Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Food Chem ; 311: 125878, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771910


ß-Carotene is a natural nutrient that serves as a natural food colorant. However, the weak physical stability restricts its development in food industrial production. Here, the influences of a variety of external environmental conditions on the stability of ß-carotene enriched zein-carboxymethyl chitosan (CMCS)-tea polyphenols (TP) ternary composite nanoparticles were investigated. Compared with zein unitary and zein-CMCS binary complexes, it was interesting to note that ternary complexes had the best stability against color fading and there was little impact on its nanoparticle size during storage with change in temperature. Besides excellent antioxidant properties, ternary complexes were extremely effective in inhibiting ß-carotene color degradation when exposed to ultraviolet light. Based on our results, the novel zein-CMCS-TP nanoparticles are expected to be an effective delivery system to encapsulate hydrophobic bioactive compounds, which is a promising approach to improve their storage stability against external environmental stresses.

Food Funct ; 10(2): 635-645, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30648709


The design of zein-based nanoparticles to encapsulate bioactive molecules has gained great attention in recent years. However, the use of ethanol to dissolve zein presents flammability concerns and the scale-up production of zein-based nanoparticles is also a concern. In our study, propolis loaded zein/caseinate/alginate nanoparticles were fabricated using a facile one-step procedure: a well-blended solution was prepared containing deprotonated propolis, soluble zein, dissociated sodium caseinate micelles (NaCas) and alginate at alkaline pH, and then this alkaline solution was added to 0.1 M citrate buffer (pH 3.8) to fabricate composite nanoparticles without using organic solvents and sophisticated equipment. During acidification, the alginate molecules adsorbed on the zein/NaCas surfaces by electrostatic complexation, which improved the stability towards aggregation of zein/NaCas nanoparticles under gastrointestinal (GI) or acidic pH. The nanoparticles prepared under the optimized method (method 3 sample) were of spherical morphology with a particle size around 208 nm and a negative zeta potential around -27 mV. The encapsulation efficiency (EE) and loading capacity (LC) of propolis reached 86.5% and 59.6 µg mg-1 by zein/NaCas/alginate nanoparticles, respectively. These nanoparticles were shown to be stable towards aggregation over a wide range of pH values (2-8) and salt concentrations (0-300 mM NaCl). Compared to free propolis, the bioaccessibility of propolis encapsulated with nanoparticles was increased to 80%. Our results showed a promising clean and scalability strategy to encapsulate hydrophobic nutraceuticals for applications in foods, supplements, and pharmaceuticals.

Alginatos/química , Caseínas/química , Nanopartículas/química , Própole/química , Zeína/química , Tecnologia de Alimentos , Microscopia Eletrônica de Transmissão
Chemosphere ; 220: 837-844, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30612053


Soils are experiencing increasing pollution with arsenic (As) and phthalate esters (PAEs), which is threatening human health. In this study, the feasibility of simultaneous remediation of soil As(III) and a PAE, dibutyl phthalate (DBP), by a manganese-oxidizing bacterium (MnOB) was evaluated. As immobilization and DBP degradation were simultaneously enhanced by MnOB addition. The effects of initial concentrations of As(III), DBP, and Mn(II), and moisture content on the removal of As(III) and DBP were investigated. The results indicated that there was a competitive interaction between As(III) and DBP removal, and 40 mg/kg of Mn(II) dosage and 20%-30% soil moisture content were recommended for optimal and simultaneous removal of As(III) and DBP. Microbial community analysis revealed that community structure and diversity were not changed significantly by MnOB addition. Taken together, the findings from this study indicated that DBP was degraded primarily by microorganisms, whereas As(III) was removed largely by biogenic Mn oxides and immobilized by adsorption onto Mg/Fe oxides and/or formation of metal arsenate precipitates/co-precipitates. This study offers a novel and high-efficiency strategy to remediate the combined contamination of As and PAEs in soils.

Arsênico/isolamento & purificação , Dibutilftalato/metabolismo , Recuperação e Remediação Ambiental/métodos , Adsorção , Arsênico/química , Bactérias/metabolismo , Humanos , Manganês/metabolismo , Compostos de Manganês/química , Óxidos/química , Solo/química , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo