences using the Maximum Likelihood in MEGA 11. Nine two-month-old seedlings of A. capillaris were used to test pathogenicity. The epidermis layer of each primary root was slightly wounded (2 × 2 mm, 1 mm deep) using a sterile dissecting blade. Three plants were inoculated with mycelial plugs (5 mm in diameter) of YC1-3 and YC1-7 that cultured on PDA for 7 days. Control plants were inoculated with sterile PDA plugs. All seedlings were then incubated at 25oC and 90% relative humidity. After isolate YC1-7 inoculation 3 days and isolate YC1-3 inoculation 5 days, inoculated roots had symptoms like those in the field, controls had no symptoms. S. sclerotiorum was consistently re-isolated from diseased roots, fulfilling Koch's postulates. Diseases caused by S. sclerotiorum have been reported threatens several important economical crops (Marin and Peres 2020; Guan et al. 2022). To our knowledge, this is the first report of S. sclerotiorum causes Sclerotinia rot on A. capillaris. To avoid of significant economic losses, it is urgent to establish an effective disease-management strategy.
RESUMO
Distiller's grains, byproducts of the brewing process, represent a valuable resource for extracting natural phenolic compounds due to their significant global production. This study presents the first evidence of the protective effects of Moutai distiller's grain polyphenol extract (MDGP) on dextran sulfate sodium (DSS)-induced colitis in mice. These protective effects manifest predominantly through the amelioration of general colitis indices and histopathological improvements. Utilizing liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), the main components of MDGP were identified as rutin, quercetin, naringenin, and dihydroquercetin. Moreover, a novel mechanism was elucidated by which rutin, the primary active component of MDGP, alleviates DSS-induced colitis. Assessment of intestinal barrier function, microbial sequencing, fecal transplantation, and antibiotic depletion experiments revealed that rutin suppresses the abundance of pathogenic bacteria (Helicobacter, Klebsiella, and Veillonella) while promoting the proliferation of beneficial bacteria (Ruminococcus_torques_group, Lachnoclostridium, and norank_f__Muribaculaceae). This modulation culminates in elevated butyric acid concentrations within short-chain fatty acids (SCFAs), amplified integrity of tight (ZO-1, occludin) and adherent (E-cadherin, ß-catenin) junctional complexes, fortified intestinal barrier function, and diminished intestinal inflammation.This investigation accentuates the innovative therapeutic potential of MDGP and its main active component, rutin, in assuaging DSS-induced intestinal inflammation and fortifying the intestinal barrier through a mechanism predominantly mediated by the intestinal microbiota. Such insights potentially elevate the prominence of distiller's grains in the realm of functional food development.
RESUMO
Background/objectives: Recently, four meta-analyses have explored the association between inflammatory bowel disease (IBD) and the risk of stroke. These studies have demonstrated that people with IBD may be at an increased risk of stroke. However, some limitations such as high heterogeneity and the lack of uniformity in the types of research, especially the reuse of some sample sizes, cannot be neglected. These factors reduce the credibility of their research conclusions. Therefore, we conducted a meta-analysis to explore this possible association. Methods: PubMed, Embase, and Web of Science were searched from inception to 30 June 2023. A random effects model with the generic inverse variance method was used in this meta-analysis. The Review Manager software was used to obtain all relative risks (RRs) and their 95% confidence intervals (CIs). Publication bias was tested, and sensitivity and subgroup analyses were conducted to explore possible heterogeneities. Results: This meta-analysis included 12 cohort studies (involving 4,495,055 individuals). Meta-analysis of these data has shown that IBD was associated with an increased risk of stroke (RR = 1.19, 95%CI:1.14-1.24, p < 0.00001). Our results were stable and robust in subgroup and sensitivity analyses. Conclusions: Our results suggest that IBD is associated with an increased risk of stroke. To reduce the incidence of stroke, patients with IBD are encouraged to undergo stroke risk assessments, especially for young female patients; assessing the risk of ischemic stroke is of particular importance. Prospective studies considering stroke subtypes, IBD severity and treatments, regions, and other confounding factors are needed to further explore the nature of each association. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022373656.
RESUMO
Radiative cooling materials have attracted great attention due to their superiority in energy-free cooling, especially for outdoor applications. However, outdoor cooling performance is threatened by surface pollution. Herein, we demonstrate a ternary compound system, including polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), boron nitride nanosheets (BNNS), and hydrophobic silicon dioxide (SiO2), to synchronously achieve self-cooling and self-cleaning properties through biomimetically building a lotus-like papillomatous structure. The optimized membrane has a high infrared emissivity of 0.93, a sunlight reflectivity of 97.2%, and a water contact angle of 150.5°and not only efficiently cools the object to a suitable temperature but also protects the membrane from polluting and keeps cooling for a long time. The result shows that the membrane can cool a nonfebrile object by 30.5 and 1.7 °C for noon and night, respectively, and the noon and night-time temperature drops are 10.8 and 13.5 °C for the self-heating object, compared to the bare state. Meanwhile, the membrane always keeps self-cleaning if slurry is splashed onto its surface or it is exposed to slurry. Importantly, the integration of superhydrophobic and radiative cooling properties ensures that the membrane has permanent cooling performance by protecting it from being contaminated, which is significant for outdoor applications.
RESUMO
The Metaverse has gained wide attention for being the application interface for the next generation of Internet. The potential of the Metaverse is growing, as Web 3·0 development and adoption continues to advance medicine and healthcare. We define the next generation of interoperable healthcare ecosystem in the Metaverse. We examine the existing literature regarding the Metaverse, explain the technology framework to deliver an immersive experience, along with a technical comparison of legacy and novel Metaverse platforms that are publicly released and in active use. The potential applications of different features of the Metaverse, including avatar-based meetings, immersive simulations, and social interactions are examined with different roles from patients to healthcare providers and healthcare organizations. Present challenges in the development of the Metaverse healthcare ecosystem are discussed, along with potential solutions including capabilities requiring technological innovation, use cases requiring regulatory supervision, and sound governance. This proposed concept and framework of the Metaverse could potentially redefine the traditional healthcare system and enhance digital transformation in healthcare. Similar to AI technology at the beginning of this decade, real-world development and implementation of these capabilities are relatively nascent. Further pragmatic research is needed for the development of an interoperable healthcare ecosystem in the Metaverse.