Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680582

RESUMO

The accumulation of unknown polymorphic composites in the endocardium damages the endocardial endothelium (EE). However, the composition and role of unknown polymorphic composites in heart failure (HF) progression remain unclear. Here, we aimed to explore composite deposition during endocardium damage and HF progression. Adult male Sprague-Dawley rats were divided into two HF groups-angiotensin II-induced HF and left anterior descending artery ligation-induced HF. Heart tissues from patients who had undergone coronary artery bypass graft surgery (non-HF) and those with dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) were collected. EE damage, polymorphic unknown composite accumulation, and elements in deposits were examined. HF progression reduced the expression of CD31 in the endocardium, impaired endocardial integrity, and exposed the myofibrils and mitochondria. The damaged endocardial surface showed the accumulation of unknown polymorphic composites. In the animal HF model, especially HF caused by myocardial infarction, the weight and atomic percentages of O, Na, and N in the deposited composites were significantly higher than those of the other groups. The deposited composites in the human HF heart section (DCM) had a significantly higher percentage of Na and S than the other groups, whereas the percentage of C and Na in the DCM and ICM groups was significantly higher than those of the control group. HF causes widespread EE dysfunction, and EndMT was accompanied by polymorphic composites of different shapes and elemental compositions, which further damage and deteriorate heart function.

2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638915

RESUMO

Pulmonary artery hypertension (PAH) pathology involves extracellular matrix (ECM) remodeling in cardiac tissues, thus promoting cardiac fibrosis progression. miR-29a-3p reportedly inhibits lung progression and liver fibrosis by regulating ECM protein expression; however, its role in PAH-induced fibrosis remains unclear. In this study, we aimed to investigate the role of miR-29a-3p in cardiac fibrosis progression in PAH and its influence on ECM protein thrombospondin-2 (THBS2) expression. The diagnostic and prognostic values of miR-29a-3p and THBS2 in PAH were evaluated. The expressions and effects of miR-29a-3p and THBS2 were assessed in cell culture, monocrotaline-induced PAH mouse model, and patients with PAH. The levels of circulating miR-29a-3p and THBS2 in patients and mice with PAH decreased and increased, respectively. miR-29a-3p directly targets THBS2 and regulates THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis. The circulating levels of miR-29a-3p and THBS2 were correlated with PAH diagnostic parameters, suggesting their independent prognostic value. miR-29a-3p targeted THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis, indicating miR-29a-3p acts as a messenger with promising therapeutic effects.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Miocárdio/patologia , Hipertensão Arterial Pulmonar/genética , Trombospondinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Masculino , Camundongos , MicroRNAs/sangue , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Proteômica/métodos , Hipertensão Arterial Pulmonar/metabolismo , Trombospondinas/metabolismo , Adulto Jovem
3.
Hear Res ; 411: 108368, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678647

RESUMO

The Toll-like receptor (TLR) signaling pathway is the key regulator of the innate immune system in response to systemic infection. Several studies have reported that the systemic TLR4 agonist lipopolysaccharide exacerbates aminoglycoside ototoxicity, but the influence of virus-associated TLR7 and TLR9 signaling cascades on the cochlea is unclear. The present study aimed to investigate the auditory effects of systemic TLR7 and TLR9 agonists during chronic kanamycin treatment. CBA/CaJ mice received the TLR7 agonist gardiquimod or TLR9 agonist CpG oligodeoxynucleotides (ODN) one day before kanamycin injection and on the 5th and 10th days during a 14-day course of kanamycin treatment. We observed that systemic gardiquimod or CpG ODN alone did not affect the baseline auditory brainstem response (ABR) threshold. Three weeks after kanamycin treatment, gardiquimod did not significantly change ABR threshold shifts, whereas CpG ODN significantly increased kanamycin-induced ABR threshold shifts. Furthermore, outer hair cell (OHC) evaluation revealed that CpG ODN reduced distortion product otoacoustic emission amplitudes and increased kanamycin-induced OHC loss. CpG ODN significantly elevated cochlear Irf-7, Tnf-α, Il-1, and Il-6 transcript levels. In addition, an increased number of Iba-1+ cells, which represented activated macrophages, was observed in the cochlea treated with CpG ODN. Our results indicated that systemic CpG ODN exacerbated kanamycin-induced ototoxicity and increased cochlear inflammation. This study implies that patients with underlying virus infection may experience more severe aminoglycoside-induced hearing loss if it occurs.

4.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502056

RESUMO

Skeletal tissue involves systemic adipose tissue metabolism and energy expenditure. MicroRNA signaling controls high-fat diet (HFD)-induced bone and fat homeostasis dysregulation remains uncertain. This study revealed that transgenic overexpression of miR-29a under control of osteocalcin promoter in osteoblasts (miR-29aTg) attenuated HFD-mediated body overweight, hyperglycemia, and hypercholesterolemia. HFD-fed miR-29aTg mice showed less bone mass loss, fatty marrow, and visceral fat mass together with increased subscapular brown fat mass than HFD-fed wild-type mice. HFD-induced O2 underconsumption, respiratory quotient repression, and heat underproduction were attenuated in miR-29aTg mice. In vitro, miR-29a overexpression repressed transcriptomic landscapes of the adipocytokine signaling pathway, fatty acid metabolism, and lipid transport, etc., of bone marrow mesenchymal progenitor cells. Forced miR-29a expression promoted osteogenic differentiation but inhibited adipocyte formation. miR-29a signaling promoted brown/beige adipocyte markers Ucp-1, Pgc-1α, P2rx5, and Pat2 expression and inhibited white adipocyte markers Tcf21 and Hoxc9 expression. The microRNA also reduced peroxisome formation and leptin expression during adipocyte formation and downregulated HFD-induced leptin expression in bone tissue. Taken together, miR-29a controlled leptin signaling and brown/beige adipocyte formation of osteogenic progenitor cells to preserve bone anabolism, which reversed HFD-induced energy underutilization and visceral fat overproduction. This study sheds light on a new molecular mechanism by which bone integrity counteracts HFD-induced whole-body fat overproduction.


Assuntos
Gordura Intra-Abdominal/metabolismo , Leptina/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Osteoblastos/citologia , Osteoporose/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Receptores Purinérgicos P2X5/genética , Receptores Purinérgicos P2X5/metabolismo , Simportadores/genética , Simportadores/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502380

RESUMO

Biophysical stimulation alters bone-forming cell activity, bone formation and remodeling. The effect of piezoelectric microvibration stimulation (PMVS) intervention on osteoporosis development remains uncertain. We investigated whether 60 Hz, 120 Hz, and 180 Hz PMVS (0.05 g, 20 min/stimulation, 3 stimulations/week for 4 consecutive weeks) intervention affected bone integrity in ovariectomized (OVX) mice or osteoblastic activity. PMVS (120 Hz)-treated OVX mice developed fewer osteoporosis conditions, including bone mineral density loss and trabecular microstructure deterioration together with decreased serum resorption marker CTX-1 levels, as compared to control OVX animals. The biomechanical strength of skeletal tissue was improved upon 120 Hz PMVS intervention. This intervention compromised OVX-induced sparse trabecular bone morphology, osteoblast loss, osteoclast overburden, and osteoclast-promoting cytokine RANKL immunostaining and reversed osteoclast inhibitor OPG immunoreactivity. Osteoblasts in OVX mice upon PMVS intervention showed strong Wnt3a immunoreaction and weak Wnt inhibitor Dkk1 immunostaining. In vitro, PMVS reversed OVX-induced loss in von Kossa-stained mineralized nodule formation, Runx2, and osteocalcin expression in primary bone-marrow stromal cells. PMVS also promoted mechanoreceptor Piezo1 expression together with increased microRNA-29a and Wnt3a expression, whereas Dkk1 rather than SOST expression was repressed in MC3T3-E1 osteoblasts. Taken together, PMVS intervention promoted Piezo1, miR-29a, and Wnt signaling to upregulate osteogenic activity and repressed osteoclastic bone resorption, delaying estrogen deficiency-induced loss in bone mass and microstructure. This study highlights a new biophysical remedy for osteoporosis.


Assuntos
Osteoblastos/metabolismo , Osteoporose/terapia , Terapia por Ultrassom/métodos , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Calcificação Fisiológica , Diferenciação Celular/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Ovariectomia , Transdução de Sinais , Ondas Ultrassônicas , Proteína Wnt3A/metabolismo
6.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573026

RESUMO

Bone-forming cells build mineralized microstructure and couple with bone-resorbing cells, harmonizing bone mineral acquisition, and remodeling to maintain bone mass homeostasis. Mitochondrial glycolysis and oxidative phosphorylation pathways together with ROS generation meet the energy requirement for bone-forming cell growth and differentiation, respectively. Moderate mechanical stimulations, such as weight loading, physical activity, ultrasound, vibration, and electromagnetic field stimulation, etc., are advantageous to bone-forming cell activity, promoting bone anabolism to compromise osteoporosis development. A plethora of molecules, including ion channels, integrins, focal adhesion kinases, and myokines, are mechanosensitive and transduce mechanical stimuli into intercellular signaling, regulating growth, mineralized extracellular matrix biosynthesis, and resorption. Mechanical stimulation changes mitochondrial respiration, biogenesis, dynamics, calcium influx, and redox, whereas mechanical disuse induces mitochondrial dysfunction and oxidative stress, which aggravates bone-forming cell apoptosis, senescence, and dysfunction. The control of the mitochondrial biogenesis activator PGC-1α by NAD+-dependent deacetylase sirtuins or myokine FNDC/irisin or repression of oxidative stress by mitochondrial antioxidant Nrf2 modulates the biophysical stimulation for the promotion of bone integrity. This review sheds light onto the roles of mechanosensitive signaling, mitochondrial dynamics, and antioxidants in mediating the anabolic effects of biophysical stimulation to bone tissue and highlights the remedial potential of mitochondrial biogenesis regulators for osteoporosis.

7.
Antioxidants (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439496

RESUMO

Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated ß-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.

8.
Curr Mol Med ; 21(6): 506-525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33191885

RESUMO

BACKGROUND: Cellular senescence is a state of stable growth arrest triggered by mitogenic and metabolic stressors. Ageing and a high-fat diet (HFD) are proven inducers of senescence in various organs, presenting a challenge for ageing populations worldwide. Our previous study demonstrated that ROS scavenger N-acetylcysteine (NAC) can improve insulin resistance (IR) and chronic inflammation in diet-induced obesity mice, an effect better achieved through early intervention. We, herein, investigate whether NAC can improve cellular senescence in a diet-induced obesity mouse model, and whether a legacy effect is presented with early intervention. MATERIALS AND METHODS: For a twelve-month treatment course, all C57B/L6 mice were fed a chow diet (CD), high-fat high-sucrose diet (HFD), CD+NAC1-12 (NAC intervention 1st-12th month), HFD+NAC1-12, and HFD+NAC1-6 (NAC intervention 1st-6th month). Staticalanalysis was used to analyze the different markers of cellular senescence and inflammation. RESULTS: Throughout the study, the HFD group exhibited significantly increased body weight (BW) and body fat, markers of senescence, decreased motor activity (MA) and impaired glucose tolerance. Compared to the HFD group, the HFD+NAC1-12 group exhibited increased MA, decreased BW and body fat, improved glucose tolerance, and decreased senescence markers.The HFD+NAC1-6 group showed similar effects to the HFD+NAC1-12 group, despite discontinuing NAC for 6 months. Our study showed that NAC significantly increased MA in both HFD+NAC1-12 and HFD+NAC1-6 groups, and improved HFD-induced mitochondrial and intracellular ROS expression, DNA and protein oxidative damage, and adipose tissue inflammation. CONCLUSION: Legacy effect was indeed presented in HFD-induced cellular senescence with NAC intervention, with possible mechanisms being persistently increased motor activity and anti-oxidative stress effects.

9.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066038

RESUMO

Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light-dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.


Assuntos
Limiar Auditivo/efeitos da radiação , Relógios Circadianos/efeitos da radiação , Cóclea/efeitos da radiação , Perda Auditiva Provocada por Ruído/fisiopatologia , Luz , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Cóclea/metabolismo , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
10.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882839

RESUMO

Compromised autophagy and mitochondrial dysfunction downregulate chondrocytic activity, accelerating the development of osteoarthritis (OA). Irisin, a cleaved form of fibronectin type III domain containing 5 (FNDC5), regulates bone turnover and muscle homeostasis. Little is known about the effect of Irisin on chondrocytes and the development of osteoarthritis. This study revealed that human osteoarthritic articular chondrocytes express decreased level of FNDC5 and autophagosome marker LC3-II but upregulated levels of oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) and apoptosis. Intra-articular administration of Irisin further alleviated symptoms of medial meniscus destabilization, like cartilage erosion and synovitis, while improved the gait profiles of the injured legs. Irisin treatment upregulated autophagy, 8-OHdG and apoptosis in chondrocytes of the injured cartilage. In vitro, Irisin improved IL-1ß-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production by chondrocytes. Irisin also reversed Sirt3 and UCP-1 pathways, thereby improving mitochondrial membrane potential, ATP production, and catalase to attenuated IL-1ß-mediated reactive oxygen radical production, mitochondrial fusion, mitophagy, and autophagosome formation. Taken together, FNDC5 loss in chondrocytes is correlated with human knee OA. Irisin repressed inflammation-mediated oxidative stress and extracellular matrix underproduction through retaining mitochondrial biogenesis, dynamics and autophagic program. Our analyses shed new light on the chondroprotective actions of this myokine, and highlight the remedial effects of Irisin on OA development.

11.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664681

RESUMO

Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.


Assuntos
Remodelação Óssea/genética , Epigênese Genética , Osteoporose/genética , Adipogenia , Animais , Autofagia , Reabsorção Óssea/genética , Metilação de DNA , Modelos Animais de Doenças , Endorribonucleases/fisiologia , Código das Histonas , Histona Desacetilases/fisiologia , Histona Metiltransferases/fisiologia , Homeostase , Humanos , Camundongos , MicroRNAs/sangue , MicroRNAs/genética , Mitofagia , Organelas/fisiologia , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Osteoporose/metabolismo , Polimorfismo de Nucleotídeo Único
12.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575577

RESUMO

Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.


Assuntos
Adipogenia/fisiologia , Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia
13.
Antioxid Redox Signal ; 33(2): 66-86, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31950846

RESUMO

Aims: Obesity-induced excessive visceral fat (VF) accumulation is associated with insulin resistance (IR), systemic oxidative stress, and chronic inflammation. As toll-like receptor 4 (TLR4) plays an important role in innate immunity, we herein investigate the effect of TLR4 knockout (T4KO) in a high-fat high-sucrose diet (HFD)-induced obesity mouse model. Results: C57BL6 wild-type (WT) and T4KO mice were fed with either control diet (CD) or HFD for 12 months, rendering four experimental groups: WT+CD, WT+HFD, T4KO+CD, and T4KO+HFD. Compared with WT+CD, WT+HFD demonstrated significant increase in VF accumulation, oxidative damage, M1/M2 macrophage ratio, chronic inflammation, and development of IR. Compared with WT+HFD, T4KO+HFD presented increased BW and body fat with higher subcutaneous fat (SF)/VF ratio, but lower body temperature, as well as decreased oxidative damage, M1/M2 macrophage ratio, chronic inflammation, and IR. Unlike WT+HFD, T4KO+HFD exhibited an increase in mitochondrial electron transport chain activity but a decrease of uncoupling protein 2 (UCP2) level. While T4KO hindered HFD-induced increasing mitochondrial oxygen consumption rate, a shift toward a higher extracellular acidification rate in VF was observed. Notably, T4KO inhibits HFD-induced mitochondrial translocation of nuclear factor of activated T cells 2 (NFATC2), which contributed to mitochondrial metabolic reprogramming. Both fat distribution shifting from VF to SF and mitochondrial metabolic reprogramming may alleviate systemic oxidative stress and chronic inflammation. Innovation and Conclusion: Abrogation of TLR4 contributes to reduction of oxidative stress through metabolic reprogramming of mitochondria in VF, mitigating obesity-induced IR. The study provides critical insight into associating innate immunity-mitochondria interplay with prevention of diabetes.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Tecido Adiposo/patologia , Animais , Biomarcadores , Suscetibilidade a Doenças , Imunidade Inata , Mediadores da Inflamação , Camundongos , Obesidade/patologia
14.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731750

RESUMO

Rotator cuff lesion with shoulder stiffness is a major cause of shoulder pain and motionlessness. Subacromial bursa fibrosis is a prominent pathological feature of the shoulder disorder. MicroRNA-29a (miR-29a) regulates fibrosis in various tissues; however, the miR-29a action to subacromial bursa fibrosis remains elusive. Here, we reveal that subacromial synovium in patients with rotator cuff tear with shoulder stiffness showed severe fibrosis, hypertrophy, and hyperangiogenesis histopathology along with significant increases in fibrotic matrices collagen (COL) 1A1, 3A1, and 4A1 and inflammatory cytokines, whereas miR-29a expression was downregulated. Supraspinatus and infraspinatus tenotomy-injured shoulders in transgenic mice overexpressing miR-29a showed mild swelling, vascularization, fibrosis, and regular gait profiles as compared to severe rotator cuff damage in wild-type mice. Treatment with miR-29a precursor compromised COL3A1 production and hypervascularization in injured shoulders. In vitro, gain of miR-29a function attenuated COL3A1 expression through binding to the 3'-untranslated region (3'-UTR) of COL3A1 in inflamed tenocytes, whereas silencing miR-29a increased the matrix expression. Taken together, miR-29a loss is correlated with subacromial bursa inflammation and fibrosis in rotator cuff tear with shoulder stiffness. miR-29a repressed subacromial bursa fibrosis through directly targeting COL3A1 mRNA, improving rotator cuff integrity and shoulder function. Collective analysis offers a new insight into the molecular mechanism underlying rotator cuff tear with shoulder stiffness. This study also highlights the remedial potential of miR-29a precursor for alleviating the shoulder disorder.


Assuntos
Bolsa Sinovial/metabolismo , MicroRNAs/metabolismo , Lesões do Manguito Rotador/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Bolsa Sinovial/patologia , Bursite/metabolismo , Bursite/patologia , Feminino , Humanos , Artropatias/metabolismo , Artropatias/patologia , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Lesões do Manguito Rotador/patologia
15.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752076

RESUMO

Ischemic damage aggravation of femoral head collapse is a prominent pathologic feature of osteonecrosis of the femoral head (ONFH). In this regard, S100 calcium binding protein A9 (S100A9) is known to deteriorate joint integrity, however, little is understood about which role S100A9 may play in ONFH. In this study, a proteomics analysis has revealed a decrease in the serum S100A9 level in patients with ONFH upon hyperbaric oxygen therapy. Serum S100A9 levels, along with serum vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-6 (IL-6), and tartrate-resistant acid phosphatase 5b levels were increased in patients with ONFH, whereas serum osteocalcin levels were decreased as compared to healthy controls. Serum S100A9 levels were increased with the Ficat and Arlet stages of ONFH and correlated with the patients with a history of being on glucocorticoid medication and alcohol consumption. Osteonecrotic tissue showed hypovasculature histopathology together with weak immunostaining for vessel marker CD31 and von Willrbrand factor (vWF) as compared to femoral head fracture specimens. Thrombosed vessels, fibrotic tissue, osteocytes, and inflammatory cells displayed strong S100A9 immunoreactivity in osteonecrotic lesion. In vitro, ONFH serum and S100A9 inhibited the tube formation of vessel endothelial cells and vessel outgrowth of rat aortic rings, whereas the antibody blockade of S100A9 improved angiogenic activities. Taken together, increased S100A9 levels are relevant to the development of ONFH. S100A9 appears to provoke avascular damage, ultimately accelerating femoral head deterioration through reducing angiogenesis. This study provides insight into the molecular mechanism underlying the development of ONFH. Here, analysis also highlights that serum S100A9 is a sensitive biochemical indicator of ONFH.


Assuntos
Calgranulina B/sangue , Necrose da Cabeça do Fêmur/terapia , Oxigenação Hiperbárica/métodos , Regulação para Cima , Adulto , Idoso , Animais , Estudos de Casos e Controles , Feminino , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Ratos
16.
Cell Death Dis ; 10(10): 741, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582745

RESUMO

Following publication of this article, the authors realized that there were 1) errors made in the author affiliations and that 2) a typo in a grant number needed to be corrected. The corrected author affiliations and grant numbers are listed below. We apologize for the inconvenience.

17.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627291

RESUMO

Glucocorticoid excess escalates osteoclastic resorption, accelerating bone mass loss and microarchitecture damage, which ramps up osteoporosis development. MicroRNA-29a (miR-29a) regulates osteoblast and chondrocyte function; however, the action of miR-29a to osteoclastic activity in the glucocorticoid-induced osteoporotic bone remains elusive. In this study, we showed that transgenic mice overexpressing an miR-29a precursor driven by phosphoglycerate kinase exhibited a minor response to glucocorticoid-mediated bone mineral density loss, cortical bone porosity and overproduction of serum resorption markers C-teleopeptide of type I collagen and tartrate-resistant acid phosphatase 5b levels. miR-29a overexpression compromised trabecular bone erosion and excessive osteoclast number histopathology in glucocorticoid-treated skeletal tissue. Ex vivo, the glucocorticoid-provoked osteoblast formation and osteoclastogenic markers (NFATc1, MMP9, V-ATPase, carbonic anhydrase II and cathepsin K) along with F-actin ring development and pit formation of primary bone-marrow macrophages were downregulated in miR-29a transgenic mice. Mechanistically, tumor necrosis factor superfamily member 13b (TNFSF13b) participated in the glucocorticoid-induced osteoclast formation. miR-29a decreased the suppressor of cytokine signaling 2 (SOCS2) enrichment in the TNFSF13b promoter and downregulated the cytokine production. In vitro, forced miR-29a expression and SOCS2 knockdown attenuated the glucocorticoid-induced TNFSF13b expression in osteoblasts. miR-29a wards off glucocorticoid-mediated excessive bone resorption by repressing the TNFSF13b modulation of osteoclastic activity. This study sheds new light onto the immune-regulatory actions of miR-29a protection against glucocorticoid-mediated osteoporosis.


Assuntos
Fator Ativador de Células B/metabolismo , Reabsorção Óssea/genética , MicroRNAs/fisiologia , Osteogênese/genética , Animais , Fator Ativador de Células B/genética , Osso Esponjoso/patologia , Diferenciação Celular , Imuno-Histoquímica , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoclastos/patologia , Transdução de Sinais
18.
Cell Death Dis ; 10(10): 705, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31543513

RESUMO

Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C-X-C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3'-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.


Assuntos
Quimiocina CXCL12/genética , MicroRNAs/metabolismo , Osteoclastos/metabolismo , Osteoporose/genética , Ligante RANK/genética , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Osteoclastos/citologia , Ovariectomia , Ligante RANK/metabolismo , Fatores de Transcrição de p300-CBP/genética
19.
Cell Death Dis ; 9(9): 919, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206206

RESUMO

Chondrocyte loss is a prominent feature of osteoarthritis (OA). Autophagy is indispensable in maintaining the metabolic activities of cells exposed to deleterious stress. The contribution of microRNA signaling to chondrocyte autophagy in OA development remains elusive. We uncovered an association between poor autophagy and increased miR-128a expressions in articular chondrocytes of patients with end-stage knee OA and in a rat anterior cruciate ligament transection (ACLT) model for OA development. Cartilage matrix degradation and severe OA histopathology was evident upon forced miR-128a expression within the articular compartment. Intra-articular injections with miR-128a antisense oligonucleotide stabilized chondrocyte autophagy and slowed ACLT-mediated articular tissue destruction, including cartilage erosion, synovitis, osteophyte formation, and subchondral plate damage. In vitro, miR-128 signaling hindered Atg12 expression, LC3-II conversion, and autophagic puncta formation through targeting the 3'-untranslated region of Atg12. It increased apoptotic programs, diminishing cartilage formation capacity of articular chondrocytes. Inactivating histone methyltransferase EZH2 reduced methyl histone H3K27 enrichment in the miR-128a promoter and upregulated miR-128a transcription in inflamed chondrocytes. Taken together, miR-128a-induced Atg12 loss repressed chondrocyte autophagy to aggravate OA progression. EZH2 inactivation caused H3K27 hypomethylation to accelerate miR-128a actions. Interruption of miR-128a signaling attenuated chondrocyte dysfunction and delayed OA development. Our data provide new insights into how miR-128a signaling affects chondrocyte survival and articular cartilage anabolism and highlight the potential of miR-128a targeting therapy to alleviate knee OA.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Autofagia/genética , Condrócitos/metabolismo , MicroRNAs/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Animais , Cartilagem Articular/patologia , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
20.
Cell Death Dis ; 9(10): 938, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224697

RESUMO

Glucocorticoid excess medication interrupts osteoblast homeostasis and exacerbates bone mass and microstructure loss ramping up the pathogenesis of osteoporotic disorders. Heat shock protein 60 (HSP60) is found to maintain protein function within cellular microenvironment upon encountering detrimental stress. In this study, we revealed that supraphysiological dexamethasone decreased HSP60 expression along with deregulated autophagy in osteoblasts cultures. This chaperonin is required to sustain autophagic markers Atg4, and Atg12 expression, LC3-II conversion, and autophagic puncta formation, and alleviated the glucocorticoid-induced loss of osteogenic gene expression and mineralized matrix accumulation. Regulator-associated protein of mTOR complex 1 (RPTOR) existed in HSP60 immunoprecipitate contributing to the HSP60-promoted autophagy and osteogenesis because knocking down RPTOR impaired autophagic influx and osteogenic activity. HSP60 shielded from RPTOR dysfunction by reducing the glucocorticoid-induced RPTOR de-phosphorylation, aggregation, and ubiquitination. In vivo, forced RPTOR expression attenuated the methylprednisolone-induced loss of osteoblast autophagy, bone mass, and trabecular microstructure in mice. HSP60 transgenic mice displayed increased cortical bone, mineral acquisition, and osteoblast proliferation along with higher osteogenesis of bone marrow mesenchymal cells than those of wild-type mice. HSP60 overexpression retained RPTOR signaling, sustained osteoblast autophagy, and compromised the severity of glucocorticoid-induced bone loss and sparse trabecular histopathology. Taken together, HSP60 is essential to maintain osteoblast autophagy, which facilitates mineralized matrix production. It fends off glucocorticoid-induced osteoblast apoptosis and bone loss by stabilizing RPTOR action to autophagy. This study offers a new insight into the mechanistic by which chaperonin protects against the glucocorticoid-induced osteoblast dysfunction and bone loss.


Assuntos
Autofagia/fisiologia , Chaperonina 60/metabolismo , Glucocorticoides/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoporose/tratamento farmacológico , Proteína Regulatória Associada a mTOR/metabolismo , Animais , Autofagia/genética , Chaperonina 60/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Osteoporose/induzido quimicamente , Proteína Regulatória Associada a mTOR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...