Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Hazard Mater ; 429: 128369, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236039


To properly manage nuclear wastes is critical to sustainable utilization of nuclear power and environment health. Here, we show an innovative carbiding strategy for sustainable management of radioactive graphite through digestion of carbon in H2O2. The combined action of intermolecular oxidation of graphite by MoO3 and molybdenum carbiding demonstrates success in gasifying graphite and sequestrating uranium for a simulated uranium-contaminated graphite waste. The carbiding process plays a triple role: (1) converting graphite into atomic carbon digestible in H2O2, (2) generating oxalic ligands in the presence of H2O2 to favor U-precipitation, and (3) delivering oxalic ligands to coordinate to MoVI-oxo anionic species to improve sample batching capacity. We demonstrate > 99% of uranium to be sequestrated for the simulated waste with graphite matrix completely gasifying while no detectable U-migration occurred during operation. This method has further been extended to removal of surface carbon layers for graphite monolith and thus can be used to decontaminate monolithic graphite waste with emission of a minimal amount of secondary waste. We believe this work not only provides a sustainable approach to tackle the managing issue of heavily metal contaminated graphite waste, but also indicates a promising methodology toward surface decontamination for irradiated graphite in general.

Grafite , Resíduos Radioativos , Radioatividade , Urânio , Carbono , Digestão , Resíduos Perigosos , Peróxido de Hidrogênio , Molibdênio , Resíduos Radioativos/análise , Resíduos Radioativos/prevenção & controle
ACS Appl Mater Interfaces ; 12(20): 22853-22861, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32337968


Numerous trap states and low conductivity of compact TiO2 layers are major obstacles for achieving high power conversion efficiency and high-stability perovskite solar cells. Here we report an effective Na2S-doped TiO2 layer, which can improve the conductivity of TiO2 layers, the contact of the TiO2/perovskite interface, and the crystallinity of perovskite layers. Comprehensive investigations demonstrate that Na cations increase the conductivity of TiO2 layers while S anions change the wettability of TiO2 layers, thus improving the crystallinity of perovskite layers and passivate defects at the TiO2/PVK interface. The synergetic effects of dopants lead to a champion efficiency as high as 21.25% in unencapsulated perovskite solar cells (PSCs), with much-improved stability. Our work provides new insights on anion dopants in TiO2 layers, which is usually neglected in previous reports, and also proposes a simple approach to produce low-cost and high-performance electron transport layers for high-performance PSCs.