Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32227370

RESUMO

Electrochemical nitrogen fixation techniques have emerged as a promisingly sustainable approach to face the challenge associated with nitrogen activation of ammonia synthesis by the Haber-Bosch process at ambient conditions. Herein, the performance of electrocatalytic nitrogen reduction for the obtained α-Fe2O3 nanospindles coated with mesoporous TiO2 with different crystallinity (denoted as α-Fe2O3@mTiO2-X (X=300, 400, and 500 °C)) were investigated. The as prepared α-Fe2O3@mTiO2-400 composite exhibits a large NH3 yield (27.2 µg h-1 mg-1cat.) at -0. 5 V vs. the reversible hydrogen electrode and a high Faradaic efficiency (13.3%) in 0.1 M Na2SO4, with excellent electrochemical durability. This work presents a novel avenue for the rational design of efficient unique hetero-phase nanocatalysts toward sustainable electrocatalytic N2 fixation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32195566

RESUMO

Electrochemical conversion of N2 to NH3 under ambient condition is a promising and environmentally friendly route, compared with the CO2-emitting and energy-intensive Haber-Bosch process. Nevertheless, due to ultrahigh stability of N2, it is urgent to explore efficient catalysts to weaken and activate the N≡N bond. Here we report Mo doped iron phosphide (Mo-FeP) nanosphere as a valid transition metals based catalyst for electrochemical N2-to-NH3 fixation under ambient conditions. This catalyst exhibits excellent catalytic performance with a NH4+ yield rate (13.1 g h-1 mg-1) and Faradaic efficiency (7.49%) at 0.3 V and 0.2 V vs reversible hydrogen electrode (RHE), respectively. However, the FeP catalyst without doped Mo species displays weak catalytic performance. We found that the better catalytic performance of Mo-FeP might be due to the doping of Mo species, which is favorable for the polarization of adsorbed N2 molecules, making N≡N bond more viable to dissociate.

3.
Analyst ; 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32202276

RESUMO

The traditional detection of telomerase activity is mainly based on the polymerase chain reaction (PCR), which has the disadvantages of being time-consuming and susceptible to interferences; thus, here, we propose a facile method for the fabrication of fluorescent tungsten oxide quantum dots (WOx QDs) and employ them for telomerase activity sensing. It is found that the fluorescence of WOx QDs can be significantly quenched by hemin based on the inner filter effect (IFE). However, in the presence of telomerase, the primer-DNA can be extended to generate repeating units of TTAGGG to form G-quadruplex and thus, hemin can be encapsulated to reduce its absorbance, resulting in decreased IFE and efficient fluorescence recovery of WOx QDs. Based on the fluorescence changes of IFE between hemin and WOx QDs, the telomerase activity within the range of 50-30 000 HeLa cells can be detected and the lowest detection amount can reach 17 cells. The method exhibits good versatility that can also be applied to telomerase detection in A549 and L929 cells. In addition, because of the good biocompatibility of the sensor, it can be used for the real-time monitoring of telomerase activity in living cells, thus showing great potential in tumor diagnosis and inhibitor drug screening.

4.
J Hazard Mater ; 392: 122333, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32092656

RESUMO

Uranium is an important element in the nuclear industry while the discharge of radioactive wastewater can cause serious damages to the environment. In this work, an ultra-stable sp2 carbon-conjugated covalent organic framework (COF-PDAN-AO) is synthesized with amidoxime-substituted monomers for detection and efficient adsorption of uranium from radioactive wastewater. Abundant amidoxime groups laced on the open 1D channels of COF-PDAN-AO exhibit exceptional accessibility and the regular pores facilitate the mass transfer. Based on these features, COF-PDAN-AO achieves ultra-low detection limit of 6.5 nM, high uranium adsorption capacity (410 mg/g) and selective interaction with uranium. In addition, various spectroscopies verify COF-PDAN-AO possesses excellent radioresistance in acidic solution. Regeneration studies have shown that COF-PDAN-AO maintained good structural stability after seven cycles. These results indicate that our sp2 carbon conjugated COF can be potentially used for practical detection and adsorption of uranium from radioactive wastewater. This strategy can be extended to detection and extraction of other contaminants by designing the target ligand.

