Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 44(14): 2943-2946, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31602837

RESUMO

Hugan Tablets is a Chinese patent medicine,it has the function of anti-inflammation and reducing transaminase. Based on questionnaire investigation of doctors and a systematic review of research literature on Hugan Tablets,using international clinical practice guidelines' developing methods,with the best available evidence and fully combining expert experience,and following the principle of " evidence-based,consensus-based and experience-based",Expert consensus statement on Hugan Tablets in clinical practice was developed by more than 30 multidisciplinary experts from the nationwide,aimed at guiding and standardizing the rational use of Hugan Tablets by clinicians and to improve clinical efficacy and safety. The expert consensus adopts internationally recognized recommendation criteria for classification of evidence: GRADE. The formation of expert consensus adopts the nominal group technique. Six main considerations are quality of evidence,curative effect,safety,economical efficiency,patient acceptability and other factors. If there is sufficient evidence,a " recommendation" is formed,using GRADE grid voting rule. If there isn' t sufficient evidence,a " consensus opinion" is formed,using majority counting rule. Focus on the indication,usage and dosage,drug use in special population and safety of Hugan Tablets,two recommendations and eight consensus opinions were put forward. Through expert meetings and correspondence,a nationwide consultation and peer review was conducted. This consensus applies to clinicians in hospitals and grass-roots health services,to provide guidance and reference for the rational use of Hugan Tablets.

2.
Zhongguo Zhong Yao Za Zhi ; 44(14): 3022-3034, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31602849

RESUMO

To characterize the chemical constituents of Huanbei Zhike Prescription by ultra-high performance liquid chromatography-time of flight mass spectrometry( UPLC-Q-TOF-MS/MS). A Thermo Syncronls C18 column( 2. 1 mm×100 mm,1. 7 µm) was used with methanol( A)-0. 1% formic acid solution( B) as the mobile phase for gradient elution. The injection volume was 2 µL; the column temperature was 40 ℃; the flow rate was 0. 3 m L·min-1; and electrospray ionization( ESI) source was used to collect data in positive and negative ion modes. The ion scanning range was m/z 50-1 200,with capillary voltage of 3 000 V,ion source temperature of100 ℃,atomization gas flow rate of 50 L·h-1,desolvent gas flow rate of 800 L·h-1,desolvent temperature of 400 ℃,cone hole voltage of 40 V,with argon as the collision gas and the collision energy was 20-35 V. The excimer ion peak information was analyzed by Waters UNIFI data processing software. The molecular formula with error within 1×10-5 was compared with the data in database to identify the compounds. The secondary fragment ion information of the target compound was selected,and then compared with the retention time and fragmentation patterns provided by the database and the existing literature to further confirm the compositions and structures of the compounds. A total of 68 main compounds in Huanbei Zhike Prescription were identified,including 38 flavonoids,10 organic acids,6 terpenoids and 10 nitrogen-containing compounds,of which 12 compounds were verified by the control substances. This method is rapid and accurate,which provides a new strategy for the qualitative analysis of the chemical constituents of Huanbei Zhike Prescription,and lays a foundation for the further study and quality control of the compound pharmacodynamic substance.

3.
Sci Total Environ ; 698: 134289, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31514034

RESUMO

Microeukaryotes are the key ecosystem drivers mediating marine productivity, the food web and biogeochemical cycles. The northwestern Pacific Ocean (NWPO), as one of the world's largest oligotrophic regions, remains largely unexplored regarding diversity and biogeography of microeukaryotes. Here, we investigated the community composition and geographical distribution of microeukaryotes collected from the euphotic zone of three different regions in the NWPO using high-throughput sequencing of the 18S rRNA gene and quantified the contributions of environmental factors on the distributions of microeukaryotes. The relative abundance of different group taxa, except for Ciliophora, presented distinct patterns in each region, and Metazoa and Dinoflagellata dominated the community, contributing approximately half of reads abundance. Spatial and environmental factors explained 66.01% of community variation in the NWPO. Temperature was the most important environmental factor significantly correlated with community structure. Bacterial biomass was also significantly correlated with microeukaryotic distribution, especially for Dinoflagellata and Diatomea. Network analysis showed strong correlations between microeukaryotic groups and free-living bacteria and different bacterial taxa were correlated with specific microeukaryotic groups, indicating that their interactions enabled microeukaryotic groups to adapt to diverse environments. This study provides a first glance at the diversity and geographical distribution of microeukaryotes in the NWPO and sheds light on the biotic and abiotic factors in shaping the microeukaryotic community in the ocean.

4.
Nanoscale ; 11(35): 16393-16405, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31436768

RESUMO

Polymeric carbon nitride (CN) is a promising metal-free catalyst plagued by a low intrinsic activity. Herein, a novel strategy based on controllable in situ surface engineering and morphology was developed to synergistically boost the catalytic activity of CN by tuning the hydroxyl groups on its surface and constructing a unique nanostructure. The controllable introduction of hydroxyl groups on CN nanoshells, prepared by the thermal condensation of oxygen-containing supramolecular precursors formed in water, led to spatial separation of the HOMO and LUMO, and effective exciton dissociation, as verified by experiments and ab initio calculations. Furthermore, the hollow hemispherical nanoshell endowed more exposed active sites, optimal mass transport, and dynamic modulations. The optimized hollow hemispherical CN nanoshells exhibited remarkable catalytic activity, with a photoelectrocatalytic OER overpotential of about 330 mV at a current density of 10 mA cm-2, outperforming state-of-the-art precious-metal catalyst IrO2. High activity for the visible-light photocatalytic HER and pollutant degradation were also observed. This study proposes that, through rational surface group modification, a polymer material with high catalytic activity can be practically realized, which is promising for the design of efficient metal-free catalysts.

5.
BMC Plant Biol ; 19(1): 362, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426743

RESUMO

BACKGROUND: The MYB transcription factor family is one of the largest transcriptional factor families in plants and plays a multifaceted role in plant growth and development. However, MYB transcription factors involved in pathogen resistance in apple remain poorly understood. RESULTS: We identified a new MYB family member from apple, and named it MdMYB30. MdMYB30 was localized to the nucleus, and was highly expressed in young apple leaves. Transcription of MdMYB30 was induced by abiotic stressors, such as polyethylene glycol and abscisic acid. Scanning electron microscopy and gas chromatograph-mass spectrometry analyses demonstrated that ectopically expressing MdMYB30 in Arabidopsis changed the wax content, the number of wax crystals, and the transcription of wax-related genes. MdMYB30 bound to the MdKCS1 promoter to activate its expression and regulate wax biosynthesis. MdMYB30 also contributed to plant surface properties and increased resistance to the bacterial strain Pst DC3000. Furthermore, a virus-based transformation in apple fruits and transgenic apple calli demonstrated that MdMYB30 increased resistance to Botryosphaeria dothidea. Our findings suggest that MdMYB30 plays a vital role in the accumulation of cuticular wax and enhances disease resistance in apple. CONCLUSIONS: MdMYB30 bound to the MdKCS1 gene promoter to activate its transcription and regulate cuticular wax content and composition, which influenced the surface properties and expression of pathogenesis-related genes to resistance against pathogens. MdMYB30 appears to be a crucial element in the formation of the plant cuticle and confers apple with a tolerance to pathogens.

6.
Parasit Vectors ; 12(1): 396, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399130

RESUMO

BACKGROUND: In the final phase of China's national programme to eliminate malaria by 2020, it is vitally important to monitor the resistance of malaria vectors for developing effective vector control strategies. In 2017 Shanghai declared that it had eliminated malaria; however, the insecticide resistance status of the primary malaria vector Anopheles sinensis remains unknown. METHODS: We examined the pyrethroid and organophosphate resistance of An. sinensis via a bioassay of two populations from the Chongming District of Shanghai. The voltage-gated sodium channel (VGSC) and acetylcholinesterase 1 (ace-1) genes were partially sequenced to examine the association between resistance phenotype and target site genotype. In addition, the geographical distribution, polymorphism and genotype frequencies of insecticide resistance genes were examined using samples collected during routine mosquito surveillance in 2016 and 2017 from Chongming, Songjiang, Jiading and Qingpu Districts. RESULTS: In Chongming District, the An. sinensis population near Dongtan National Nature Reserve showed resistance to pyrethroids, sensitivity to organophosphate, no knockdown resistance (kdr) mutations in the VGSC gene, and a low frequency (1.71%) of the ace-1 119S allele. An An. sinensis population near the Chongming central area (CM-Xinhe population) showed high resistance to pyrethroids and organophosphates and high frequencies of kdr 1014F and 1014C (80.73%) and ace-1 119S (85.98%) alleles. A significant association was detected between the homozygous kdr mutation 1014F/1014F and pyrethroid resistance in the CM-Xinhe population, indicating that the kdr mutation is probably recessive. Eight kdr genotypes with 1014F and 1014C substitutions were detected in the four surveyed districts of Shanghai. TTT and GGC/AGC were the dominant kdr allele and ace-1 genotype, respectively, and were prevalent in most Shanghai An. sinensis populations. CONCLUSIONS: On the basis of our assessment of insecticide resistance gene mutations in Shanghai, we identified a kdr mutation-free population in Chongming Dongtan. However, high frequencies of target-site mutations of insecticide resistance genes were observed in most areas of Shanghai. Bioassays of An. sinensis populations in the central Chongming District indicated the high insecticide resistance status of An. sinensis populations in Shanghai. We accordingly recommend a restriction on insecticide usage and development of effective integrated pest/vector management interventions to support disease control efforts.

7.
Mol Plant Microbe Interact ; 32(10): 1391-1401, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408392

RESUMO

Salicylic acid (SA) is closely related to disease resistance of plants. WRKY transcription factors have been linked to the growth and development of plants, especially under stress conditions. However, the regulatory mechanism of WRKY proteins involved in SA production and disease resistance in apple is not clear. In this study, MdPBS3.1 responded to Botryosphaeria dothidea and enhanced resistance to B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation and quantitative PCR demonstrated that MdWRKY46 can directly bind to a W-box motif in the promoter of MdPBS3.1. Glucuronidase transactivation and luciferase analysis further showed that MdWRKY46 can activate the expression of MdPBS3.1. Finally, B. dothidea inoculation in transgenic apple calli and fruits revealed that MdWRKY46 improved resistance to B. dothidea by the transcriptional activation of MdPBS3.1. Viral vector-based transformation assays indicated that MdWRKY46 elevates SA content and transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdPBS3.1-dependent way. These findings provide new insights into how MdWRKY46 regulates plant resistance to B. dothidea through the SA signaling pathway.


Assuntos
Ascomicetos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Transdução de Sinais , Ascomicetos/fisiologia , Resistência à Doença/genética , Malus/genética , Malus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
8.
Plant Mol Biol ; 101(1-2): 149-162, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267255

RESUMO

KEY MESSAGE: Here we describe that the regulation of MdWRKY31 on MdHIR4 in transcription and translation levels associated with disease in apple. The phytohormone salicylic acid (SA) is a main factor in apple (Malus domestica) production due to its function in disease resistance. WRKY transcription factors play a vital role in response to stress. An RNA-seq analysis was conducted with 'Royal Gala' seedlings treated with SA to identify the WRKY regulatory mechanism of disease resistance in apple. The analysis indicated that MdWRKY31 was induced. A quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated that the expression of MdWRKY31 was induced by SA and flg22. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana increased the resistance to flg22 and Pseudomonas syringae tomato (Pst DC3000). A yeast two-hybrid screen was conducted to further analyze the function of MdWRKY31. As a result, hypersensitive-induced reaction (HIR) protein MdHIR4 interacted with MdWRKY31. Biomolecular fluorescence complementation, yeast two-hybrid, and pull-down assays demonstrated the interaction. In our previous study, MdHIR4 conferred decreased resistance to Botryosphaeria dothidea (B. dothidea). A viral vector-based transformation assay indicated that MdWRKY31 evaluated the transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdHIR4-dependent way. A GUS analysis demonstrated that the w-box, particularly w-box2, of the MdHIR4 promoter played a major role in the responses to SA and B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assay, and chromatin immunoprecipitation-qPCR demonstrated that MdWRKY31 directly bound to the w-box2 motif in the MdHIR4 promoter. GUS staining activity and a protein intensity analysis further showed that MdWRKY31 repressed MdHIR4 expression. Taken together, our findings reveal that MdWRKY31 regulated plant resistance to B. dothidea through the SA signaling pathway by interacting with MdHIR4.


Assuntos
Resistência à Doença , Malus/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Frutas/genética , Frutas/imunologia , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes Reporter , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/fisiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Transdução de Sinais , Tabaco/genética , Tabaco/imunologia , Tabaco/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Mol Reprod Dev ; 86(9): 1189-1198, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31304658

RESUMO

NEK5, a member of never in mitosis-gene A-related protein kinase, is involved in the regulation of centrosome integrity and centrosome cohesion at mitosis in somatic cells. In this study, we investigated the expression and function of NEK5 during mouse oocyte maturation and preimplantation embryonic development. The results showed that NEK5 was expressed from germinal vesicle (GV) to metaphase II (MII) stages during oocyte maturation with the highest level of expression at the GV stage. It was shown that NEK5 localized in the cytoplasm of oocytes at GV stage, concentrated around chromosomes at germinal vesicle breakdown (GVBD) stage, and localized to the entire spindle at prometaphase I, MI and MII stages. The small interfering RNA-mediated depletion of Nek5 significantly increased the phosphorylation level of cyclin-dependent kinase 1 in oocytes, resulting in a decrease of maturation-promoting factor activity, and severely impaired GVBD. The failure of meiotic resumption caused by Nek5 depletion could be rescued by the depletion of Wee1B. We found that Nek5 depletion did not affect CDC25B translocation into the GV. We also found that NEK5 was expressed from 1-cell to blastocyst stages with the highest expression at the blastocyst stage, and Nek5 depletion severely impaired preimplantation embryonic development. This study demonstrated for the first time that NEK5 plays important roles during meiotic G2/M transition and preimplantation embryonic development.

10.
J Integr Plant Biol ; 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090249

RESUMO

Isochorismate synthase (ICS) plays an essential role in the accumulation of salicylic acid (SA) and plant disease resistance. Diseases caused by Botryosphaeria dothidea affect apple yields. Thus, it is important to understand the role of ICS1 in disease resistance to B. dothidea in apple. In this study, SA treatment enhanced the resistance to B. dothidea. MdICS1 was induced by B. dothidea and enhanced the resistance to B. dothidea. MdICS1 promoter analysis indicated that the W-box was vital for the response to B. dothidea treatment. MdWRKY15 was found to interact with the W-box using yeast one-hybrid screening. Subsequently, the interaction was confirmed by EMSA, yeast one-hybrid, ChIP-PCR, and quantitative PCR assays. Moreover, luciferase and GUS analysis further indicated that MdICS1 was transcriptionally activated by MdWRKY15. Finally, we found the function of MdWRKY15 in the resistance to B. dothidea was partially dependent on MdICS1 from the phenotype of transgenic apples and calli. In summary, we revealed that MdWRKY15 activated the transcription of MdICS1 by directly binding to its promoter to increase the accumulation of SA and the expression of disease-related genes, thereby resulting in the enhanced resistance to B. dothidea in the SA biosynthesis pathway.

11.
Ann Clin Transl Neurol ; 6(5): 848-853, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139682

RESUMO

Objective: Cognitive impairment is an important symptom of Parkinson's disease (PD) and seriously affects patients' quality of life and prognosis. However, its cause is still uncertain. In about one-third of patients, PD is associated with rapid eye movement sleep behavior disorder (RBD), which is an independent risk factor for PD-associated dementia; but whether or not it relates to the cognitive function of patients with nondemented PD is still controversial. Methods: The data from 89 enrolled PD patients were retrospectively analyzed. The RBD Questionnaire Hong-Kong (RBD-HK) was used to diagnose possible RBD (pRBD). There are 46 patients with possible RBD (the PD-pRBD) and 43 without (the PD-npRBD). PD disease severity, neuropsychological function, overall cognitive function, and various cognitive functions were assessed. Results: There were significant between-group differences in scores on the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Digit Symbol Test (DST), Trail Making Test-A (TMT-A)-Time, TMT-Trail Making Test-B (TMT-B)-Time, Stroop Color-word Test, Clock Drawing Test (CDT), Boston Naming Test (BNT), Verbal Fluency Test (fruit), etc. (P < 0.05). Interpretation: Patients in the PD-pRBD group had more cognitive impairment.

12.
Phytomedicine ; 62: 152948, 2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31129431

RESUMO

BACKGROUND: Huangqi decoction (HQD), a classic traditional herbal medicine, has been used for liver fibrosis, but its effect on intrahepatic chronic cholestatic liver injury remains unknown. PURPOSE: In the present study, we investigated the hepatoprotective effect of HQD and the underlying molecular mechanisms in 3, 5-diethoxycarbonyl-1, 4-dihydroxychollidine (DDC)-induced chronic cholestatic mice. METHODS: The DDC-induced cholestatic mice were administrated HQD for 4 or 8 weeks. Serum biochemistry and morphology were investigated. The serum and liver bile acid (BA) levels were detected by ultra performance liquid chromatography-tandem mass spectrometry. The liver expression of BA metabolizing enzymes and transporters, and inflammatory and fibrotic markers was measured by real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS: HQD treatment for 4 or 8 weeks ameliorated DDC-induced liver injury by improving impaired hepatic function and tissue damage. HQD treatment for 8 weeks further decreased the liver expression of cytokeratin 19, tumor growth factor (TGF)-ß, collagen I, and α-smooth muscle actin, and ameliorated ductular reaction and liver fibrosis. HQD markedly decreased the accumulation of serum and liver BA. The expression of BA-metabolizing enzymes, cytochrome P450 2b10 and UDP glucuronosyltransferase 1 A1, and multidrug resistance-associated protein 2, Mrp3, and Mrp4 involved in BA homeostasis was increased by 4 weeks of HQD treatment. The expression of BA uptake transporter Na+-taurocholate cotransporting polypeptide was decreased and that of Mrp4 was increased after 8 weeks of HQD treatment. Nuclear factor-E2-related factor-2 (Nrf2) was remarkably induced by HQD treatment. Additionally, HQD treatment for 8 weeks decreased the liver expression of inflammatory factors, interleukin (IL)-6, IL-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and intracellular adhesion molecule-1. HQD suppressed the nuclear factor (NF)-κB pathway. CONCLUSION: HQD protected mice against chronic cholestatic liver injury and biliary fibrosis, which may be associated with the induction of the Nrf2 pathway and inhibition of the NF-κB pathway, ameliorating BA-stimulated inflammation.

13.
Front Biosci (Landmark Ed) ; 24: 1316-1329, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136981

RESUMO

Blood-testis barrier (BTB) that is constructed by testicular Sertoli cells (SCs) is essential for spermatogenesis. Krüppel-like factor 6 (Klf6), a nuclear transcription regulator, is reported to be associated with tight junction molecules of BTB between SCs during spermatogenesis; however, the specific regulatory role and mechanism of Klf6 in BTB regulation are still unknown. Here, we primarily confirmed the temporal and spatial expression patterns of Klf6 in mouse testes. Then, Klf6 was silenced in mouse cultured SCs using either Klf6-siRNA or Klf6-shRNA lentivirus. We mainly found that: (i) Klf6 was indispensable for the proliferative activity of mouse SCs; (ii) Klf6 regulated the integrity and permeability of BTB; (iii) Klf6 knockdown led to the significant upregulation of Zo-1, Claudin-11 and Vimentin, and downregulation of Claudin-3. Furthermore, Zo-1 and Claudin-3, participated in the tight junction remolding, were determined as targets of transcription factor Klf6 by luciferase assay. In summary, our findings suggest that Klf6 regulates the BTB assembly and disassembly via mainly targeting Zo-1 and Claudin-3 in mouse SCs.

14.
Plant Sci ; 283: 396-406, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128710

RESUMO

In plants, hypersensitive-induced reaction (HIR) proteins are involved in stress responses, especially biotic stress. However, the potential molecular mechanisms of HIR-mediated biotic resistance in plants are rarely reported. We found that apple (Malus domestica) MdHIR4 was localized in the cell nucleus and membrane similar to AtHIR1 in Arabidopsis. Moreover, salicylic acid and the bacterial flagellin flg22 (a conserved, 22-amino acid motif), which are relevant to biotic stress, could induce MdHIR4 expression. Additionally, the transcription level of MdHIR4 was increased by Methyl jasmonate treatment. Ectopic expression of MdHIR4 in Arabidopsis and Nicotiana benthamiana reduced sensitivity to Methyl jasmonate and enhanced resistance to the bacterial pathogen Pst DC3000 (Pseudomonas syringae tomato DC3000). The interaction between MdHIR4 and AtJAZs proteins (AtJAZ3, AtJAZ4, and AtJAZ9) implied that MdHIR4 participated in the jasmonic acid (JA) signaling pathway. We found the expression of JA-related genes and PRs to change in transgenic plants, further demonstrating that MdHIR4 mediated biotic stress through the JA signaling pathway. Repressing the expression of MdHIR4 in apple leaves and calli increased resistance to Botryosphaeria dothidea by influencing the transcription of resistance-related genes. Our findings reveal the resistant function to biotic stress of MdHIR4 in transgenic plants, including Arabidopsis, tobacco, and apple, and identify the regulating mechanism of MdHIR4-related biotic resistance.


Assuntos
Malus/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis , Ascomicetos , Western Blotting , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae , Estresse Fisiológico , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
15.
J Cell Biochem ; 120(9): 15776-15789, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31074048

RESUMO

Traumatic brain injury (TBI) is a serious public health problem as well as a leading cause of severe posttraumatic disability. Numerous studies indicate that the differentially expressed genes (DEGs) of neural signaling pathways are strongly correlated with brain injury. To further analyze the roles of the DGEs in the central nervous system, here we systematically investigated TBI on the hippocampus and its injury mechanism at the whole genome level. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analyses, we revealed that the DEGs were involved in many signaling pathways related to the nervous system, especially neuronal survival-related pathways. Finally, we verified the microarray results and detected the gene expression of neuronal survival-related genes in the hippocampus by using real-time quantitative polymerase chain reaction. With Western blot and axon growth assay, the expression of P2rx3 was upregulated in rats subjected to TBI, and overexpression of P2rx3 promoted neurite growth of NG108 cells. Our results suggested that the DEGs (especially P2rx3) and several signaling pathways might play a pivotal role in TBI. We also provided several targeted genes related to TBI for future investigation.

16.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(4): 387-392, 2019 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-31014434

RESUMO

OBJECTIVE: To investigate the current status of empirical antibiotic therapy for children with Staphylococcus aureus sepsis and the effect of therapeutic paradigm on prognosis based on a retrospective analysis. METHODS: A total of 78 children with Staphylococcus aureus sepsis who were admitted from January 2014 to August 2017 were enrolled. According to the preferred empirical antibiotics before the detection of Staphylococcus aureus by blood culture, these children were divided into a carbapenem group with 16 children, a ß-lactam group with 37 children, a vancomycin group with 15 children and a vancomycin+ß-lactam group with 10 children. A retrospective analysis was performed for related clinical data including general status, underlying diseases, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, history of use of immunosuppressant, drug resistance to methicillin and prognosis. A logistic regression analysis was used to investigate the effect of empirical antibiotic therapy on the clinical outcome and prognosis of children with Staphylococcus aureus sepsis. RESULTS: There were no significant differences among these groups in general status, underlying diseases, history of use of immunosuppressant, APACHE II score, nosocomial infection and detection rate of methicillin-resistant Staphylococcus aureus (P>0.05). There were significant differences in the incidence rate of septic shock and in-hospital mortality among these four groups (P<0.05). The carbapenem group had the highest incidence rate of septic shock and in-hospital mortality (69% and 50% respectively). The multivariate logistic regression analysis showed that empirical antibiotic therapy with different antibiotics had different risks for septic shock and in-hospital death in children with Staphylococcus aureus sepsis (P<0.05), and that an APACHE II score of ≥15 was an independent risk factor for septic shock in these children (P<0.05). The carbapenem group had significantly higher risks of septic shock and in-hospital death than the vancomycin group (P<0.05). CONCLUSIONS: Inappropriate empirical use of antibiotics may lead to a poor prognosis in children with Staphylococcus aureus sepsis. Empirical use of carbapenems is not recommended for children suspected of Staphylococcus aureus sepsis.


Assuntos
Antibacterianos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Criança , Humanos , Estudos Retrospectivos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
17.
Free Radic Biol Med ; 136: 45-51, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30946960

RESUMO

Radiation-induced damage to the mitochondrial macromolecules and electron transfer chain (ETC), causing the generation of primary and secondary reactive oxygen (ROS) species. The continuous ROS production after radiation will trigger cell oxidative stress and ROS-mediated nucleus apoptosis and autophagy signaling pathways. Scavenging radiation-induced ROS effectively can help mitochondria to maintain their physiological function and relief cells from oxidative stress. Nicotinamide is a critical endogenous antioxidant helping to neutralize ROS in vivo. In this study, we designed and synthetized a novel mitochondrial-targeted dihydronicotinamide (Mito-N) with the help of mitochondrial membrane potential to enter the mitochondria and scavenge ROS. According to experiment results, Mito-N significantly increased cell viability by 30.75% by neutralizing the accumulated ROS and resisting DNA strands breaks after irradiation. Furthermore, the mice survival rate also improved with the treatment of Mito-N, by effectively ameliorating the hematopoietic system infliction under lethal dose irradiation.

18.
ACS Appl Mater Interfaces ; 11(19): 17341-17349, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30964629

RESUMO

Unlike graphene, graphitic carbon nitride (CN) polymer contains a weak hydrogen bond and van der Waals (vdWs) interactions besides a strong covalent bond, which controls its final morphology and functionality. Herein, we propose a novel strategy, hydrogen-bond engineering, to tune hydrogen bonds in polymeric CN through nonmetal codoping. Incorporation of B and P dopants breaks partial hydrogen bonds within the layers and simultaneously weakens the vdWs interaction between neighboring layers, resulting in ultrathin codoped CN nanosheets. The two-dimensional structure of the ultrathin sheet, broken hydrogen bonds, and incorporated dopants endow them with efficient visible light harvesting, improved charge separation, and increased active edge sites that synergistically enhance the photocatalytic activity of doped CN. Specifically, the B/P-codoped CN exhibits an extremely high hydrogen-evolution rate of 10877.40 µmol h-1 g-1, much higher than most reported values of CN. This work demonstrates that hydrogen bond engineering is an effective strategy to modify the structure and properties of polymers for various applications.

19.
Nanoscale ; 11(14): 6876-6885, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912790

RESUMO

Structural defects can greatly inhibit electron transfer in two-dimensional (2D) layered polymeric carbon nitride (CN) unit, seriously lowering its utilization ratio of photogenerated charges during photocatalysis. Herein, we propose a new strategy based on intra-melon hydrogen bonding interactions in 2D CN frameworks to improve the crystallinity of CN. This concept was validated by removing some amino groups and connecting melon using codoped B and F atoms via a simple one-step sodium fluoroborate-assisted thermal treatment. The enhancement in crystallinity effectively promoted exciton dissociation and charge transfer in the CN nanosheets. Furthermore, the B/F dopants also improved the separation of photogenerated carriers by promoting charge capture. The highly efficient visible-light photocatalytic activity of the crystalline B/F-codoped CN nanosheets was demonstrated by degrading methyl orange, Rhodamine B, colorless phenol and tetracycline hydrochloride as models, where their degradation rate constant was more than 10, 5, 32 and 3 times higher than that of pure CN, respectively. Moreover, the B/F-codoped CN exhibited an excellent photoelectrocatalytic performance for the oxygen evolution reaction (OER), outperforming the precious-metal IrO2 catalyst. The simple and effective strategy proposed herein provides a direct route to engineer high crystallinity in 2D materials for tunable charge carrier separation and migration for electronic and optoelectronic applications.

20.
Clin Immunol ; 202: 40-48, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30914281

RESUMO

γδ T cells are a unique population of lymphocytes that have regulatory roles in patients with chronic hepatitis B (CHB); however, their role in acute hepatitis B (AHB) infection remains unclear. Phenotype and function of γδ T cells were analyzed in 29 AHB patients, 28 CHB patients, and 30 healthy controls (HCs) using immunofunctional assays. Compared with HCs and CHB patients, decreased peripheral and increased hepatic γδ T cells were found in AHB patients. Increased hepatic γδ T cells in AHB patients were attributed to elevated hepatic chemokine levels. Peripheral γδ T cells exhibited highly activated and terminally differentiated memory phenotype in AHB patients. Consistently, peripheral γδ T cells in AHB patients showed increased cytotoxic capacity and enhanced antiviral activity which was further proved in longitudinal study. Activated γδ T cells in AHB patients exhibited increased cytotoxicity and capacity for viral clearance associated with liver injury and the control of infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA