Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
iScience ; 24(10): 103186, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34608450

RESUMO

The COVID-19 pandemic has caused over 220 million infections and 4.5 million deaths worldwide. Current risk factor cannot fully explain the diversity in disease severity. Here, we present a comprehensive analysis of a broad range of patients' laboratory and clinical assessments to investigate the genetic contributions to COVID-19 severity. By performing GWAS analysis, we discovered several concrete associations for laboratory traits and used Mendelian randomization (MR) analysis to further investigate the causality of traits on disease severity. Two causal traits, WBC counts and cholesterol levels, were identified based on MR study, and their functional genes are located at genes MHC complex and ApoE, respectively. Our gene-based analysis and GSEA revealed four interferon pathways, including type I interferon receptor binding and SARS coronavirus and innate immunity. We hope that our work will contribute to studying the genetic mechanisms of disease and serve as a useful reference for COVID-19 diagnosis and treatment.

2.
ACS Appl Mater Interfaces ; 13(41): 48923-48933, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34628849

RESUMO

The earth-abundant iron and nitrogen doped carbon (Fe-N-C) catalyst has great potential to substitute noble metal catalysts for oxygen reduction reaction (ORR) in H2-O2 proton exchange membrane fuel cells (PEMFCs). Herein, we report the preparation of Fe-N4 moiety doped carbon nanotubes (CNTs) by ball milling and two-step pyrolysis with dual metal-organic frameworks (MOFs) as the precursor. This catalyst shows high ORR catalytic performance and stability. Different from traditional inorganic iron sources, the MOF structure can effectively prevent the iron metal from aggregating during pyrolysis. In PEMFC, the catalyst shows high current density (0.39 A/cm2 at 0.7 V) and power density (850 mW/cm2). Such a method brings inspiration for the reasonable design of FeNC catalysts with high catalytic activity for H2-O2 PEMFCs.

3.
ACS Appl Mater Interfaces ; 13(41): 48774-48783, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34628856

RESUMO

The oxygen evolution reaction (OER) is crucial for hydrogen production from water splitting and rechargeable metal-air batteries. However, the four-electron mechanism results in slow reaction kinetics, which needed to be accelerated by efficient catalysts. Herein, a hybrid catalyst of novel nickel-iron layered double hydroxide (NiFe LDH) on porous indium tin oxide (ITO) is presented to lower the overpotential of the OER. The as-prepared NiFe LDH@ITO catalyst showed superior catalytic activity toward the OER with an overpotential of only 240 mV at a current density of 10 mA/cm2. The catalyst also offered high stability with almost no activity decay after more than 200 h of chronopotentiometry test. Furthermore, the applications of NiFe LDH@ITO in (flexible) rechargeable zinc-air batteries exhibited a better performance than commercial RuO2 and can remain stable in cycling tests. It is supposed that the superior catalytic behavior originates from the ITO conductive framework, which prevents the agglomeration and facilitates the electron transfer during the OER process.

4.
Bioorg Med Chem ; 48: 116398, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34547714

RESUMO

Despite the success of imatinib in CML therapy through Bcr-Abl inhibition, acquired drug resistance occurs over time in patients. In particular, the resistance caused by T315I mutation remains a challenge in clinic. Herein, we embarked on a structural optimization campaign aiming at discovery of novel Bcr-Abl inhibitors toward T315I mutant based on previously reported dibenzoylpiperazin derivatives. We proposed that incorporation of flexible linker could achieve potent inhibition of Bcr-AblT315I by avoiding steric clash with bulky sidechain of Ile315. A library of 28 compounds with amino acids as linker has been developed and evaluated. Among them, compound AA2 displayed the most potent activity against Bcr-AblWT and Bcr-AblT315I, as well as toward Bcr-Abl driven K562 and K562R cells. Further investigations indicated that AA2 could induce apoptosis of K562 cells and down regulate phosphorylation of Bcr-Abl. In summary, the compounds with amino acid as novel flexible linker exhibited certain antitumor activities, providing valuable hints for the discovery of novel Bcr-Abl inhibitors to overcome T315I mutant resistance, and AA2 could be considered as a candidate for further optimization.

5.
Top Curr Chem (Cham) ; 379(6): 39, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34590223

RESUMO

Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.


Assuntos
Neoplasias/diagnóstico , Proteínas/análise , RNA/análise , Biomarcadores/análise , Reação de Cicloadição , Fezes/química , Corantes Fluorescentes/química , Fumaratos/análise , Humanos , Proteínas/química , Proteínas/metabolismo , RNA/química
6.
Commun Biol ; 4(1): 1034, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465887

RESUMO

COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR = 1.28, P = 2.51 × 10-10, allele frequencies in Chinese/European AF = 0.345/0.105), a frameshift insertion in ABO (rs8176719, OR = 1.19, P = 8.98 × 10-9, AF = 0.422/0.395) and a Chinese-specific intronic variant in MEF2B (rs74490654, OR = 8.73, P = 1.22 × 10-8, AF = 0.004/0). These findings highlight an important role of the adaptive immunity and the ABO blood-group system in protection from developing severe COVID-19.


Assuntos
COVID-19/etnologia , COVID-19/genética , Grupos Étnicos/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Humanos , Íntrons/genética , Polimorfismo de Nucleotídeo Único
7.
Stem Cell Res ; 56: 102533, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34530396

RESUMO

Infantile-onset inflammatory bowel diseases (IO-IBD) is a heterogeneous subgroup of IBD spectrum characterized by age of onset less than 2 years old. Mutations in interleukin-10 receptor A (IL10RA) is one of the major causes. Here, we generated a human induced pluripotent stem cell line SDQLCHi040-A from a 1-year-4-month-old girl with IO-IBD caused by homozygous mutation (c.301 C > T, p.R101W) in the IL10RA gene (OMIM*146933). The established iPSC line was validated by pluripotency markers, original gene mutation and demonstrated trilineage differentiation potential in vitro.

8.
Synth Syst Biotechnol ; 6(4): 283-291, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541346

RESUMO

Antigen detection provides particularly valuable information for medical diagnoses; however, the current detection methods are less sensitive and accurate than nucleic acid analysis. The combination of CRISPR/Cas12a and aptamers provides a new detection paradigm, but sensitive sensing and stable amplification in antigen detection remain challenging. Here, we present a PCR-free multiple trigger dsDNA tandem-based signal amplification strategy and a de novo designed dual aptamer synergistic sensing strategy. Integration of these two strategies endowed the CRISPR/Cas12a and aptamer-based method with ultra-sensitive, fast, and stable antigen detection. In a demonstration of this method, the limit of detection was at the single virus level (0.17 fM, approximately two copies/µL) in SARS-CoV-2 antigen nucleocapsid protein analysis of saliva or serum samples. The entire procedure required only 20 min. Given our system's simplicity and modular setup, we believe that it could be adapted reasonably easily for general applications in CRISPR/Cas12a-aptamer-based detection.

9.
Redox Biol ; 46: 102079, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34454163

RESUMO

Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.

10.
Adv Sci (Weinh) ; 8(18): e2101957, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310076

RESUMO

Mitogen-activated protein kinase (MAPK) signaling plays a significant role in reactive oxygen species (ROS) production. The authors have previously shown that Brahma-related gene 1 (BRG1), a chromatin remodeling protein, contributes to hepatic ROS accumulation in multiple animal and cellular models of liver injury. Here it is reported that DNA damage-induced transcript 4 (DDIT4) is identified as a direct transcriptional target for BRG1. DDIT4 overexpression overcomes BRG1 deficiency to restore ROS production whereas DDIT4 knockdown phenocopies BRG1 deficiency in suppressing ROS production in vitro and in vivo. Mechanistically, DDIT4 coordinates the assembly of the p38-MAPK signaling complex to drive ROS production in an S-nitrosylation dependent manner. Molecular docking identifies several bioactive DDIT4-inteacting compounds including imatinib, nilotinib, and nateglinide, all of which are confirmed to attenuate hepatic ROS production, dampen p38-MAPK signaling, and ameliorate liver injury by influencing DDIT4 S-nitrosylation. Importantly, positive correlation between ROS levels and BRG1/DDIT4/S-nitrosylated DDIT4 levels is detected in human liver biopsy specimens. In conclusion, the data reveal a transcription-based signaling cascade that contributes to ROS production in liver injury.

11.
Hematology ; 26(1): 478-490, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34238135

RESUMO

OBJECTION: Primary myelofibrosis (PMF) is a familiar chronic myeloproliferative disease with an unfavorable prognosis. The effect of infection on the prognosis of patients with PMF is crucial. Immune system dysregulation plays a central role in the pathophysiology of PMF. To date, very little research has been conducted on the molecular mechanism of immune compromise in patients with PMF. METHODS: To explore potential candidate genes, microarray datasets GSE61629 and 26049 were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between PMF patients and normal individuals were evaluated, gene function was measured and a series of hub genes were identified. Several significant immune cells were selected via cell type enrichment analysis. The correlation between hub genes and significant immune cells was determined. RESULTS: A total of 282 DEGs were found, involving 217 upregulated genes and 65 downregulated genes. Several immune cells were found to be reduced in PMF, such as CD4+ T cells, CD4+ Tems, CD4+ memory T cells. Gene Ontology (GO) enrichment analysis of DEGs reflected that most biological processes were associated with immune processes. Six hub genes, namely, HP, MPO, MMP9, EPB42, SLC4A1, and ALAS2, were identified, and correlation analysis revealed that these hub genes have a negative correlation with immune cell abundance. CONCLUSIONS: Taken together, the gene expression profile of whole blood cells in PMF patients indicated a battery of immune events, and the DEGs and hub genes might contribute to immune system dysregulation.


Assuntos
Mielofibrose Primária/genética , Transcriptoma , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade , Imunidade Celular , Mielofibrose Primária/imunologia
12.
J Neuroinflammation ; 18(1): 146, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183019

RESUMO

BACKGROUND: Thymosin ß4 (Tß4) is the most abundant member of the ß-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer's disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tß4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. METHODS: Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aß accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. RESULTS: We demonstrated that Tß4 protein level elevated in all APP/PS1 mice. Over-expression of Tß4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aß accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tß4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. CONCLUSIONS: These results suggest that Tß4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD.

13.
Bioresour Technol ; 337: 125408, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34153864

RESUMO

The resource utilization of biological solid waste is crucial for practical environmental remediation. By comprehensively utilizing LiBr treatment and dopamine chemistry, herein the cow dung waste was successfully converted into the composite biomass material for efficient heavy metal ions removal. A selective etching mechanism of cellulose was discovered in the LiBr treatment process, achieving the large-scale preparation of coralline-like porous biomass material with hundred times increased specific surface. Benefiting from the co-deposition of polyethyleneimine and Fe3O4, the fabricated material showed significantly higher adsorption capacity (183.82 and 231.48 mg·g-1 for Cu2+ and Cd2+) than that of raw cow dung (0.95 and 1.25 mg·g-1 for Cu2+ and Cd2+). Furthermore, this composite biomass adsorbent also exhibited rapid adsorption equilibrium, magnetic separation capability, monolayer chemisorption feature and feasible recycling use. Collectively, this work contributes to both the resource utilization of husbandry solid waste and the development of advanced biomass adsorbent.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Íons , Cinética , Polietilenoimina
14.
Stem Cell Res ; 53: 102313, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087978

RESUMO

In this study, peripheral blood monouclear cells (PBMCs) were donated from a boy suffering from familial combined hyperlipidemia confirmed by clinical and genetic diagnosis, which carried compound heterozygous mutations of lipoprotein lipase (LPL) gene. The induced pluripotent stem cell (iPSC) was generated with non-integrated episomal vectors carrying OCT4, SOX2, KLF4, BCL-XL and C-MYC. The iPSCs presented the morphology of pluripotent cells, highly expressed mRNA and protein of pluripotent markers, excellent differentiation potency in vitro and normal karyotype, and bore LPL gene mutations.


Assuntos
Hiperlipidemia Familiar Combinada , Hiperlipidemias , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Heterozigoto , Humanos , Lipase Lipoproteica/genética , Masculino , Mutação
15.
G3 (Bethesda) ; 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34015083

RESUMO

Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.

16.
J Zhejiang Univ Sci B ; 22(5): 383-396, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33973420

RESUMO

Streptomyces produces many valuable and important biomolecules with clinical and pharmaceutical applications. The development of simple and highly efficient gene editing tools for genetic modification of Streptomyces is highly desirable. In this study, we developed a screening system for targeted gene knockout using a uracil auxotrophic host (ΔpyrF) resistant to the highly toxic uracil analog of 5-fluoroorotic acid (5-FOA) converted by PyrF, and a non-replicative vector pKC1132-pyrF carrying the complemented pyrF gene coding for orotidine-5'-phosphate decarboxylase. The pyrF gene acts as a positive selection and counterselection marker for recombinants during genetic modifications. Single-crossover homologous integration mutants were selected on minimal medium without uracil by reintroducing pyrF along with pKC1132-pyrF into the genome of the mutant ΔpyrF at the targeted locus. Double-crossover recombinants were generated, from which the pyrF gene, plasmid backbone, and targeted gene were excised through homologous recombination exchange. These recombinants were rapidly screened by the counterselection agent, 5-FOA. We demonstrated the feasibility and advantage of using this pyrF-based screening system through deleting the otcR gene, which encodes the cluster-situated regulator that directly activates oxytetracycline biosynthesis in Streptomyces rimosus M4018. This system provides a new genetic tool for investigating the genetic characteristics of Streptomyces species.

17.
Front Microbiol ; 12: 645477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815333

RESUMO

Catalases play a key role in the defense against oxidative stress in bacteria by catalyzing the decomposition of H2O2. In addition, catalases are also involved in multiple cellular processes, such as cell development and differentiation, as well as metabolite production. However, little is known about the abundance, diversity, and distribution of catalases in bacteria. In this study, we systematically surveyed and classified the homologs of three catalase families from 2,634 bacterial genomes. It was found that both of the typical catalase and Mn-catalase families could be divided into distinct groups, while the catalase-peroxidase homologs formed a tight family. The typical catalases are rich in all the analyzed bacterial phyla except Chlorobi, in which the catalase-peroxidases are dominant. Catalase-peroxidases are rich in many phyla, but lacking in Deinococcus-Thermus, Spirochetes, and Firmicutes. Mn-catalases are found mainly in Firmicutes and Deinococcus-Thermus, but are rare in many other phyla. Given the fact that catalases were reported to be involved in secondary metabolite biosynthesis in several Streptomyces strains, the distribution of catalases in the genus Streptomyces was given more attention herein. On average, there are 2.99 typical catalases and 0.99 catalase-peroxidases in each Streptomyces genome, while no Mn-catalases were identified. To understand detailed properties of catalases in Streptomyces, we characterized all the five typical catalases from S. rimosus ATCC 10970, the oxytetracycline-producing strain. The five catalases showed typical catalase activity, but possessed different catalytic properties. Our findings contribute to the more detailed classification of catalases and facilitate further studies about their physiological roles in secondary metabolite biosynthesis and other cellular processes, which might facilitate the yield improvement of valuable secondary metabolites in engineered bacteria.

18.
Braz J Med Biol Res ; 54(4): e9850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33656056

RESUMO

Respiratory syncytial virus (RSV) infection is the main cause of lower respiratory tract infection in children. However, there is no effective treatment for RSV infection. Here, we aimed to identify potential biomarkers to aid in the treatment of RSV infection. Children in the acute and convalescence phases of RSV infection were recruited and proteomic analysis was performed to identify differentially expressed proteins (DEPs). Subsequently, promising candidate proteins were determined by functional enrichment and protein-protein interaction network analysis, and underwent further validation by western blot both in clinical and mouse model samples. Among the 79 DEPs identified in RSV patient samples, 4 proteins (BPGM, TPI1, PRDX2, and CFL1) were confirmed to be significantly upregulated during RSV infection. Functional analysis showed that BPGM and TPI1 were mainly involved in glycolysis, indicating an association between RSV infection and the glycolysis metabolic pathway. Our findings provide insights into the proteomic profile during RSV infection and indicated that BPGM, TPI1, PRDX2, and CFL1 may be potential therapeutic biomarkers or targets for the treatment of RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Biomarcadores , Criança , Humanos , Proteômica
20.
Stem Cell Res ; 52: 102220, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550136

RESUMO

Ornithine transcarbamylase deficiency (OTCD) is a rare X-linked urea cycle disorder. Maternal OTCD can lead to life-threatening hyperammonemia if untreated. Here, we report the Generation of an iPSC line from a patient with OTCD carrying a deletion involving 3-9 exons of OTC gene using non-integrating plasmids expressing OCT4, SOX2, c-MYC, KLF4, and BCL-XL. The SDQLCHi036-A showed normal karyotype, pluripotent state, and potential to differentiate into three germ layers. Our approach offers a useful model to explore pathogenesis and therapy of OTCD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença da Deficiência de Ornitina Carbomoiltransferase , Éxons/genética , Humanos , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...