Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
PeerJ ; 9: e12036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721954

RESUMO

Background: Diet, environment, and genomic context have a significant impact on humans' intestinal microbiota. Moreover, migration may be accompanied by changes in human eating habits and living environment, which could, in turn, affect the intestinal microbiota. Located in southwestern China, Tibet has an average altitude of 4,000 meters and is known as the world's roof. Xianyang is situated in the plains of central China, with an average altitude of about 400 meters. Methods: To understand the association between intestinal microbiota and population migration, we collected the fecal samples from 30 Tibetan women on the first day (as TI1st), six months (as TI2nd), and ten months (as TI3rd) following migration from Tibet to Xianyang. Fecal samples were collected from 29 individuals (belonging to the Han women) as a control. The dietary information of the Tibetan women and the Han women was gathered. We performed a 16S rRNA gene survey of the collected fecal samples using Illumina MiSeq sequencing. Results: Following the migration, the alpha and beta diversity of Tibetan women's intestinal microbiota appeared unaffected. Linear discriminant analysis effect size (LEfSe) analysis showed that Klebsiella, Blautia, and Veillonella are potential biomarkers at TI1st, while Proteobacteria and Enterobacteriaceae were common in TI3rd. Finally, functional prediction by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) found no significant up-regulation or down-regulation gene pathway in the intestinal microbiota of Tibetan women after migration. The present study reveals that the higher stability in Tibetan women's intestinal microbiota was less affected by the environment and diet, indicating that Tibetan women's intestinal microbiota is relatively stable. The main limitations of the study were the small sample size and all volunteers were women.

2.
ACS Omega ; 6(42): 28254-28262, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723022

RESUMO

In this study, average structural characteristics of amber were researched and used as an example to establish the three-dimensional (3D) average structure of resin. Two coal samples containing solid amber were collected from Fushun and Hunchun in Northeast China, from which pure amber samples were separated and resin was extracted. Solid-state nuclear magnetic resonance (13C NMR) spectroscopy was used to obtain structural information of amber, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed on the resins to determine their molecular mass. The results of these studies revealed that the average structure of amber was dominated by cycloalkane, with a small amount of aromatic carbon, and there were almost no aliphatic chains in the structure. The molecular masses of the compounds in the resin were mainly in the range 99-750 Da, and the average molecular mass was ∼370 Da. To characterize the resin chemical structure, two 3D molecular models based on density functional theory were established taking amber as the example, and the relevant molecular bond energies were calculated. Based on these models, the interactions among the components in oil were studied, and the binding energies of the different molecules were calculated. In summary, in this study, amber was used as a medium to establish an accurate molecular model of resin and proved that compared to hydrocarbon compounds, resin molecules were more likely to interact with bitumen.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264836

RESUMO

Vaccination is essential for controlling the coronavirus disease (COVID-19) pandemic. An effective time-course strategy for the allocation of COVID-19 vaccines is crucial given that the global vaccine supply will still be limited in some countries/regions in the near future and that mutant strains have emerged and will continue to spread worldwide. Both asymptomatic and symptomatic transmission have played major roles in the COVID-19 pandemic, which can only be properly described as a typical non-Markovian process. However, the prioritization of vaccines in the non-Markovian framework still lacks sufficient research, and the underlying mechanism of the time-course vaccine allocation optimization has not yet been uncovered. In this paper, based on an age-stratified compartmental model calibrated through clinical and epidemiological data, we propose optimal vaccination strategies (OVS) through steady-state prediction in the non-Markovian framework. This OVS outperforms other empirical vaccine prioritization approaches in minimizing cumulative infections, cumulative deaths, or years of life lost caused by the pandemic. We found that there exists a fast decline in the prevention efficiency of vaccination if vaccines are solely administered to a selected age group, which indicates that the widely adopted strategy to continuously vaccinate high-risk group is not optimal. Through mathematical analysis of the model, we reveal that dynamic vaccine allocations to combinations of different age groups is necessary to achieve optimal vaccine prioritization. Our work not only provides meaningful references for vaccination in countries currently lacking vaccines and for vaccine allocation strategies to prevent mutant strains in the future, but also reveals the mechanism of dynamic vaccine allocation optimization, forming a theoretical and modelling framework empirically applicable to the optimal time-course prioritization.

4.
Front Cell Infect Microbiol ; 11: 732613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604113

RESUMO

The human oral microbiota plays a vital role in maintaining metabolic homeostasis. To explore the relationship between Helicobacter pylori (Hp) and reflux esophagitis, we collected 86 saliva samples from reflux esophagitis patients (RE group) and 106 saliva samples from healthy people (C group) for a high-throughput sequencing comparison. No difference in alpha diversity was detected between the RE and the C groups, but beta diversity of the RE group was higher than the C group. Bacteroidetes was more abundant in the RE group, whereas Firmicutes was more abundant in the C group. The linear discriminant analysis effect size analysis demonstrated that the biomarkers of the RE group were Prevotella, Veillonella, Leptotrichia, and Actinomyces, and the biomarkers of the C group were Lautropia, Gemella, Rothia, and Streptococcus. The oral microbial network structure of the C group was more complex than that of the RE group. Second, to explore the effect of Hp on the oral microbiota of RE patients, we performed the 14C-urea breath test on 45 of the 86 RE patients. We compared the oral microbiota of 33 Hp-infected reflux esophagitis patients (REHpp group) and 12 non-Hp-infected reflux esophagitis patients (REHpn group). No difference in alpha diversity was observed between the REHpn and REHpp groups, and beta diversity of the REHpp group was significantly lower than that of the REHpn group. The biomarkers in the REHpp group were Veillonella, Haemophilus, Selenomonas, Megasphaera, Oribacterium, Butyrivibrio, and Campylobacter; and the biomarker in the REHpn group was Stomatobaculum. Megasphaera was positively correlated with Veillonella in the microbial network of the REHpp group. The main finding of this study is that RE disturbs the human oral microbiota, such as increased beta diversity. Hp infection may inhibit this disorderly trend.


Assuntos
Esofagite Péptica , Infecções por Helicobacter , Helicobacter pylori , Microbiota , Humanos , Saliva
5.
Sci Rep ; 11(1): 20653, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667213

RESUMO

Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.

6.
Proc Natl Acad Sci U S A ; 118(44)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706939

RESUMO

The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry-breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band structures around the Fermi level, and enlarge/shrink the momentum separation of Weyl nodes which generate the Berry curvature as the emergent magnetic field. Here, we report the realization of a ferroelectric nonmagnetic Weyl semimetal based on indium-doped Pb1- x Sn x Te alloy in which the underlying inversion symmetry as well as mirror symmetry are broken with the strength of ferroelectricity adjustable via tuning the indium doping level and Sn/Pb ratio. The transverse thermoelectric effect (i.e., Nernst effect), both for out-of-plane and in-plane magnetic field geometry, is exploited as a Berry curvature-sensitive experimental probe to manifest the generation of Berry curvature via the redistribution of Weyl nodes under magnetic fields. The results demonstrate a clean, nonmagnetic Weyl semimetal coupled with highly tunable ferroelectric order, providing an ideal platform for manipulating the Weyl fermions in nonmagnetic systems.

7.
Micromachines (Basel) ; 12(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34683207

RESUMO

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.

8.
J Struct Biol ; 213(4): 107805, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34715329

RESUMO

The revolution in genetics has rapidly increased our knowledge of human and mouse genes that are critical for the formation of dental enamel and helps us understand how enamel evolved. In this graphical review we focus on the roles of 41 genes that are essential for the secretory stage of amelogenesis when characteristic enamel mineral ribbons initiate on dentin and elongate to expand the enamel layer to the future surface of the tooth. Based upon ultrastructural analyses of genetically modified mice, we propose a molecular model explaining how a cell attachment apparatus including collagen 17, α6ß4 and αvß6 integrins, laminin 332, and secreted enamel proteins could attach to individual enamel mineral ribbons and mold their cross-sectional dimensions as they simultaneously elongate and orient them in the direction of the retrograde movement of the ameloblast membrane.

10.
Front Physiol ; 12: 724098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630144

RESUMO

Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is highly expressed in odontoblasts, but only transiently expressed in presecretory ameloblasts during tooth development. We previously generated a knockin mouse model expressing a mouse equivalent (DSPP, p.P19L) of human mutant DSPP (p.P17L; referred to as "DsppP19L/+ "), and reported that DsppP19L/+ and DsppP19L/P19L mice manifested a dentin phenotype resembling human dentinogenesis imperfecta (DGI). In this study, we analyzed pathogenic effects of mutant P19L-DSPP on enamel development in DsppP19L/+ and DsppP19L/P19L mice. Micro-Computed Tomography (µCT) analyses of 7-week-old mouse mandibular incisors showed that DsppP19L/P19L mice had significantly decreased enamel volume and/or enamel density at different stages of amelogenesis examined. Acid-etched scanning electron microscopy (SEM) analyses of mouse incisors demonstrated that, at the mid-late maturation stage of amelogenesis, the enamel of wild-type mice already had apparent decussating pattern of enamel rods, whereas only minute particulates were found in DsppP19L/+ mice, and no discernible structures in DsppP19L/P19L mouse enamel. However, by the time that incisor enamel was about to erupt into oral cavity, distinct decussating enamel rods were evident in DsppP19L/+ mice, but only poorly-defined enamel rods were revealed in DsppP19L/P19L mice. Moreover, µCT analyses of the mandibular first molars showed that DsppP19L/+ and DsppP19L/P19L mice had a significant reduction in enamel volume and enamel density at the ages of 2, 3, and 24weeks after birth. Backscattered and acid-etched SEM analyses revealed that while 3-week-old DsppP19L/+ mice had similar pattern of enamel rods in the mandibular first molars as age-matched wild-type mice, no distinct enamel rods were observed in DsppP19L/P19L mice. Yet neither DsppP19L/+ nor DsppP19L/P19L mice showed well-defined enamel rods in the mandibular first molars by the age of 24weeks, as judged by backscattered and acid-etched SEM. In situ hybridization showed that DSPP mRNA level was markedly reduced in the presecretory ameloblasts, but immunohistochemistry revealed that DSP/DSPP immunostaining signals were much stronger within the presecretory ameloblasts in Dspp mutant mice than in wild-type mice. These results suggest that mutant P19L-DSPP protein caused developmental enamel defects in mice, which may be associated with intracellular retention of mutant DSPP in the presecretory ameloblasts.

11.
Zhongguo Gu Shang ; 34(9): 851-5, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34569211

RESUMO

OBJECTIVE: To explore clinical effect of arthroscopic meniscus tear strapping suture by rotator cuff suture threader. METHODS: Forty patients with meniscus tear injury admitted from July 2015 to May 2019, including 27 males and 13 females, aged from 20 to 55 years old with an average of (36.0±1.4) years old. Menisci laceration was sutured with rotator cuff suture thread under arthroscopy. Postoperative complication was observed, Lysholm knee joint score before and after operation at 12 months were used to evaluate clinical effects, visual analogue scale (VAS) and range of knee flexion and extension were applied to evaluate recovery of pain and function. RESULTS: All patients were followed up from 12 to 15 months with an average of (12.6±0.7) months.No complication such as joint effusion, suture failure occurred. Two patients occurred mild pain after activity without clinical physical abnormality, and 1 patient manifested moderate pain with joint space tenderness, the other rest without abnormal. Lysholm knee joint score was increased from (49.55±1.21) preoperatively to (98.95±0.42) at 12 months after operation, VAS score decreased from (5.18±0.78)preoperatively to (1.03±0.77) at 12 months after operation, and range of knee joint flexion and extension activity increased from (50.63±9.20)°preoperatively to (130.38±4.99)°after operation, and there were statistical differences in Lysholm knee joint score, VAS and range of knee joint flexion and extension activity (P< 0.05). CONCLUSION: Arthroscopic strapping suture by rotator cuff suture threading device applies to most meniscus injuries, including medial meniscus posterior horn tears, lateral meniscus body tears and lateral meniscus posterior horn tears. This technique meets the need of full-internal meniscus suture without specialmeniscus suture, and has advantages of convenient operation, less complications and good postoperative function.


Assuntos
Lesões do Manguito Rotador , Lesões do Menisco Tibial , Adulto , Artroscopia , Feminino , Humanos , Masculino , Meniscos Tibiais/cirurgia , Pessoa de Meia-Idade , Manguito Rotador , Lesões do Manguito Rotador/cirurgia , Técnicas de Sutura , Suturas/efeitos adversos , Lesões do Menisco Tibial/cirurgia , Resultado do Tratamento , Adulto Jovem
12.
J Emerg Med ; 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34538678

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a newly recognized condition affecting children with recent infection or exposure to coronavirus disease 2019 (COVID-19). MIS-C has symptoms that affect multiple organs systems, with some clinical features resembling Kawasaki disease (KD) and toxic shock syndrome (TSS). OBJECTIVE OF THE REVIEW: Our goal was to review the current literature and describe the evaluation and treatment algorithms for children suspected of having MIS-C who present to the emergency department. DISCUSSION: MIS-C has a wide clinical spectrum and diagnosis is based on a combination of both clinical and laboratory findings. The exact mechanism of immune dysregulation of MIS-C is not well understood. Physical findings may evolve and do not necessarily appear at the same time. Gastrointestinal, cardiac, inflammatory, and coagulopathy manifestations and dysfunction are seen frequently in MIS-C. CONCLUSIONS: The diagnosis of MIS-C is based on clinical presentation and specific laboratory findings. In the emergency setting, a high level of suspicion for MIS-C is required in patients exposed to COVID-19. Early diagnosis and prompt initiation of therapy offer the best chance for optimal outcomes.

13.
Eur J Med Chem ; 226: 113845, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534838

RESUMO

To resolve the problem of drug resistance caused by epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer, we used the principle of collocation to design and synthesize a series of aminopyrimidine derivatives with 4,5,6,7-tetrahydrothieno [3,2-c]pyridine side chains (according to the binding mode of AZD9291 to EGFRT790M) for use as EGFRL858R/T790M kinase inhibitors. The most promising compound A12, a non-covalently bound reversible inhibitor, showed excellent kinase inhibitory activity against EGFRL858R/T790M, with an IC50 value of 4.0 nM and more than 42-fold selectivity for EGFRWT (IC50 = 170.0 nM). Moreover, compound A12 showed strong anti-proliferative activity against H1975 cells, with IC50 value of 0.086 µΜ. Additionally, the effective inhibition of cell migration and the promotion of apoptosis by A12 verified its mechanism of action, as a selective inhibitor of EGFRL858R/T790M.

14.
Cell Regen ; 10(1): 25, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34337686

RESUMO

Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.

15.
Basic Res Cardiol ; 116(1): 48, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379189

RESUMO

Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling of the ischemic heart. Because little is known about the involvement of long non-coding RNAs (lncRNAs) in regulating cardiac metabolism, we used unbiased transcriptome profiling in a mouse model of myocardial infarction (MI). We identified a novel cardiomyocyte-enriched lncRNA, called LncHrt, which regulates metabolism and the pathophysiological processes that lead to heart failure. AAV-based LncHrt overexpression protects the heart from MI as demonstrated by improved contractile function, preserved metabolic homeostasis, and attenuated maladaptive remodeling responses. RNA-pull down followed by mass spectrometry and RNA immunoprecipitation (RIP) identified SIRT2 as a LncHrt-interacting protein involved in cardiac metabolic regulation. Mechanistically, we established that LncHrt interacts with SIRT2 to preserve SIRT2 deacetylase activity by interfering with the CDK5 and SIRT2 interaction. This increases downstream LKB1-AMPK kinase signaling, which ameliorates functional and metabolic deficits. Importantly, we found the expression of the human homolog of mouse LncHrt was decreased in patients with dilated cardiomyopathy. Together, these studies identify LncHrt as a cardiac metabolic regulator that plays an essential role in preserving heart function by regulating downstream metabolic signaling pathways. Consequently, LncHrt is a potentially novel RNA-based therapeutic target for ischemic heart disease.

16.
Micromachines (Basel) ; 12(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203906

RESUMO

This paper presents a new process to fabricate a sensing unit of electrochemical seismometers using only one silicon-glass-silicon bonded wafer. By integrating four electrodes on one silicon-glass-silicon bonded wafer, the consistency of the developed sensing unit was greatly improved, benefiting from the high alignment accuracy. Parameter designs and simulations were carried out based on this sensing unit, which indicated that the sensitivities of the developed electrochemical seismometer decreased with the decrease in the number of flow holes in the sensing unit, and the initial stabilization time decreased gradually with the decrease in the thickness of the glass layer. Based on experimental results of four devices, the peak sensitivity was quantified as 5345.45 ± 43.78 V/(m/s) at 2 Hz, which proved high consistency of the fabricated electrochemical seismometer. In terms of the responses to random ground motions, high consistencies between the developed electrochemical seismometer and the commercial counterpart of CME6011 (R-sensors, Moscow, Russia) were found, where the developed electrochemical seismometer produced comparable noise levels to those of CME6011. These results validated the performance of the device and it may function as an effective tool for a variety of applications.

17.
J Oncol ; 2021: 8836078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221014

RESUMO

Emerging studies have clarified the critical role of LncRNA MALAT1 in various pathological progressions. Here, we identified its positive relationship with cervical carcinoma proliferation. Cervical carcinoma has been considered as one of the most malignant tumors among female. Thus, our study was designed to investigate the underlying mechanism of LncRNA MALAT1 on cervical tumor cell proliferation. We observed that miR-124 was the potential target of LncRNA MALAT1 in cervical tumor cell lines (Hela, C-33A, Caski, and SiHa), the expression level of which is negatively correlated with LncRNA MALAT1 in cervical tumor cells, tissues of cervical patients, and mice. Gain- or loss-of-function analyses in cervical tumor cells have further verified the regulatory role of MALAT1 on miR-124. Additionally, the proliferation of cervical carcinoma was inhibited by miR-124 overexpression, whereas it was blocked by LV-MALAT1 transfection. In vivo assays, overexpression of miR-124, or knockdown of MALAT1 exhibited beneficial effects on tumor weight, size, and volume, together with elevating the survival rate, tightly related with the progression of cervical cancer. In conclusion, LncRNA MALAT1 disabled the effects of miR-124 as an inhibitory sponge, accelerating the progression of cervical carcinoma.

18.
Med Gas Res ; 11(4): 152-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34213497

RESUMO

Ischemia/reperfusion (I/R) injury is a phenomenon that the reperfusion of ischemic organs or tissues aggravates their damage, which poses a serious health threat and economic burden to the world. I/R gives rise to a series of physiological and pathological world, including inflammatory response, oxidative stress, brain edema, blood-brain barrier destruction, and neuronal death. Therefore, finding effective treatment measures is extremely important to the recovery of I/R patients and the improvement of long-term quality of life. Sevoflurane is an important volatile anesthetic which has been reported to reduce myocardial I/R damage and infarct size. Sevoflurane also has anti-inflammatory and neuroprotective effects. As reported sevoflurane treatment could reduce nerve function injury, cerebral infarction volume and the level of inflammatory factors. At the same time, there is evidence that sevoflurane can reduce neuron apoptosis and antioxidant stress. The protective effect of sevoflurane in brain injury has been proved to be existed in several aspects, so that a comprehensive understanding of its neuroprotective effect is helpful to exploit new treatment paths for I/R, provide clinicians with new clinical treatment decisions, contribute to the effective treatment of I/R patients and the improvement of quality of life after I/R healing.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Isquemia Encefálica/tratamento farmacológico , Humanos , Fármacos Neuroprotetores/uso terapêutico , Qualidade de Vida , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Sevoflurano/uso terapêutico
19.
J Hazard Mater ; 418: 126347, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126383

RESUMO

Arsenic pollution of water is one of the severest environmental challenges threatening human health. Iron-based nanomaterials have been demonstrated effective in arsenic removal. However, they generally suffer from low removal efficiency towards highly toxic As(III), loss of active sites owing to agglomeration, and poor reusability. Herein, we report a carbonized melamine foam supported Mn(IV)-doped ß-FeOOH nanospindles(CF@Mn-FeOOH NSp) for tackling the technical hurdles. The designed CF@Mn-FeOOH NSp appears as a free-standing monolith through a low-cost and straightforward hydrothermal method. The atomic-scale integration of Mn(IV) into ß-FeOOH enables an oxidation-adsorption bifunctionality, where Mn(IV) serves as oxidizer for As(III) and Fe(III) acts as adsorber for As(V). The maximal adsorption capacity for As(V) and As(III) can reach 152 and 107 mg g-1, respectively. Meanwhile, As in simulated high arsenic groundwater can be decreased to below 10 µg L-1 within 24 h. By simple "filtrating-washing", 85% and 82% of its initial adsorption capacity for As(V) and As(III) can be easily recovered even after 5-cycles reuse. Kinetics and isotherm adsorption study indicate that the arsenic adsorption behavior is mainly through chemical bonding during single-layer adsorbing process. The as-prepared CF@Mn-FeOOH offers a scalable, efficient, and recyclable solution for arsenic removal in groundwater and wastewater from mines and industry.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbono , Compostos Férricos , Humanos , Óxidos , Água , Poluentes Químicos da Água/análise
20.
J Cell Physiol ; 236(11): 7405-7420, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33959974

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis remains a serious global public health threat. Macrophage polarization is crucial for the innate immunity against M. tuberculosis. However, how M. tuberculosis interferes with macrophage polarization is elusive. We demonstrated here that M. tuberculosis PPE36 (Rv2108) blocked macrophage M1 polarization, preventing the cytokine storm, and alleviating inflammatory damage to mouse immune organs. PPE36 inhibited the polarization of THP-1 cell differentiation to M1 macrophages, reduced mitochondrial dehydrogenase activity, inhibited the expression of CD16, and repressed the expression of pro-inflammatory cytokines IL-6 and TNF-α, as well as chemokines CXCL9, CXCL10, CCL3, and CCL5. Intriguingly, in the mouse infection model, PPE36 significantly alleviated the inflammatory damage of immune organs caused by a cytokine storm. Furthermore, we found that PPE36 inhibited the polarization of macrophages into mature M1 macrophages by suppressing the ERK signaling. The study provided novel insights into the function and mechanism of action of M. tuberculosis effector PPE36 both at the cellular and animal level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...