5.
Nat Commun ; 11(1): 436, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974343

RESUMO

Uranium is a key element in the nuclear industry, but its unintended leakage has caused health and environmental concerns. Here we report a sp2 carbon-conjugated fluorescent covalent organic framework (COF) named TFPT-BTAN-AO with excellent chemical, thermal and radiation stability is synthesized by integrating triazine-based building blocks with amidoxime-substituted linkers. TFPT-BTAN-AO shows an exceptional UO22+ adsorption capacity of 427 mg g-1 attributable to the abundant selective uranium-binding groups on the highly accessible pore walls of open 1D channels. In addition, it has an ultra-fast response time (2 s) and an ultra-low detection limit of 6.7 nM UO22+ suitable for on-site and real-time monitoring of UO22+, allowing not only extraction but also monitoring the quality of the extracted water. This study demonstrates great potential of fluorescent COFs for radionuclide detection and extraction. By rational designing target ligands, this strategy can be extended to the detection and extraction of other contaminants.

6.
Anal Chim Acta ; 1097: 135-143, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-31910953

RESUMO

Telomerase, as a potential biomarker for early cancer diagnostics and therapies, has attracted considerable interests concerning its detection and monitoring. Herein, we develop a novel method for sensitive detection of telomerase activity by designing a gold nanoparticles/graphene oxide (AuNPs/GO) probe. The AuNPs were functionalized with a telomerase substrate (TS) primer and a 6-carboxy-fluorescein (FAM)-modified complementary DNA (P1). In the absence of telomerase, P1 exists in the random-coiled conformation, and the fluorescence resonance energy transfer (FRET) from FAM to AuNPs and GO results in efficient fluorescence quenching. In the presence of telomerase, the multiple hybridization between TS extension products and P1 leads to the conformation transition of P1 from single-stranded DNA to double-stranded rigid structure, and thus the FRET process can be prevented with the efficient fluorescence recovery. The metal enhanced fluorescence (MEF) effect between FAM and AuNPs can further effectively enhance the fluorescence of FAM, and thus the sensitivity and specificity of telomerase detection can be remarkably improved. It is worth mentioning that the proposed strategy does not need to design complex hairpin structure and allows the measurement of telomerase activity in three crude cell extracts equivalent to 7 HeLa cells, 8 A549 cells and 8 L929 cells in 1 h. In addition, the present sensing platform can be applied to inhibitor screening, in situ telomerase imaging, and intracellular drug delivery.

7.
Anal Chem ; 92(2): 2339-2346, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31865699

RESUMO

The high toxicity and mobility of hexavalent chromium (Cr(VI)) allow it to easily spread and bioaccumulate, and its detection is a major part of environmental protection. In this work, an innovative method is developed for preparation of cerium oxide nanorod-templated metal-organic frameworks (CeO2NRs-MOF). The in situ growth of MOF on the surface of CeO2 nanorods (CeO2NRs) enhances its oxidase-like activity. In the presence of a trace amount of Cr(VI), CeO2NRs-MOF can significantly accelerate the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) due to Cr(VI)-boosted oxidation, resulting in a blue colored oxidation product. It can detect Cr(VI) over a range of 0.03-5 µM with high selectivity. Moreover, this method can be applied to the detection of Cr(VI) in different water environment samples with satisfactory recoveries, demonstrating the potential application of CeO2NRs-MOF for the direct monitoring of Cr(VI) in environmental water systems. Thus, this work provides a facile host-templated MOF preparation method, which could possibly be extended to other fields.

