Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 18, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31926553

RESUMO

BACKGROUND: Microglial activation is a prominent feature of neuroinflammation, which is present in almost all neurodegenerative diseases. While an initial inflammatory response mediated by microglia is considered to be protective, excessive pro-inflammatory response of microglia contributes to the pathogenesis of neurodegeneration. Although autophagy is involved in the suppression of inflammation, its role and mechanism in microglia are unclear. METHODS: In the present study, we studied the mechanism by which lipopolysaccharide (LPS) affects microglial autophagy and the effects of autophagy on the production of pro-inflammatory factors in microglial cells by western blotting, immunocytochemistry, transfection, transmission electron microscopy (TEM), and real-time PCR. In a mouse model of neuroinflammation, generated by intraventricular injection of LPS (5 µg/animal), we induced autophagy by rapamycin injection and investigated the effects of enhanced autophagy on microglial activation by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. RESULTS: We found that autophagic flux was suppressed in LPS-stimulated N9 microglial cells, as evidenced by decreased expression of the autophagy marker LC3-II (lipidated form of MAP1LC3), as well as increased levels of the autophagy adaptor protein SQSTM1. LPS significantly decreased Vps34 expression in N9 microglial cells by activating the PI3KI/AKT/MTOR pathway without affecting the levels of lysosome-associated proteins and enzymes. More importantly, overexpression of Vps34 significantly enhanced the autophagic flux and decreased the accumulation of SQSTM1 in LPS-stimulated N9 microglial cells. Moreover, our results revealed that an LPS-induced reduction in the level of Vps34 prevented the maturation of omegasomes to phagophores. Furthermore, LPS-induced neuroinflammation was significantly ameliorated by treatment with the autophagy inducer rapamycin both in vitro and in vivo. CONCLUSIONS: These data reveal that LPS-induced neuroinflammation in N9 microglial cells is associated with the inhibition of autophagic flux through the activation of the PI3KI/AKT/MTOR pathway, while enhanced microglial autophagy downregulates LPS-induced neuroinflammation. Thus, this study suggests that promoting the early stages of autophagy might be a potential therapeutic approach for neuroinflammation-associated diseases.

2.
Curr Drug Deliv ; 17(1): 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31971107
3.
ACS Nano ; 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31961656

RESUMO

In this study, a magnetothermodynamic (MTD) therapy is introduced as an efficient systemic cancer treatment, by combining the magnetothermal effect and the reactive oxygen species (ROS)-related immunologic effect, in order to overcome the obstacle of limited therapeutic efficacy in current magnetothermal therapy (MTT). This approach was achieved by the development of an elaborate ferrimagnetic vortex-domain iron oxide nanoring and graphene oxide (FVIOs-GO) hybrid nanoparticle as the efficient MTD agent. Such a FVIOs-GO nanoplatform was shown to have high thermal conversion efficiency, and it was further proved to generate a significantly amplified ROS level under an alternating magnetic field (AMF). Both in vitro and in vivo results revealed that amplified ROS generation was the dominant factor in provoking a strong immune response at a physiological tolerable temperature below 40 °C in a hypoxic tumor microenvironment. This was supported by the exposure of calreticulin (CRT) on 83% of the 4T1 breast cancer cell surface, direct promotion of macrophage polarization to pro-inflammatory M1 phenotypes, and further elevation of tumor-infiltrating T lymphocytes. As a result of the dual action of magnetothermal effect and ROS-related immunologic effect, impressive in vivo systemic therapeutic efficacy was attained at a low dosage of 3 mg Fe/kg with two AMF treatments, as compared to that of MTT (high dosage of 6-18 mg/kg under four to eight AMF treatments). The MTD therapy reported here has highlighted the inadequacy of conventional MTT that solely relies on the heating effect of the MNPs. Thus, by employing a ROS-mediated immunologic effect, future cancer magnetotherapies can be designed with greatly improved antitumor capabilities.

4.
Adv Healthc Mater ; : e1901616, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31990442

RESUMO

Noninvasive multimodality imaging-guided precision photothermal therapy (PTT) is proven to be an effective strategy for tumor theranostics by integrating diagnostics and therapeutics in one nanoplatform. In this study, indocyanine green (ICG)-conjugated and radionuclide iodine-125 (125 I)-labeled polymeric micelles (PEG-PTyr(125 I)-ICG PMs) are strategically prepared by the self-assembly of the ICG-decorated amphiphilic diblock polymer poly(ethylene glycol)-poly(l-tyrosine-125 I)-(indocyanine green) (PEG-PTyr(125 I)-ICG). The as-prepared polymeric micelles exhibit favorable biocompatibility, excellent size/photo/radiolabel stability, a high-photothermal conversion efficiency, a passive tumor-targeting ability, and a fluorescence (FL)/photoacoustic (PA)/single photon emission computed tomography (SPECT) imaging property. After tail intravenous injection, the polymeric micelles can efficiently accumulate at the tumor site and present comprehensive FL/PA/SPECT images with a high sensitivity, excellent spatial resolution, and unlimited tissue penetration under near-infrared (NIR) irradiation. Upon 808 nm laser irradiation, the subsequent precision PTT of tumors can be achieved with minimal cumulative side effects. Thus, this capable multifunctional nanoplatform with simple components and preparation procedures for FL/PA/SPECT multimodality imaging-guided PTT can be a potential candidate for clinical tumor theranostics.

5.
Biomaterials ; 230: 119649, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31791843

RESUMO

Immunotherapy in solid tumors is limited by the poor immunogenicity of tumors and limited T-cell immune response, resulting in low patient response rate. To increase the efficiency of cancer immunotherapy, a unique synergistic combination cancer immunotherapy by co-localized delivery of cancer nanomedicine for enhancing the tumor immunogenicity and nanovaccine for augmenting the antitumor T-cell immunity was developed for post-surgical tumor treatment. The thermo-responsive, curcumin-loaded polymer nanoparticles (nanomedicine)-assembled hydrogel enabled the complete coverage of the surgical bed of primary tumor and the spatio-temporal delivery of cognate nanomedicines and encapsulated nanovaccines. Importantly, the nanomedicine efficiently induced the immunogenic cell death (ICD) of residual cancer cells, and consequently enhanced the tumor immunogenicity and sensitized the tumor to antitumor T-cell immunity. The cancer nanovaccine composed of antigenic peptide, CpG-ODN and cationic polymer nanoparticle significantly triggered the maturation of dendritic cells (DCs) and elicited potent vaccine-specific T-cell immune responses. Using highly malignant postoperative breast carcinoma 4T1 models, we found that the combination immunotherapy strategy strikingly amplified the level of systemic host T-cell immunity, promoted the infiltration of CD8+ T lymphocytes in tumor, and thus efficaciously attenuated the local tumor recurrence and pulmonary metastasis. Collectively, this work provided an advanced synergistic combination approach for post-surgical tumor immunotherapy. The self-assembled hydrogel should enable a broader combination of immunomodulating nanomedicines and vaccines for cancer immunotherapy.

8.
ACS Nano ; 13(11): 12901-12911, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31682416

RESUMO

We developed a biodegradable photothermal therapeutic (PTT) agent, π-conjugated oligomer nanoparticles (F8-PEG NPs), for highly efficient cancer theranostics. By exploiting an oligomer with excellent near-infrared (NIR) absorption, the nanoparticles show a high photothermal conversion efficiency (PCE) up to 82%, surpassing those of reported inorganic and organic PTT agents. In addition, the oligomer nanoparticles show excellent photostability and good biodegradability. The F8-PEG NPs are also demonstrated to have excellent biosafety and PTT efficacy both in vitro and in vivo. This contribution not only proposes a promising oligomer-based PTT agent but also provides insight into developing highly efficient nanomaterials for cancer theranostics.

9.
Nano Lett ; 19(12): 8476-8487, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711283

RESUMO

In contrast to the booming production and application of nanomaterials, research on the toxicological impacts and possible hazards of nanoparticles to tissues and organs is still in its infancy. Golgi apparatus is one of the most important organelles in cells and plays a key role in intracellular protein processing. The structural integrity of Golgi is vital for its normal function, and Golgi disturbance could result in a wide range of diseases and disorders. In this study, for the first time we found gold nanoparticles (Au NPs) induced size-dependent cytoplasmic calcium increase and Golgi fragmentation, which hampers normal Golgi functions, leads to abnormal protein processing, and causes cellular adhesion decrease, while cell viability was not significantly compromised. Additionally, early renal pathological changes were induced in vivo. This work is significant to nanoparticle research because it illustrates the important role of size on Au NP-induced changes in Golgi morphology and their consequences in vitro and in vivo, which has important implications for the biological applications of nanomaterials.

10.
Sci Adv ; 5(10): eaaw6264, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31616782

RESUMO

The development of an efficient delivery system for enhanced and controlled gene interference-based therapeutics is still facing great challenges. Fortunately, the flourishing field of nanotechnology provides more effective strategies for nucleic acid delivery. Here, the triplex-forming oligonucleotide sequence and its complementary strand were used to mediate self-assembly of ultrasmall gold nanoparticles. The obtained sunflower-like nanostructures exhibited strong near-infrared (NIR) absorption and photothermal conversion ability. Upon NIR irradiation, the large-sized nanostructure could disassemble and generate ultrasmall nanoparticles modified with c-myc oncogene silencing sequence, which could directly target the cell nucleus. Moreover, the controlled gene silencing effect could be realized by synergistically controlling the preincubation time with the self-assembled nanostructure (in vitro and in vivo) and NIR irradiation time point. This study provides a new approach for constructing more efficient and tailorable nanocarriers for gene interference applications.

12.
Nat Commun ; 10(1): 4336, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551496

RESUMO

New strategies with high antimicrobial efficacy against multidrug-resistant bacteria are urgently desired. Herein, we describe a smart triple-functional nanostructure, namely TRIDENT (Thermo-Responsive-Inspired Drug-Delivery Nano-Transporter), for reliable bacterial eradication. The robust antibacterial effectiveness is attributed to the integrated fluorescence monitoring and synergistic chemo-photothermal killing. We notice that temperature rises generated by near-infrared irradiation did not only melt the nanotransporter via a phase change mechanism, but also irreversibly damaged bacterial membranes to facilitate imipenem permeation, thus interfering with cell wall biosynthesis and eventually leading to rapid bacterial death. Both in vitro and in vivo evidence demonstrate that even low doses of imipenem-encapsulated TRIDENT could eradicate clinical methicillin-resistant Staphylococcus aureus, whereas imipenem alone had limited effect. Due to rapid recovery of infected sites and good biosafety we envision a universal antimicrobial platform to fight against multidrug-resistant or extremely drug-resistant bacteria.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/terapia , Sistemas de Liberação de Medicamentos , Imipenem/administração & dosagem , Infecções Cutâneas Estafilocócicas/terapia , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Imipenem/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Fototerapia/efeitos adversos , Fototerapia/métodos , Estudo de Prova de Conceito
13.
J Mater Chem B ; 7(38): 5782-5788, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31482937

RESUMO

Non-toxic and long-term fluorescent probes for tumor imaging are in urgent need for non-invasively obtaining information about tumor genesis and metastasis in vivo. Here, we present a biocompatible near-infrared fluorescent probe for in vivo long-term imaging of tumor by modifying glucose (Glc), which experiences high uptake in cancer cells, on the surface of near-infrared Ag2Se quantum dots (NIR Ag2Se QDs). The fluorescence of glucose-functionalized Ag2Se QDs (Glc-Ag2Se QDs) from the targeted tumor can be observed in vivo for at least 7 days. In addition, this probe could be excreted through kidneys and the renal excretion ability is favorable for in vivo imaging applications. Moreover, Glc-Ag2Se QDs could be used for tumor targeted imaging of not only human breast cancer cells (MCF-7), but also SW1990 pancreatic cancer cells since glucose is highly taken up in almost all kinds of tumors. Glc-Ag2Se QDs could be a promising general tool for in vivo long-term observation of tumor evolution.

14.
ACS Nano ; 13(9): 10002-10014, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31433945

RESUMO

Reactive oxygen species (ROS) are crucial molecules in cancer therapy. Unfortunately, the therapeutic efficiency of ROS is unsatisfactory in clinic, primarily due to their rigorous production conditions. By taking advantage of the intrinsic acidity and overproduction of H2O2 in the tumor environment, we have reported an ROS nanoreactor based on core-shell-structured iron carbide (Fe5C2@Fe3O4) nanoparticles (NPs) through the catalysis of the Fenton reaction. These NPs are able to release ferrous ions in acidic environments to disproportionate H2O2 into •OH radicals, which effectively inhibits the proliferation of tumor cells both in vitro and in vivo. The high magnetization of Fe5C2@Fe3O4 NPs is favorable for both magnetic targeting and T2-weighted magnetic resonance imaging (MRI). Ionization of these NPs simultaneously decreases the T2 signal and enhances the T1 signal in MRI, and this T2/T1 switching process provides the visualization of ferrous ions release and ROS generation for the supervision of tumor curing. These Fe5C2@Fe3O4 NPs show great potential in endogenous environment-excited cancer therapy with high efficiency and tumor specificity and can be guided further by MRI.

15.
Adv Sci (Weinh) ; 6(13): 1900716, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380195

RESUMO

Targeted drug delivery systems (TDDSs) provide a promising approach to overcome the side effect of traditional chemotherapy by specific tumor targeting and drug release. Hyaluronan (HA), as a selective CD44 targeting group, has been widely used in TDDSs for chemotherapy. However, different molecular weight HAs would demonstrate different binding ability to CD44, which may result in different therapeutic effects. Herein, a silica/hydroxyapatite (MSNs/HAP) hybrid carrier loaded with anticancer drug doxorubicin (DOX) (DOX@MSNs/HAP) is fabricated. HA and oligo HA (oHA) are coated onto the nanoparticles (HA-DOX@MSNs/HAP, oHA-DOX@MSNs/HAP), respectively, to investigate their performance in tumor targeting ability. oHA-DOX@MSNs/HAP shows much higher efficiency cellular uptake and drug release in tumor regions due to more effective CD44 targeting of oHA. Thus, the anticancer effect of oHA-DOX@MSNs/HAP is significantly enhanced compared to HA-DOX@MSNs/HAP, as demonstrated in a tumor-bearing mouse model. This study may enable the rational design of nanodrug systems for future tumor-targeted chemotherapy.

16.
ACS Nano ; 13(8): 8811-8825, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31328922

RESUMO

Cancer metastasis is a serious concern and a major reason for treatment failure. Herein, we have reported the development of an effective and safe nanotherapeutic strategy that can eradicate primary tumors, inhibit metastasizing to lung, and control the metastasis and growth of distant tumors. Briefly, ferrimagnetic vortex-domain iron oxide nanoring (FVIO)-mediated mild magnetic hyperthermia caused calreticulin (CRT) expression on the 4T1 breast cancer cells. The CRT expression transmitted an "eat-me" signal and promoted phagocytic uptake of cancer cells by the immune system to induce an efficient immunogenic cell death, further leading to the macrophage polarization. This mild thermotherapy promoted 88% increase of CD8+ cytotoxic T lymphocyte infiltration in distant tumors and triggered immunotherapy by effectively sensitizing tumors to the PD-L1 checkpoint blockade. The percentage of CD8+ cytotoxic T lymphocytes can be further increased from 55.4% to 64.5% after combining with PD-L1 blockade. Moreover, the combination treatment also inhibited the immunosuppressive response of the tumor, evidenced by significant down-regulation of myeloid-derived suppressor cells (MDSCs). Our results revealed that the FVIO-mediated mild magnetic hyperthermia can activate the host immune systems and efficiently cooperate with PD-L1 blockade to inhibit the potential metastatic spreading as well as the growth of distant tumors.

17.
Theranostics ; 9(14): 4221-4232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281543

RESUMO

Stem cells present in urine possess regenerative capacity to repair kidney injury. However, the unique characteristics of urinary stem cells (USC) from patients with diabetic nephropathy (d-USC) are unknown. The goal of this study was to investigate stemness properties in cell phenotype and regenerative potential of d-USC, compared to USC from healthy individuals. Methods: Thirty-six urine samples collected from patients (n=12, age range 60-75 years) with diabetic nephropathy (stages 3-4 stage chronic kidney disease [CKD]) were compared with 30 urine samples from healthy age-matched donors (n=10, age range 60-74 years). Results: There were approximately six times as many cells in urine samples from patients with diabetic nephropathy, including twice as many USC clones as healthy donors. However, approximately 70% of d-USC had weaker regenerative capacity as assessed by cell proliferation, less secretion of paracrine factors, weaker telomerase activity, and lower renal tubular epithelial differentiation potential compared to healthy controls. In addition, the levels of inflammatory factors (IL-1ß and Cx43) and apoptotic markers (Caspase-3, and TUNEL) were significantly increased in d-USC compared to USC (p<0.01). Protein levels of autophagy marker (LC3-II) and mTOR signaling molecules (p-mTOR/mTOR, p-Raptor/Raptor and p-S6K1) were significantly lower in patient with diabetic nephropathy (p<0.01). Nevertheless, up to 30% of d-USC possessed similar regenerative capacity as USC from healthy donors. Conclusions: Regenerative performance of most d-USC was significantly lower than normal controls. Understanding the specific changes in d-USC regeneration capability will help elucidate the pathobiology of diabetic nephropathy and lead to prevent USC from diabetic insults, recover the stemness function and also identify novel biomarkers to predict progression of this chronic kidney disease.

18.
ACS Nano ; 13(7): 7556-7567, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31259530

RESUMO

Bone metastasis, a clinical complication of patients with advanced breast cancer, seriously reduces the quality of life. To avoid destruction of the bone matrix, current treatments focus on inhibiting the cancer cell growth and the osteoclast activity through combination therapy. Therefore, it could be beneficial to develop a bone-targeted drug delivery system to treat bone metastasis. Here, a bone-targeted nanoplatform was developed using gold nanorods enclosed inside mesoporous silica nanoparticles (Au@MSNs) which were then conjugated with zoledronic acid (ZOL). The nanoparticles (Au@MSNs-ZOL) not only showed bone-targeting ability in vivo but also inhibited the formation of osteoclast-like cells and promoted osteoblast differentiation in vitro. The combination of Au@MSNs-ZOL and photothermal therapy (PTT), triggered by near-infrared irradiation, inhibited tumor growth both in vitro and in vivo and relieved pain and bone resorption in vivo by inducing apoptosis in cancer cells and improving the bone microenvironment. This single nanoplatform combines ZOL and PTT to provide an exciting strategy for treating breast cancer bone metastasis.

19.
ACS Nano ; 13(6): 6770-6781, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31135129

RESUMO

The abuse of traditional antibiotics has caused a series of health problems including antimicrobial resistance, which threatens human health. Therefore, searching for broad sources of antimicrobial agents and developing multidimensional strategies to combat bacterial infections are urgent. Here, we reported two natural self-assembling modes between berberine (BBR) and flavonoid glycosides: nanoparticles (NPs) and nanofibers (NFs), which were both mainly governed by electrostatic and hydrophobic interactions. These two nanostructures exhibited different antibacterial properties from BBR. NPs showed significantly enhanced bacteriostatic activity, whereas NFs displayed a much weaker effect than BBR. The distinguishing properties can be attributed to the different spatial configurations and self-assembly processes of NPs and NFs. Flavonoid glycosides and BBR first formed a one-dimensional complex unit and subsequently self-assembled into three-dimensional nanostructures. With the hydrophilic glucuronic acid toward the outside, NPs exhibited stronger affinity to bacteria, thereby inducing the collapse of the bacteria population and the decrease in biofilm. In addition, in vitro hemolysis tests, cytotoxicity tests, and in vivo zebrafish toxicity evaluation showed that the obtained self-assemblies had good biocompatibility. This supramolecular self-assembly strategy can be applied to construct other nanoscale antibacterial drugs and thus provides weapons for the development of self-delivering drugs in bacterial infection treatment.

20.
J Gene Med ; 21(7): e3097, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31069898

RESUMO

Small interfering RNA (siRNA) enables efficient target gene silencing by employing a RNA interference (RNAi) mechanism, which can compromise gene expression and regulate gene activity by cleaving mRNA or repressing its translation. Twenty years after the discovery of RNAi in 1998, ONPATTRO™ (patisiran) (Alnylam Pharmaceuticals, Inc.), a lipid formulated siRNA modality, was approved for the first time by United States Food and Drug Administration and the European Commission in 2018. With this milestone achievement, siRNA therapeutics will soar in the coming years. Here, we review the discovery and the mechanisms of RNAi, briefly describe the delivery technologies of siRNA, and summarize recent clinical advances of siRNA therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA