Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 422: 126899, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418838

RESUMO

Copper (Cu), a hazardous heavy metal, can lead to toxic effects on host physiology. Recently, specific mitochondria-localized miRNAs (mitomiRs) were shown to modulate mitochondrial function, but the underlying mechanisms remain undefined. Here, we identified mitomiR-1285 as an important molecule regulating mitochondrial dysfunction and mitophagy in jejunal epithelial cells under Cu exposure. Mitochondrial dysfunction and mitophagy were the important mechanisms of Cu-induced pathological damage in jejunal epithelial cells, which were accompanied by significant increase of mitomiR-1285 in vivo and in vitro. Knockdown of mitomiR-1285 significantly attenuated Cu-induced mitochondrial respiratory dysfunction, ATP deficiency, mitochondrial membrane potential reduction, mitochondrial reactive oxygen species accumulation, and mitophagy. Subsequently, bioinformatics analysis and luciferase reporter assay demonstrated that IDH2 was a direct target of mitomiR-1285. RNA interference of IDH2 dramatically reversed the effect that mitomiR-1285 knockdown relieved mitochondrial dysfunction and mitophagy induced by Cu, and the opposite effect was shown by overexpression of IDH2. Therefore, our results suggested that mitomiR-1285 aggravated Cu-induced mitochondrial dysfunction and mitophagy via suppressing IDH2 expression. These findings identified the important mechanistic connection between mitomiRs and mitochondrial metabolism under Cu exposure, providing a new insight into Cu toxicology.

2.
Food Funct ; 12(20): 9642-9657, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664585

RESUMO

Copper (Cu) is an essential trace mineral, but its excessive intake can lead to potentially toxic effects on host physiology. The mammalian intestine harbors various microorganisms that are associated with intestinal barrier function and inflammation. In this study, the influences of Cu on barrier function, microbiota, and its metabolites were examined in the jejunum and colon of pigs. Here, we identified that the physical and chemical barrier functions were impaired both in the jejunum and colon, as evidenced by the decreased expression of tight junction proteins (ZO-1, Occludin, Claudin-1, and JAM-1) and mucous secretion-related genes, positive rate of Muc2, and secretion of SIgA and SIgG. Additionally, inflammatory cytokines were overexpressed in the jejunum and colon. Furthermore, Cu might increase the abundances of Mycoplasma, Actinobacillus and unidentified_Enterobacteriaceae in the jejunum, which significantly affected pentose and glucoronate interconversions, histidine metabolism, folate biosynthesis, porphyrin metabolism, and purine metabolism. Meanwhile, the abundances of Lactobacillus and Methanobrevibacter were remarkably decreased and Streptococcus, unidentified_Enterobacteriaceae, and unidentified_Muribaculaceae were significantly increased in the colon, with an evident impact on glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings revealed that excess Cu had significant effects on the microbiota and metabolites in the jejunum and colon, which were involved in intestinal barrier dysfunction and inflammation.

3.
J Inorg Biochem ; 224: 111581, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419760

RESUMO

Copper (Cu) is one of the ubiquitous environmental pollutants which have raised wide concerns about the potential toxic effects and public health threat. For deeply investigating the nephrotoxicity induced by Cu, the effects of Cu on mitochondria-mediated apoptosis in kidney were first to analyze by combining metabolomics and molecular biology techniques. In this study, broiler chicks were fed with different contents of Cu (11, 110, 220, and 330 mg/kg Cu) for 49 d. The results of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and transmission electron microscope showed that Cu could induce apoptosis in kidney, characterized by the increasing of TUNEL-positive cells and mitochondrial vacuolation. Additionally, a total of 62 differential metabolites were detected by liquid chromatography-mass spectrometry (LC-MS), and mainly enriched in the metabolic pathways including riboflavin metabolism, glutathione metabolism, sphingolipid metabolism, and glycerophospholipid metabolism, which were closely to mitochondrial metabolism. Meanwhile, the decreased mitochondrial membrane potential (MMP), increased mitochondrial membrane permeability and the change of mRNA and protein expression levels associated with mitochondria-mediated apoptosis and mitochondrial dynamics confirmed that Cu could induce mitochondria-mediated apoptosis. Therefore, our results demonstrated that Cu induced mitochondria-mediated apoptosis in kidney. Moreover, this study highlighted the metabolic characteristics of Cu to kidney, which suggested that mitochondrial metabolism could be considered as an important factor influencing toxicity.

4.
Ecotoxicol Environ Saf ; 223: 112587, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352579

RESUMO

Cu is a metallic element that widely spread over in the environment, which have raised wide concerns about the potential toxic effects and public health threat. The objective of this study aimed to investigate the impression of copper (Cu)-triggered toxicity on mitochondrial dynamic, oxidative stress, and unfolded protein response (UPRmt) in fundic gland of pigs. Weaned pigs were randomly distributed into three groups, fed with different Cu of 10 mg/kg (control group), 125 mg/kg (group I), and 250 mg/kg (group Ⅱ). The trial persisted for 80 days and the fundic gland tissues were collected for further researches. Moreover, the markers participated to mitochondrial dynamic, UPRmt,and oxidative stress in fundic gland were determined. Results revealed that vacuolar degeneration were observed in the treated groups contrast with control group, and the Cu level was boosted with the increasing intake of Cu. Besides that, the levels of CAT, TRX, H2O2, and G6PDH were reduced in group Ⅰ and group Ⅱ, the mRNA levels of NRF2, HO-1, SOD-1, CAT, SOD-2, GSR, GPX1, GPX4, and TRX in the treated groups were promoted contrast to control group. Furthermore, the protein expression of KEAP1 was dramatically decreased, and the protein expression of NRF2, TRX and HO-1 were markedly enhanced in group Ⅰ and Ⅱ at 80 days. Moreover, the mRNA and protein expression levels of MFN1, MFN2, and OPA1 down-regulated and protein level of DRP1 was increased with the adding levels of Cu. Nevertheless, the UPRmt-related mRNA levels of CLPP, HTRA-2, CHOP, HSP10, and HSP60 were enhanced dramatically in Cu treatment group compared with control group. In general, our current study demonstrated that excessive absorption of Cu in fundic gland were related with stimulating UPRmt, oxidative stress, and the NRF2 interceded antioxidant defense. These results could afford an updated evidence on molecular theory of Cu-invited toxicity.


Assuntos
Cobre , Dinâmica Mitocondrial , Animais , Cobre/toxicidade , Peróxido de Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Suínos , Resposta a Proteínas não Dobradas
5.
Environ Sci Pollut Res Int ; 28(39): 55140-55153, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34128171

RESUMO

Copper (Cu) is a heavy metal which is being used widely in the industry and agriculture. However, the overuse of Cu makes it a common environmental pollutant. In order to investigate the testicular toxicity of Cu, the pigs were divided into three groups and were given Cu at 10 (control), 125, and 250 mg/kg body weight, respectively. The feeding period was 80 days. Serum hormone results showed that Cu exposure decreased the concentrations of follicular stimulating hormone (FSH) and luteinizing hormone (LH) and increased the concentration of thyroxine (T4). Meanwhile, Cu exposure upregulated the expression of Cu transporter mRNA (Slc31a1, ATP7A, and ATP7B) in the testis, leading to increase in testicular Cu and led to spermatogenesis disorder. The Cu exposure led to an increased expression of antioxidant-related mRNA (Gpx4, TRX, HO-1, SOD1, SOD2, SOD3, CAT), along with increase in the MDA concentration in the testis. In LG group, the ROS in the testis was significantly increased. Furthermore, the apoptotic-related mRNA (Caspase3, Caspase8, Caspase9, Bax, Cytc, Bak1, APAF1, p53) and protein (Active Caspase3) and the autophagy-related mRNA (Beclin1, ATG5, LC3, and LC3B) expression increased after Cu exposure. The mitochondrial membrane potential in the testicular tissue decreased, while the number of apoptotic cells increased, as a result of oxidative stress. Overall, our study indicated that the Cu exposure promotes testicular apoptosis and autophagy by mediating oxidative stress, which is considered as the key mechanism causing testicular degeneration as well as dysfunction.


Assuntos
Cobre , Testículo , Animais , Apoptose , Autofagia , Cobre/toxicidade , Masculino , Estresse Oxidativo , Suínos
6.
Ecotoxicol Environ Saf ; 220: 112395, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102394

RESUMO

Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cobre/toxicidade , Hipotálamo/efeitos dos fármacos , Metais Pesados/toxicidade , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Cobre/metabolismo , Citocromos c/metabolismo , Exposição Ambiental , Hipotálamo/metabolismo , Metais Pesados/metabolismo , Mitocôndrias/metabolismo , Modelos Animais , Transdução de Sinais , Suínos , Proteína X Associada a bcl-2/metabolismo
7.
Ecotoxicol Environ Saf ; 221: 112442, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166936

RESUMO

Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl3) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 µM), SbCl3 (25 µM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.


Assuntos
Antimônio/toxicidade , Trióxido de Arsênio/toxicidade , Cloretos/toxicidade , Rim/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , Rim/fisiopatologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Ecotoxicol Environ Saf ; 218: 112284, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945902

RESUMO

Copper poses huge environmental and public health concerns due to its widespread and persistent use in the past several decades. Although it is well established that at higher levels copper causes nephrotoxicity, the exact mechanisms of its toxicity is not fully understood. Therefore, this experimental study for the first time investigates the potential molecular mechanisms including transcriptomics, metabolomics, serum biochemical, histopathological, cell apoptosis and autophagy in copper-induced renal toxicity in pigs. A total of 14 piglets were randomly assigned to two group (7 piglets per group) and treated with a standard diet (11 mg CuSO4 per kg of feed) and a high copper diet (250 mg CuSO4 per kg of feed). The results of serum biochemical tests and renal histopathology suggested that 250 mg/kg CuSO4 in the diet significantly increased serum creatinine (CREA) and induced renal tubular epithelial cell swelling. Results on transcriptomics and metabolomics showed alteration in 804 genes and 53 metabolites in kidneys of treated pigs, respectively. Combined analysis of transcriptomics and metabolomics indicated that different genes and metabolism pathways in kidneys of treated pigs were involved in glycerophospholipids metabolism and glycosphingolipid metabolism. Furthermore, copper induced mitochondrial apoptosis characterized by increased bax, bak, caspase 3, caspase 8 and caspase 9 expressions while decreased bcl-xl and bcl2/bax expression. Exposure to copper decreased the autophagic flux in terms of increased number of autophagosomes, beclin1 and LC3b/LC3a expression and p62 accumulation. These results indicated that the imbalance of glycosphingolipid metabolism, the impairment of autophagy and increase mitochondrial apoptosis play an important role in copper induced renal damage and are useful mechanisms to understand the mechanisms of copper nephrotoxicity.

9.
Ecotoxicol Environ Saf ; 212: 111968, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550083

RESUMO

Despite the fact that copper (Cu) is a vital micronutrient to maintain body function, high doses of Cu through environmental exposure damage various organs, especially the liver, which is the main metabolic organ. To investigate the influence of long-term Cu-induced toxicity on mitophagy and apoptosis in rat liver, 96 seven-month-old male Sprague-Dawley rats were fed TBCC for 24 weeks. The results revealed that exposure to high Cu concentrations could promote oxidative stress liver injury by increasing the hepatic function index (ALT, AST and ALP) and MDA content, while reducing the activity of antioxidant enzymes (T-SOD, GSH-Px and CAT) related to oxidative stress. Consistent with histopathological observations, proper dietary Cu (15-60 mg/kg) could improve antioxidant stress levels and induce a dose-dependent increase in the mRNA expression of mitophagy-related genes, whereas a high Cu concentration (120 mg/kg) could cause severe liver impairment and ultrastructural changes and a reduction in mitophagosomes, accompanied by downregulation of Atg5, Beclin1, Pink1, Parkin, NIX, P62 and LC3B. The expression of apoptosis-related genes (Bax, Bax/Bcl-2, Caspase3, Cytc and p53) and proteins (Caspase3 and p53) was upregulated with the addition of dietary Cu. The results demonstrated that an appropriate dose of TBCC could improve liver function by promoting mitophagy and Cu enzymes that play antioxidative roles, while the accumulation of excess Cu could induce liver lesions by enhancing apoptosis and inhibiting mitophagy pathways.


Assuntos
Cloretos/toxicidade , Cobre/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Sulfato de Cobre/análise , Dieta , Fígado/metabolismo , Masculino , Mitofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Crônica
10.
Ecotoxicol Environ Saf ; 213: 112040, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610943

RESUMO

Among different synthetic compounds copper (Cu) is persistently and frequently used as growth promoter, antibacterial, antifungal and antiparasitic agent and has become common environmental pollutant. Therefore, this study explores the cardio-toxic effects of control group (10 mg/kg bw Cu) and treatment group (125 and 250 mg/kg bw Cu), and it association with process of autophagy and metabolomics in myocardium of pigs kept in three different experimental treatments for a period of 80 days. The results of serum biochemical parameters showed a significantly increase in creatinine kinase (CK), creatine kinase-MB (CK-MB), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and aspartate aminotransferase (AST) in pigs exposed to 125 mg/kg bw and 250 mg/kg bw Cu. Meanwhile, the severe structural abnormalities in cardiomyocytes were found when exposed to 250 mg/kg Cu at day 80. In addition, the mRNA and proteins (Beclin1, ATG5 and LC3II) expression levels were significantly increased and p62 was significantly decreased in cardiomyocytes exposed to 250 mg/kg Cu at day 80 of the trial. Further, UPLC-QTOF/MS technique showed that 7 metabolites were up-regulated and 37 metabolites were down-regulated in cardiomyocytes after 250 mg/kg Cu treatment, with a principal impact on the metabolic pathways including glycerophospholipid metabolism, one carbon pool by folate, fatty acid elongation and fatty acid degradation, which were related to autophagy. Overall, our study identified the autophagy processes and metabolites in metabolic pathways in Cu-induced myocardium injury, which provided useful evidence of myocardium toxicity caused by Cu exposure via metabolomics and multiple bioanalytic methods.


Assuntos
Autofagia/efeitos dos fármacos , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Coração/efeitos dos fármacos , Animais , Poluentes Ambientais/metabolismo , Coração/fisiologia , Redes e Vias Metabólicas , Metabolômica , Miocárdio/metabolismo , Suínos
11.
Chemosphere ; 272: 129572, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33485040

RESUMO

Atrazine (ATR), a bio accumulative herbicide is frequently used in agriculture to control unwanted weeds. Due to continuous application, atrazine persists in the environment and causes deleterious impacts including neurotoxicity, hepatotoxicity, and gut microbiota disorders. Therefore, this study for the first time reports the variation in the gut microbiota, induction of process of apoptosis and autophagy in mice induced by ATR. Results indicated that TUNEL-positive hepatocytes suggestive of apoptosis were increased in livers of different experimental mice. Results on metabolic analysis in liver tissues indicated an overall change in seventy-six metabolites particularly Uridine 5'-diphosphate, Propenoylcarnitine and Chinenoside V resulting in generation of energy-related metabolic disorders and imbalance of oxidation/autoxidation status. Results on gut microbiome inquisition showed that ATR changed the richness and diversity of gut microbiota of mice and number of Firmicutes. Moreover, results also revealed that ATR induced apoptosis via disruption of apoptotic (Bax, Bcl2, and Casp3) and autophagy (LC3/Map1lc3a, Beclin 1/Becn1 and P62/Sqstm1) genes. Results of our experimental study confirmed that changes in gut microbiota play a significant role in process of gut immune regulation and inflammation via different metabolites. In conclusion, the findings of our study provide a new idea for the involvement of mechanisms of detoxification in liver and inquisition of gut microbiota plays crucial role in regulation of physiological activities through liver-gut axis to mitigate toxic effects in animals.


Assuntos
Atrazina , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Herbicidas , Animais , Atrazina/toxicidade , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Camundongos
12.
J Hazard Mater ; 408: 124888, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360697

RESUMO

Copper (Cu), a transition metal with essential cellular functions, exerts toxic effects when present in excess by inducing oxidative stress. However, the Cu-induced crosstalk between mitophagy and apoptosis and the underlying mechanisms are unknown. Here, the mechanism of Cu-induced hepatotoxicity mediated by mitophagy and apoptosis was explored in vivo and in vitro. In in vivo experiments, chickens were fed a diet with various levels of Cu (11, 110, 220, and 330 mg/kg) for 7 weeks, which led to ultrastructural damage, mitophagy, and apoptosis in liver tissue. In vitro experiments on primary chicken hepatocytes showed that Cu treatment for 24 h increased the numbers of mitophagosomes and upregulated PINK1, parkin, and p62 mRNA levels and parkin and p62 protein levels, inducing mitophagy. Moreover, treatment with 3- methyladenine (3-MA) aggravated Cu-induced S-phase arrest in cell cycle; increased the apoptotic rate; increased p53, Bak1, Bax, Cyt C, and Caspase3/cleaved-caspase3 mRNA and protein levels; and decreased Bcl2 mRNA and protein levels. However, rapamycin (Rapa) had the opposite effects on the above factors. In general, the results reveal that Cu exposure can cause mitophagy through the PINK1/Parkin pathway in chicken livers, and that mitophagy might attenuate Cu-induced mitochondrial apoptosis.


Assuntos
Galinhas , Mitofagia , Animais , Apoptose , Cobre/toxicidade , Fígado , Mitocôndrias , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
13.
Ecotoxicol Environ Saf ; 206: 111366, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010598

RESUMO

To explore the effects of copper (Cu) on energy metabolism and AMPK-mTOR pathway-mediated autophagy in kidney, a total of 240 one-day-old broiler chickens were randomized into four equal groups and fed on the diets with different levels of Cu (11, 110, 220, and 330 mg/kg) for 49 d. Results showed that excess Cu could induce vacuolar degeneration and increase the number of autophagosomes in kidney, and the adenosine triphosphate (ATP) level and mRNA levels of energy metabolism-related genes were decreased with the increasing dietary Cu level. Moreover, immunohistochemistry and immunofluorescence showed that the positive expressions of Beclin1 and LC3-II were mainly located in cytoplasm of renal tubular epithelial cells and increased significantly with the increasing levels of Cu. The mRNA levels of Beclin1, Atg5, LC3-I, LC3-II, Dynein and the protein levels of Beclin1, Atg5, LC3-II/LC3-I and p-AMPKα1/AMPKα1 were markedly elevated in treated groups compared with control group (11 mg/kg Cu). However, the mRNA and protein levels of p62 and p-mTOR/mTOR were significantly decreased with the increasing levels of Cu. These results suggest that impaired energy metabolism induced by Cu may lead to autophagy via AMPK-mTOR pathway in kidney of broiler chickens.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cobre/toxicidade , Metabolismo Energético/efeitos dos fármacos , Rim/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Galinhas , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Metabolismo Energético/genética , Rim/metabolismo , Rim/patologia , Transdução de Sinais/efeitos dos fármacos
15.
Ecotoxicol Environ Saf ; 200: 110715, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450432

RESUMO

Copper (Cu) is a necessary trace mineral due to its biological activity. Excessive Cu can induce inflammatory response in humans and animals, but the underlying mechanism is still unknown. Here, 240 broilers were used to study the effects of excessive Cu on oxidative stress and NF-κB-mediated inflammatory responses in immune organs. Chickens were fed with diet containing different concentrations of Cu (11, 110, 220, and 330 mg of Cu/kg dry matter). The experiment lasted for 49 days. Spleen, thymus, and bursa of Fabricius (BF) on day 49 were collected for histopathological observation and assessment of oxidative stress status. Additionally, the mRNA and protein levels of NF-κB and inflammatory cytokines were also analyzed. The results indicated that excess Cu could increase the number and area of splenic corpuscle as well as the ratio of cortex and medulla in thymus and BF. Furthermore, excessive Cu intake could decrease activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); but increase contents of malondialdehyde (MDA), TNF-α, IL-1, IL-1ß; up-regulate mRNA levels of TNF-α, IFN-γ, IL-1, IL-1ß, IL-2, iNOS, COX-2, NF-κB and protein levels of TNF-α, IFN-γ, NF-κB, p-NF-κB in immune organs. In conclusion, excessive Cu could cause pathologic changes and induce oxidative stress with triggered NF-κB pathway, and might further regulate the inflammatory response in immune organs of chicken.


Assuntos
Galinhas/imunologia , Cobre/toxicidade , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Bolsa de Fabricius/enzimologia , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/metabolismo , Bolsa de Fabricius/patologia , Catalase/metabolismo , Galinhas/genética , Galinhas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/genética , Inflamação/metabolismo , Malondialdeído/metabolismo , NF-kappa B/genética , Baço/enzimologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Superóxido Dismutase/metabolismo , Timo/enzimologia , Timo/imunologia , Timo/metabolismo , Timo/patologia
16.
Biol Trace Elem Res ; 198(2): 636-643, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32080790

RESUMO

The purpose of this research was to investigate whether copper (Cu) exposure could induce apoptosis via endoplasmic reticulum stress (ERS) in skeletal muscle of broilers. A total of 240 one-day-old chickens were randomly divided into four groups by free access; the diets are as follows: control diet (Cu 11 mg/kg, control group) and high level of Cu diets (Cu 110 mg/kg, group I; Cu 220 mg/kg, group II; Cu 330 mg/kg, group III). The skeletal muscle tissues were collected on day 49 for further examination. The content of Cu, histopathology, and the expression levels of the genes and proteins related to ERS and apoptosis were detected. Results showed that the Cu levels in skeletal muscle were increased in a dose-dependent manner. Meanwhile, the spaces between the muscle fibers were wider with the increase of Cu content, and the myolysis was observed in group III. Besides, the mRNA expression levels of GRP78, GRP94, eIF2α, ATF6, XBP1, CHOP, Caspase-12, and Caspase3 were markedly increased in treated groups compared with control group, and the protein expression levels of GRP78, Caspase3, Active-Caspase3 and JNK were significantly elevated with the increase of dietary Cu. In summary, these findings suggested that Cu could induce apoptosis through ERS in skeletal muscle of broilers.


Assuntos
Galinhas , Estresse do Retículo Endoplasmático , Animais , Apoptose , Cobre/farmacologia , Músculo Esquelético
17.
Ecotoxicol Environ Saf ; 190: 110158, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918257

RESUMO

Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl2 (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cobre/toxicidade , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Rim/metabolismo , Rim/patologia , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Superóxido Dismutase/metabolismo
18.
Ecotoxicol Environ Saf ; 190: 110063, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846860

RESUMO

Arsenic is a toxic metalloid that can cause male reproductive malfunctions and is widely distributed in the environment. The aim of this study was to investigate the cytotoxicity of arsenic trioxide (ATO) induced GC-1 spermatogonial (spg) cells. Our results found that ATO increased the levels of catalase (CAT) and malonaldehyde (MDA) and reactive oxygen species (ROS), while decreasing glutathione (GSH) and the total antioxidant capacity (T-AOC). Therefore, ATO triggered oxidative stress in GC-1 spg cells. In addition, ATO also caused severe mitochondrial dysfunction that included an increase in residual oxygen consumption (ROX), and decreased the routine respiration, maximal and ATP-linked respiration (ATP-L-R), as well as spare respiratory capacity (SRC), and respiratory control rate (RCR); ATO also damaged the mitochondrial structure, including mitochondrial cristae disordered and dissolved, mitochondrial vacuolar degeneration. Moreover, degradation of p62, LC3 conversion, increasing the number of acidic vesicle organelles (AVOs) and autophagosomes and autolysosomes are demonstrated that the cytotoxicity of ATO may be associated with autophagy. Meanwhile, the metabolomics analysis results showed that 20 metabolites (10 increased and 10 decreased) were significantly altered with the ATO exposure, suggesting that maybe there are the perturbations in amino acid metabolism, lipid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins. We concluded that ATO was toxic to GC-1 spg cells via inducing oxidative stress, mitochondrial dysfunction and autophagy as well as the disruption of normal metabolism. This study will aid our understanding of the mechanisms behind ATO-induced spermatogenic toxicity.


Assuntos
Trióxido de Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Lisossomos/metabolismo , Masculino , Metabolômica , Camundongos , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Espermatogônias/enzimologia , Espermatogônias/metabolismo
19.
Ecotoxicol Environ Saf ; 185: 109710, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563750

RESUMO

The purpose of this research was to discuss the effects of copper (Cu)-induced toxicity on oxidative stress and autophagy in hypothalamus of broilers. In this study, 240 one-day-old broilers were randomly divided into 4 groups and the contents of dietary Cu in 4 groups were 11 mg/kg (control group), 110 mg/kg (group I), 220 mg/kg (group II), and 330 mg/kg (group III). The experiment lasted for 49 days and the hypothalamus tissues were collected for histological observation and detection of Cu content. Additionally, the indicators related to oxidative stress in hypothalamus were determined. Moreover, the mRNA expression levels of autophagy-related genes and the protein expression levels of Beclin1, LC3-II/LC3-I, and p62 in hypothalamus were measured. Results showed that the treated groups were observed vacuolar degeneration in hypothalamus compared to control group, and the Cu content in hypothalamus was increased with the increase of dietary Cu. Furthermore, the activities of SOD, CAT, T-AOC were increased in group I and group II and then decreased in group III, and the content of MDA and the mRNA levels of Nrf2, HO-1, SOD-1, CAT, GCLC, GCLM, and GST in treated groups were elevated compared to control group. Moreover, the mRNA expression levels of Beclin1, Atg5, LC3-I, LC3-II and the protein expression levels of Beclin1 and LC3-II/LC3-I up-regulated significantly with the increasing levels of Cu. However, the mRNA expression levels of p62 and mTOR and the protein expression level of p62 down-regulated remarkably. Taken together, our present study evidenced that excessive intake of Cu could induce oxidative stress and autophagy in hypothalamus of broilers.


Assuntos
Autofagia/efeitos dos fármacos , Galinhas , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Hipotálamo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Galinhas/metabolismo , Cobre/metabolismo , Dieta , Exposição Dietética/análise , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Distribuição Aleatória
20.
Ecotoxicol Environ Saf ; 174: 110-119, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822667

RESUMO

The purpose of this study was to investigate the effects of copper (Cu) on hepatocyte pyroptosis and the relationship between pyroptosis and apoptosis in the mechanisms of Cu toxicity. Primary chicken hepatocytes were cultured in different concentrations of Cu sulfate (CuSO4) (0, 10, 50, and 100 µM), N-acetylcysteine (NAC) (1 mM), and Z-YVAD-fluoromethylketone (Z-YVAD-FMK) (10 µM) for 24 h, and the combination of Cu and NAC or Z-YVAD-FMK for 24 h. Cellular morphology and function, cell viability, mitochondria membrane potential (MMP), apoptosis rate, mRNA expression of pyroptosis-related and apoptosis-related genes, and Caspase-1, Caspase-3 proteins expression were determined. These results indicated that Cu markedly induced the mRNA expression of pyroptosis-related genes (Caspase-1, IL-1ß, IL-18, and NLRP3) and Caspase-1 protein expression. Furthermore, contents of Caspase-1, IL-1ß, and IL-18 in the supernatant fluid of culture hepatocytes were significantly increased in hepatocytes. NAC relieved excess Cu-caused the changes of above genes and proteins. Additionally, Z-YVAD-FMK, caspase-1 inhibitor, which attenuated Cu-induced the increased lactic dehydrogenase (LDH), aspartate amino transferase (AST), alanine aminotransferase (ALT) activities. Furthermore, treatment with Cu and Z-YVAD-FMK could down-regulate the mRNA levels of Caspase-3, Bak1, Bax, and CytC and Caspase-3 protein expression, up-regulate the mRNA expression of Bcl2, increase the MMP and reduce cell apoptosis compared to treatment with Cu in hepatocytes. Collectively, these finding evidenced that excess Cu induced pyroptosis by generating ROS in hepatocytes, and the inhibition of Caspase-1-dependent pyroptosis might attenuate Cu-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 1/fisiologia , Cobre/toxicidade , Hepatócitos/efeitos dos fármacos , Piroptose , Animais , Caspase 3/metabolismo , Sobrevivência Celular , Galinhas , Interleucina-1beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...