8.
Mikrochim Acta ; 187(1): 53, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848726

RESUMO

A fluorometric method is described for the determination of thrombin. Polymer nanoparticles containing the luminol-terbium(III) complex (luminol-Tb) were prepared where luminol acts as the bridging ligand, and Tb(III) acts as the central metal ion. Thrombin possesses a large number of electrons donating groups that coordinate with luminol-Tb. Following coordination, the rigidity of the linker is increased, and this decreases the non-radiative decay rate and induces an increase in fluorescence intensity at 430 nm. Hence, thrombin can be fluorometrically determined. The detection limit of thrombin is as low as 3.5 pM (at an SNR of 3). This is about 10 times lower than assays using an aptamer. The method was applied in the determination of thrombin in human serum via the standard addition method and gave satisfying results. Graphical abstractSchematic representation of the preparation of the luminol-Tb(III) complex in a nanoparticle host by the self-assembly of luminol and Tb(III) ions. Thrombin readily coordinates with the luminol-Tb(III) system, and this results in particle aggregation. The blue fluorescence of luminol increases strongly, and this effect provides the basis for fluorometric determination of thrombin.

9.
Mikrochim Acta ; 186(11): 732, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31667627

RESUMO

The authors describe an electrochemical and an optical method for the determination of As(V) by using iron oxyhydroxide (FeOOH) nanorods that display peroxidase-mimicking activity. The nanorods catalyze the oxidation of substrate ABTS by H2O2 to form a green product with an absorption maximum at 418 nm. If, however, As(V) is electrostatically adsorbed on the nanorods, the oxidation is gradually inhibited. A colorimetric assay was worked out based on these findings. Response is linear in the 0 to 8 ppb and 8 to 200 ppb As(V) concentration range, and the detection limit is 0.1 ppb. Even higher sensitivity is achieved in an electrochemical method which is based on the excellent electrical conductivity of FeOOH nanorods. Electrochemical analysis of As(V) was achieved by first adsorbing As(V) on the nanorods. This inhibits the ABTS reduction current signal, best measured at a potential of 150 mV (vs. Ag/AgCl). The linear range extends from 0.04 to 200 ppb, and the detection limit is as low as 12 ppt. Graphical abstract Schematic representation of FeOOH nanorod-based colorimetric and electrochemical assays for arsenate (As(V)). As(V) adsorbed on FeOOH nanorods inhibits the peroxidase-mimicking activity of nanorods, and a colorimetric and electrochemical dual-signal assay was constructed to achieve sensitive determination of As(V).

10.
Anal Chem ; 91(17): 11403-11408, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31414597

RESUMO

Developing biosensors for Pb2+ is an important analytical topic. DNA-based Pb2+ sensors have been designed mainly based on RNA-cleaving DNAzymes and Pb2+-induced folding of G-quadruplex (G4) DNA. Porphyrin metalation is a key reaction in biology and catalysis. Many enzyme mimics have been developed to catalyze this reaction, and some metalation DNAzymes were reported with a G4 structure. Inspired by the excellent G4 binding properties of certain divalent metal ions, we herein screened a few metals and G-rich DNA sequences. The metalation activity of a DNA named T30695 (sequence: (G3T)4) was significantly accelerated by Pb2+. The reaction of Cu2+ insertion into the mesoporphyrin IX had a kcat of 0.89 min-1 and a Km of 9.8 µM, representing a catalytic efficiency similar to that of human ferrochelatase. The reason for the acceleration was attributed to Pb2+ binding of the G4 DNA and the catalytic activity of the large Pb2+ ion for this reaction. A ratiometric sensor for Pb2+ was developed by inserting Zn2+ with a detection limit of 23.5 nM Pb2+. This work has established a new DNA-based reaction that can be used for Pb2+ detection, and it also provides a highly efficient new DNAzyme for porphyrin metalation, which might be used for signal production for other biosensors.

11.
Chem Commun (Camb) ; 55(51): 7406-7409, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31180408

RESUMO

In situ-derived boron-doped graphene quantum dots can significantly improve the activity of boron carbide nanosheets for artificial N2 fixation and reduction with superior electrocatalytic activity (NH3 yield: 28.6 µg h-1 mgcat.-1 at -0.45 V vs. RHE; faradaic efficiency: 16.7%), high electrochemical stability, and high selectivity in 0.1 M HCl under ambient conditions.

12.
Mikrochim Acta ; 186(5): 309, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31037462

RESUMO

The authors describe cobalt phosphide (CoP) nanowires for use in sensitive fluorometric determination of the activity of the enzyme telomerase. A hybridization chain reaction (HCR) is applied to amplify the signal and carboxyfluorescein (FAM)-labelled hairpin probes (H1 and H2) are applied to match the telomeric DNA sequence. The CoP nanowires act as both the photoinduced electron transfer (PET) acceptor to induce fluorescence quenching, and also as an efficient probe carrier to facilitate telomerase imaging in living cells. The telomerase-triggered primer extension initiates an alternating hybridization reaction between H1 and H2. These result in the dissociation of FAM-labelled probes from CoP nanowires and thus an enhancement of the green fluorescence. The method is fairly simple and was applied to the detection of three types of cancer cells. The detection limit is as low as 7 cells (in case of HeLa cells). Conceivably, the method has a large potential in terms of inhibitor drug screening. Graphical abstract Schematic presentation of telomerase detection based on cobalt phosphide (CoP) nanowires and hybridization chain reaction (HCR). The telomerase-triggered primer extension can initiate the alternating hybridization reaction between carboxyfluorescein (FAM)-labelled hairpin probes (H1 and H2), and the generated long DNA duplex cannot be adsorbed on the CoP nanowires. This prevents the photoinduced electron transfer (PET) from FAM to CoP nanowires.

13.
Anal Chem ; 91(10): 6487-6497, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31037939

RESUMO

This study reports a novel and convenient bimodal method for label-free and signal-off detection of arsenate in environmental samples. Cobalt oxyhydroxide (CoOOH) nanoflakes with facile preparation and intrinsic peroxidase-like activity as nanozyme can efficiently catalyze the conversion of chromogenic substrate such as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with the presence of H2O2 into green-colored oxidation products. CoOOH nanoflakes can specifically bind with arsenate via electrostatic attraction and As-O bond interaction, which gives rise to inhibition of the peroxidase-like activity of CoOOH. Thus, through arsenate specific inhibition of CoOOH nanozyme toward ABTS catalysis, a simple colorimetric method was developed for arsenate detection with a detection limit of 3.72 ppb. Based on the system of CoOOH nanozyme and ABTS substrate, this colorimetric method can be converted into an electrochemical sensor for arsenate assay by the utilization of CoOOH nanoflake-modified electrode. The electrochemical measurement can be realized by chronoamperometry, which showed more sensitive and a lower limit of detection as low as 56.1 ppt. The applicability of this bimodal method was demonstrated by measuring arsenate and total arsenic in different real samples such as natural waters and soil extracted solutions, and the results are of satisfactory accuracy as confirmed by inductively coupled plasma mass spectrometry analysis. The bimodal strategy offers obvious advantages including a label-free step, convenient operation, on-site assay, low cost, and high sensitivity, which is promising for reliable detection of arsenate and total arsenic in environmental samples.

14.
Mikrochim Acta ; 186(1): 45, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610384

RESUMO

A ratiometric fluorometric method is described for the determination of arsenate via its inhibitory effect on the activity of the enzyme acid phosphatase. A nanoprobe was designed that consists of CdSe/ZnS quantum dots (QDs) coated with the terbium(III) complex of guanosine monophosphate (Tb-GMP). The nanoprobe was synthesized from carboxylated QDs, Tb(III) and GMP via binding of Tb(III) by both the carboxy and the phosphate groups. The nanoprobe, under single-wavelength excitation (at 280 nm), displays dual (red and green) emission, with peaks at around 652 nm from the QDs, and at 547 nm from the Tb-GMP coordination polymers. It is shown to be a viable nanoprobe for fluorometric determination of As(V) detection through it inhibitory action on the activity of acid phosphatase (ACP). The enzyme destroys the Tb-GMP structure via hydrolysis of GMP, and hence the fluorescence of the Tb-GMP complex is quenched. In contrast, the fluorescence of the CdSe/ZnS QDs remains inert to ACP. It therefore can serve as an internal reference signal. In the presence of arsenate (an analog of phosphate), the activity of ACP is inhibited due to competitive binding. Thus, hydrolysis of GMP is prevented. These findings were used to design a ratiometric fluorometric method for the quantification of As(V). The ratio of fluorescences at 547 and 652 nm increases linearly in the 0.5 to 200 ppb As(V) concentation range, and the limit of detection is 0.39 ppb. Under a UV lamp, the probe shows distinguishable color from green to red on increasing the concentration of As(V). Graphical abstract Schematic illustration of CdSe/ZnS quantum dot coated with carboxy-PEG and modified with the terbium(III)-GMP complex as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of ACP activity.


Assuntos
Arseniatos/análise , Fluorescência , Guanosina Monofosfato/química , Sondas Moleculares/química , Pontos Quânticos/química , Térbio/química , Fosfatase Ácida/antagonistas & inibidores , Compostos de Cádmio/química , Fluorometria/métodos , Sulfetos/química , Compostos de Zinco/química
15.
Chem Commun (Camb) ; 54(99): 14001-14004, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30483680

RESUMO

A novel ratiometric electrochemiluminescence (ECL) indicator has been constructed for ultratrace As(iii) detection based on the synergistic quenching of ECL emission of Au-g-C3N4 NSs using As(iii) and Ru(bpy)32+, meanwhile generating a new ECL signal of Ru(bpy)32+ with an increased intensity. Due to the dual quenching effect of As(iii) and Ru(bpy)32+ coupled with the generation of the second ECL signal of Ru(bpy)32+, the sensitivity and selectivity for detecting As(iii) are vastly enhanced.

16.
Talanta ; 190: 255-262, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172507

RESUMO

As(III) is the most harmful substance of all over 20 kinds of arsenic compounds. In addition, the trivalent oxidation state of arsenic is not stable, which can be oxidized to pentavalent arsenic. Thus, it is attractive and challenging to sensitively and selectively monitor As(III) concentration, rather than As(V) concentration, in water. However, most of detection techniques suffer from the inability to distinguish As(III) and As(V), or even need specialized personnel and additional equipment. Herein, novel luminescent Ce(III)-based coordination polymer nanoparticles (Ce-CPNs) have been proposed for selective detection of As(III). The Ce-CPNs are dispersive and show a fluorescence peak at 353 nm under excitation at 280 nm. With the presence of As(III), aggregation of Ce-CPNs occurs, resulting in quenching of the fluorescent Ce-CPNs due to the aggregation-caused π-π stacked layers of Ce-CPNs. Under optimal conditions, the detection limit for As(III) is down to 0.7 ppb. In addition, the Ce-CPNs are selective for As(III) over other ions and has been successfully applied for fluorescence sensing of As(III) in environmental water samples.

17.
Chem Commun (Camb) ; 54(54): 7487-7490, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29915846

RESUMO

A novel dual-emission fluorescence ratiometric probe of luminol-Tb-GMP CPNPs for highly sensitive and selective detection of ALP and As(v) has been constructed based on the stimulus responsivity of luminol. The introduction of luminol as a ligand for Tb3+, combined with GMP, leads to a sensor which is more robust, sensitive, and efficient.

18.
Analyst ; 143(10): 2334-2341, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29708240

RESUMO

A facile and sensitive method for the quantitative detection of telomerase and in situ imaging of intracellular telomerase is developed by using a graphene oxide (GO)-based fluorescent nanosensor. The nanosensor consists of a fluorescent DNA (P1) adsorbed on the GO surface. Here, GO serves not only as a fluorescence quencher but also as a carrier to successfully transport P1 into cancer cells as a signal reporter. P1 is a dye-labeled single-stranded DNA complementary to the telomeric repeated sequence, and initially the combination of P1 and GO exhibits minimal background fluorescence. When telomerase extends its repeat units of TTAGGG on the 3'-end of the primer-DNA, the fluorescence of P1 is subsequently recovered because the telomeric repeated sequence can hybridize with P1 and liberate it from the GO surface. This method enables the determination of telomerase activity down to 10 cells. For the in situ detection of telomerase, upon endocytosis of the P1/GO combinatorial probe into living cancer cells, the intracellular telomerase extends its primer to produce the telomeric repeated sequence and then turns on the fluorescence of P1, which can be directly monitored by confocal laser scanning microscopy. The feasibility of the assay is further investigated by treating with telomerase-related drugs, and the results demonstrate its potential in antitumor drug screening and cancer therapy evaluation.


Assuntos
DNA/química , Grafite/química , Nanopartículas/química , Telomerase/química , Células A549 , Fluorescência , Células HeLa , Humanos , Óxidos , Telômero
19.
Mikrochim Acta ; 185(5): 280, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725866

RESUMO

A method is reported for the fluorometric quantitation of microRNA. It is making use of a luminescent probe deribed from terbium(III) ion whose fluorescence is sensitized with a guanine-rich (G-rich) nucleotide. The probe has a large Stokes' shift and strong and sharp emission bands. The assay relies on the wide substrate specificity of terminal deoxynucleotidyl transferase (TdTase), which catalyzes the formation of long G-rich nucleotides when using microRNA primer as a trigger to start the polymerization. The addition of Tb(III) induces the formation of a G-quadruplex from the G-rich nucleotide, and this strongly enhances the green fluorescence of Tb(III) (peaking at 545 nm upon photoexcitation at 290 nm). Specifically, microRNA-21 was chosen as the analyte. The fluorescence intensity of Tb(III) increases linearly in the 1 pM to 1 nM microRNA concentration range, and the detection limit is as low as 0.11 pM. The method can distinguish between family members of microRNA and performs excellently even when applied to extracts of cancer cells. Graphical abstract A fluorometric technique is reported for the determination of microRNA. It is based on signal enhancement based on the sensitization of terbium(III) via a guanine-rich nucleotide sequence. Klenow Fragment exo- (KFexo-) generates DNA sequence at the 3'-OH of microRNA, and terminal deoxynucleotidyl transferase (TdTase) catalyzes the formation of long G-rich nucleotides.


Assuntos
Técnicas Biossensoriais/métodos , DNA Nucleotidilexotransferase/metabolismo , Nucleotídeos de Guanina/química , Nucleotídeos de Guanina/metabolismo , Medições Luminescentes/métodos , MicroRNAs/análise , Térbio/química , Células A549 , Humanos , Células MCF-7
20.
Mikrochim Acta ; 185(6): 288, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29740708

RESUMO

A fluorometric method is described for the determination of the activity of alkaline phosphatase (ALP). It relies on the competition between gold nanoparticles (AuNPs) and pyrophosphate (PPi) for the coordination sites on the surface of CePO4:Tb nanorods. The green fluorescence of the CePO4:Tb is reduced in the presence of AuNPs due to fluorescence resonance energy transfer (FRET), but can be restored on addition of PPi due to the stronger affinity of PPi to the CePO4:Tb. In the presence of ALP, PPi is hydrolyzed to form phosphate which has much weaker affinity for the CePO4:Tb. Hence, the AuNPs will reassemble on the CePO4:Tb, and fluorescence is reduced. Fluorescence drops linearly in the 0.2 to 100 U·L-1 activity range, and the detection limit is 60 mU·L-1 (at S/N = 3). The method does not require any modification of the surface of the CePO4:Tb and is highly sensitive and selective. The inhibition of ALP activity by Na3VO4 was also studied. In our perception, the method may find application in the diagnosis of ALP-related diseases, in screening for inhibitors, and in studies on ALP-related functions in biological systems. Graphical abstract A assay for the detection of alkaline phosphatase is proposed based on the fluorescence resonance energy transfer between CePO4:Tb and AuNPs. It relies on the competitive binding of AuNPs and pyrophosphate (PPi) to CePO4:Tb and the hydrolysis of PPi by ALP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA