Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 12(19): 19520-19538, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33040050

RESUMO

Cognitive dysfunction caused by chronic cerebral hypoperfusion is a common underlying cause of many cognition-related neurodegenerative diseases. The mechanisms of cognitive dysfunction caused by CCH are not clear. Long non-coding RNA is involved in synaptic plasticity and cognitive function, but whether lncRNA is involved in cognitive dysfunction caused by CCH has not yet been reported. In the present study, we identified the altered lncRNAs and mRNAs by deep RNA sequencing. A total of 128 mRNAs and 91 lncRNAs were up-regulated, and 108 mRNAs and 98 lncRNAs were down-regulated. Real-time reverse transcription-polymerase chain reaction verified the reliability of the lncRNA and mRNA sequencing. Gene Ontology and KEGG pathway analyses showed that differentially-expressed mRNAs were related to peptide antigen binding, the extracellular space, the monocarboxylic acid transport, and tryptophan metabolism. The co-expression analysis showed that 161 differentially expressed lncRNAs were correlated with DE mRNAs. By predicting the miRNA in which both DE lncRNAs and DE mRNAs bind together, we constructed a competitive endogenous RNA network. In this lncRNAs-miRNAs-mRNAs network, 559 lncRNA-miRNA-mRNA targeted pairs were identified, including 83 lncRNAs, 67 miRNAs, and 108 mRNAs. Through GO and KEGG pathway analysis, we further analyzed and predicted the regulatory function and potential mechanism of ceRNA network regulation. Our results are helpful for understanding the pathogenesis of cognitive dysfunction caused by CCH and provide direction for further research.

2.
Transl Androl Urol ; 9(3): 1244-1251, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32676407

RESUMO

Background: The treatment of ketamine-induced bladder contractures remains poorly studied. We therefore evaluated the efficacy of cystectasia with a sodium hyaluronate balanced solution in this kind of bladder contracture. Methods: Eighteen patients presenting with ketamine-induced bladder contracture between July 2010 and February 2018 were selected and analysed. Ketamine was discontinued in all patients, who were then treated with weekly cystectasia (0.09% sodium hyaluronate balanced solution) 3 times. The volume of the first perfusion was twice the preoperatively measured bladder capacity, and the volume of the subsequent two perfusions was increased by 100 mL each time. The Pelvic Pain and Urgency/Frequency (PUF) symptom score, O'Leary-Sant Interstitial Cystitis (IC) Symptom Index (ICSI), IC Problem Index (ICPI), Quality of Life (QOL) score, and bladder capacity were recorded before surgery and 3 and 12 months after the 3rd expansion. Results: No significant complications were observed during the 3 expansions. Fourteen patients completed the full follow-up schedule. Preoperatively and at the 3- and 12-month follow-up evaluations performed after the 3rd expansion, the PUF symptom scores were 20.4±3.6, 11.5±3.1, and 13.2±3.3, respectively; the mean ICSI was 13.6±2.8, 7.7±2.3, and 8.2±2.5, respectively; the mean ICPI was 10.6±2.6, 7.3±2.1, and 7.7±2.5, respectively; and the mean QOL scores were 6.0±0, 2.1±0.5, and 2.7±0.8, respectively; and the mean bladder catheter volume was 83±27, 234±56, and 228±52 mL, respectively. There were significant differences between all preoperative and postoperative values. Conclusions: Cystectasia with a sodium hyaluronate balanced solution is an effective treatment modality for ketamine-induced bladder contracture.

3.
Opt Express ; 28(8): 11609-11617, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403668

RESUMO

Using a Dazzler system and tilting a compressor grating, we provide an effective way of using the laser group delay dispersion to continuously steer the electron beam accelerated by an asymmetric laser wakefield. The deviation angle of the electron beam was the same as that of the angularly chirped laser pulse from its initial optical axis, which is determined by the laser pulse-front-tilt (PFT). This method can be utilized to continuously control over the pointing direction of electron bunches to the requisite trajectories, especially for practical applications in highly sensitive alignment devices such as electron-positron colliders or undulators. Additionally, we investigate the effect of PFT on the properties of the electron beam.

4.
Zhongguo Zhong Yao Za Zhi ; 45(3): 683-688, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237529

RESUMO

It is reported that dihydroartemisinin could reduce the expression of phosphorylated adhesion kinase and matrix metalloproteinase-2, inhibit the growth, migration and invasion of ovarian cancer cells, promote the formation of Treg cells through TGF-beta/Smad signaling pathway, and play an immunosuppressive role; dihydroartemisinin could also inhibit the growth of lung cancer cells by inhibiting the expression of vascular endothelial growth factor(VEGF) receptor KDR. However, there are few studies on dihydroartemisinin in hepatocellular carcinoma cells. In order to preliminarily explore the effect of dihydroartemisinin on invasion and metastasis of hepatocellular carcinoma cells, CCK-8 method and crystal violet staining were used to detect the effect of dihydroartemisinin on the growth of hepatocellular carcinoma cell 7402 and highly metastatic hepatocellular carcinoma cell MHCC97 H. The effects of dihydroartemisinin on the invasion and metastasis of hepatocellular carcinoma cell 7402 and highly metastatic hepatocellular carcinoma cell MHCC97 H were studied by using cell wound healing and Transwell. Western blot was used to detect the protein expression of epidermal growth factor receptor(EGFR) and its downstream signaling pathway in cells treated with dihydroartemisinin for 48 hours. The results showed that dihydroartemisinin could inhibit the growth of hepatocellular carcinoma cell 7402 and highly metastatic hepatocellular carcinoma cell MHCC97 H at 25 µmol·L~(-1). As compared with the control group, the number of cell clones was significantly reduced, and the ability of cell migration and invasion was weakened. Western blot results showed that as compared with the control group, dihydroartemisinin group could down-regulate the protein expression of EGFR and its downstream signaling pathways p-AKT, p-ERK, N-cadherin, Snail and Slug, and up-regulate the expression of E-cadherin protein, thus affecting the migration, invasion and metastasis of hepatocellular carcinoma cells 7402 and MHCC97 H.


Assuntos
Artemisininas/farmacologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Metástase Neoplásica , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais
5.
Phys Rev E ; 101(1-1): 011201, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069629

RESUMO

The upcoming 10-100 PW laser facilities may deliver laser pulses with unprecedented intensity of 10^{22}-10^{25}Wcm^{-2}. Such laser pulses interacting with ultrarelativistic electrons accelerated in plasma can trigger various nonlinear quantum electrodynamic processes. Usually, ion motion is expected to be ignorable since the laser intensities below 10^{25}Wcm^{-2} are underrelativistic for ions. Here, we find that ion motion becomes significant even with the intensity around 10^{22}Wcm^{-2} when electron cavitation is formed by the strong laser ponderomotive force. Due to the electron cavitation, guided laser propagation becomes impossible via usual plasma electron response to laser fields. However, we find that ion response to the laser fields may effectively guide laser propagation at such high intensity levels. The corresponding conditions of the required ion density distribution and laser power are presented and verified by three-dimensional particle-in-cell simulations.

6.
Huan Jing Ke Xue ; 40(12): 5524-5530, 2019 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854625

RESUMO

The selenium in the soil of Enshi, Hubei Province, is very rich, but there is also a certain degree of cadmium pollution risk. To scientifically utilize selenium-rich resources, a typical high-selenium and high-cadmium area in Shashi Township, Enshi City was selected as the research object. Combined with the corn cadmium selenium absorption model, a land safety zoning method was proposed. Comparing the health effects of selenium with the results of land safety zoning, it was found that the antagonism of selenium on cadmium can reduce the area of strict control of agricultural areas, and improve land use efficiency. Combined with the characteristics of cadmium and selenium in various crops in the study area, it is recommended for priority protection areas and safe-use areas to vigorously develop selenium-enriched agricultural products, and grow corn and tea in the structural adjustment area.


Assuntos
Agricultura , Cádmio , Selênio , Solo , Zea mays
7.
Opt Express ; 27(21): 29676-29684, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684225

RESUMO

Laser wakefield accelerators have emerged as a promising candidate for compact synchrotron radiation and even x-ray free electron lasers. Today, to make the electrons emit electromagnetic radiation, the trajectories of laser wakefield accelerated electrons are deflected by transverse wakefield, counter-propagating laser field or external permanent magnet insertion device. Here, we propose a novel type of undulator that has a period of a few hundred microns and a magnetic field of tens of Tesla. The undulator consists of a bifilar capacitor-coil target that sustains a strong discharge current that generates a helical magnetic field around the coil axis when irradiated by a high-energy laser. Coupling this undulator with state-of-the-art laser wakefield accelerators can, simultaneously, produce ultra-bright quasi-monochromatic x-rays with tunable energy ranging 5-250 keV and optimize the free electron laser parameter and gain length compared with a permanent magnet-based undulator. This concept may pave a path toward ultra-compact synchrotron radiation and even x-ray free electron lasers.

8.
Proc Natl Acad Sci U S A ; 115(40): 9911-9916, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224456

RESUMO

Even though high-quality X- and gamma rays with photon energy below mega-electron volt (MeV) are available from large-scale X-ray free electron lasers and synchrotron radiation facilities, it remains a great challenge to generate bright gamma rays over 10 MeV. Recently, gamma rays with energies up to the MeV level were observed in Compton scattering experiments based on laser wakefield accelerators, but the yield efficiency was as low as [Formula: see text], owing to low charge of the electron beam. Here, we propose a scheme to efficiently generate gamma rays of hundreds of MeV from submicrometer wires irradiated by petawatt lasers, where electron accelerating and wiggling are achieved simultaneously. The wiggling is caused by the quasistatic electric and magnetic fields induced around the wire surface, and these are so high that even quantum electrodynamics (QED) effects become significant for gamma-ray generation, although the driving lasers are only at the petawatt level. Our full 3D simulations show that directional, ultrabright gamma rays are generated, containing [Formula: see text] photons between 5 and 500 MeV within a 10-fs duration. The brilliance, up to [Formula: see text] photons [Formula: see text] per 0.1% bandwidth at an average photon energy of 20 MeV, is second only to X-ray free electron lasers, while the photon energy is 3 orders of magnitude higher than the latter. In addition, the gamma ray yield efficiency approaches 10%-that is, 5 orders of magnitude higher than the Compton scattering based on laser wakefield accelerators. Such high-energy, ultrabright, femtosecond-duration gamma rays may find applications in nuclear photonics, radiotherapy, and laboratory astrophysics.

9.
Opt Express ; 26(6): 7107-7116, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609397

RESUMO

We demonstrate generation of 0.2 mJ terahertz (THz) pulses in lithium niobate driven by Ti:sapphire laser pulses at room temperature. Employing tilted pulse front technique, the 800 nm-to-THz energy conversion efficiency has been optimized to 0.3% through chirping the sub-50 fs pump laser pulses to overcome multi-photon absorption and to extend effective interaction length for phase matching. Our approach paves the way for mJ-level THz generation via optical rectification using existing Ti:sapphire laser systems which can deliver Joule-level pulse energy with sub-50 fs pulse duration.

10.
Sci Rep ; 8(1): 463, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323147

RESUMO

When comets interacting with solar wind, straight and narrow plasma tails will be often formed. The most remarkable phenomenon of the plasma tails is the disconnection event, in which a plasma tail is uprooted from the comet's head and moves away from the comet. In this paper, the interaction process between a comet and solar wind is simulated by using a laser-driven plasma cloud to hit a cylinder obstacle. A disconnected plasma tail is observed behind the obstacle by optical shadowgraphy and interferometry. Our particle-in-cell simulations show that the difference in thermal velocity between ions and electrons induces an electrostatic field behind the obstacle. This field can lead to the convergence of ions to the central region, resulting in a disconnected plasma tail. This electrostatic-field-induced model may be a possible explanation for the disconnection events of cometary tails.

11.
Phys Rev Lett ; 116(20): 205003, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27258873

RESUMO

Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions.

12.
Opt Express ; 24(4): 4010-21, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907053

RESUMO

We report a systematic study on backward terahertz (THz) radiation generation from laser-solid interactions by changing a variety of laser/plasma parameters. We demonstrate a high-energy (with an energy flux density reaching 80 µJ/sr), broadband (>10 THz) plasma-based radiation source. The radiation energy is mainly distributed either in the >10 THz or <3 THz regions. A radial surface current formed by the lateral transport of low-energy electrons (LEE) is believed to be responsible for the radiation in the high-THz region (>10 THz), while high-energy surface fast electrons (SFE) accelerated along the target surface mainly contribute to lower frequency (<3 THz) radiation. The unifying explanation could be applied to backward THz radiation generation from solid targets with presence of relative small preplasmas.

13.
Nanoscale Res Lett ; 10(1): 394, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26450618

RESUMO

In this work, the dependence of piezoelectric coefficients (PE) on the size of artificial fabricated ZnO micropillars on Si substrate is investigated. ZnO full film is grown with c-axis orientation and an average grain size of 20 nm at a substrate temperature of 500 °C by pulsed laser ablation. The micropillars with the size range of 1.5 to 7 µm are formed by top-down semiconductor device processing. The PE, characterized by piezoelectric force microscopy (PFM), is found to increase from 18.2 to 46.9 pm/V, when the ZnO pillar size is reduced from 7 to 1.5 µm. The strong PE dependence on ZnO pillar size can be explained by local changes in polarization and reduction of unit cell volume with respect to bulk values. These results have strong implications in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

14.
Sci Rep ; 5: 15515, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493279

RESUMO

A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60-80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions.

15.
Opt Express ; 22(12): 14803-11, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977575

RESUMO

A new scheme to generate an intense isolated few-cycle attosecond XUV pulse is demonstrated using particle-in-cell simulations. By use of unipolarlike or subcycle laser pulses irradiating a thin foil target, a strong transverse net current can be excited, which emits a few-cycle XUV pulse from the target rear side. The isolated pulse is ultrashort in the time domain with duration of several hundred attoseconds. The pulse also has a narrow bandwidth in the spectral domain compared to other XUV sources of high-order harmonics. It has most energy confined around the plasma frequency and no low-harmonic orders below the plasma frequency. It is also shown that XUV pulse of peak field strength up to 8 × 10(12) Vm(-1) can be produced. Without the need for pulse selecting and spectral filtering, such an intense few-cycle XUV pulse is better suited to a number of applications.

16.
Opt Express ; 22(10): 11797-803, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921301

RESUMO

The interaction of 100-fs laser pulses with solid targets at laser intensities 10(16)-10(18)W/cm(2) has been investigated experimentally by simultaneous measurements of terahertz (THz) and second harmonic signals. THz yield at the front side of the target, which rises from the self-organized transient electron currents along the target surface, is found scaling linearly with the laser intensity basically. Measurements of specularly reflected light spectrum show clear evidence of resonance absorption. The positive effects of resonance absorption on surface current and THz radiation generation have been confirmed by two-dimensional (2D) particle-in-cell (PIC) simulations and angular-dependent experiments, respectively.

17.
Phys Rev Lett ; 108(21): 215001, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003270

RESUMO

Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

18.
Opt Express ; 20(6): 5968-73, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418473

RESUMO

Lifetime of laser plasma channel is significantly prolonged using femtosecond laser pulse sequence, which is generated from a chirped pulse amplification laser system with pure multi-pass amplification chain. Time-resolved fluorescence images and electrical conductivity measurement are used to characterize the lifetime of the plasma channel. Prolongation of plasma channel lifetime up to microsecond level is observed using the pulse sequence.


Assuntos
Lasers , Gases em Plasma/química , Desenho de Equipamento , Análise de Falha de Equipamento
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036405, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060511

RESUMO

Interactions of 100-fs laser pulses with solid targets at intensities of 10(18) W/cm(2) and resultant terahertz (THz) radiation are studied under different laser contrast ratio conditions. THz emission is measured in the specular reflection direction, which appears to decrease as the laser contrast ratio varies from 10(-8) to 10(-6). Correspondingly, the frequency spectra of the reflected light are observed changing from second harmonic dominant, three-halves harmonic dominant, to vanishing of both harmonics. Two-dimensional particle-in-cell simulation also suggests that this observation is correlated with the plasma density scale length change. The results demonstrate that the THz emission is closely related to the laser-plasma interaction processes. The emission is strong when resonance absorption is a key feature of the interaction, and becomes much weaker when parametric instabilities dominate.

20.
Opt Lett ; 36(19): 3900-2, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964135

RESUMO

Supercontinuum generation in air using tightly focused femtosecond laser pulses was investigated experimentally. Broadband white-light emission covering the whole visible spectral region was generated. Spectral broadening extended only to the blue side of the fundamental frequency due to the phase modulation induced by the strong ionization of air. Numerical simulation was also performed to confirm the spectral broadening mechanism. A constant UV cutoff wavelength close to 400 nm was observed in the supercontinuum spectrum. This phenomenon indicated that intensity clamping still plays a role in tight focusing geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...