RESUMO
Facial expression methods play a vital role in human-computer interaction and other fields, but there are factors such as occlusion, illumination, and pose changes in wild facial recognition, as well as category imbalances between different datasets, that result in large variations in recognition rates and low accuracy rates for different categories of facial expression datasets. This study introduces RCL-Net, a method of recognizing wild facial expressions that is based on an attention mechanism and LBP feature fusion. The structure consists of two main branches, namely the ResNet-CBAM residual attention branch and the local binary feature (LBP) extraction branch (RCL-Net). First, by merging the residual network and hybrid attention mechanism, the residual attention network is presented to emphasize the local detail feature information of facial expressions; the significant characteristics of facial expressions are retrieved from both channel and spatial dimensions to build the residual attention classification model. Second, we present a locally improved residual network attention model. LBP features are introduced into the facial expression feature extraction stage in order to extract texture information on expression photographs in order to emphasize facial feature information and enhance the recognition accuracy of the model. Lastly, experimental validation is performed using the FER2013, FERPLUS, CK+, and RAF-DB datasets, and the experimental results demonstrate that the proposed method has superior generalization capability and robustness in the laboratory-controlled environment and field environment compared to the most recent experimental methods.
Assuntos
Reconhecimento Facial , Humanos , Projetos de Pesquisa , Ambiente Controlado , Face , Laboratórios , Expressão FacialRESUMO
In recent years, brain diseases have seriously threatened human health due to their high morbidity and mortality. Achieving efficient drug delivery to provide satisfactory therapeutic outcomes is currently the greatest challenge in treating brain diseases. The main challenges are the structural peculiarities of the brain and the inability to transport drugs across the blood-brain barrier. Biomimetic nanodelivery systems (BNDSs) applied to the brain have been extensively developed in the preclinical phase to surmount these challenges. Considering the inherent properties of BNDSs, the substantially enhanced ability of BNDS to carry therapeutic agents and their higher selectivity toward lesions offer new opportunities for developing safe and effective therapies. This review summarizes brain-targeting nanotherapies, particularly advanced therapies with biomimetic nano-assistance. Prospects for developing BNDSs and the challenges of their clinical translation are discussed. Understanding and implementing biomimetic nanotherapies may facilitate the development of new targeted strategies for brain disorders.
RESUMO
FSATOOL is an integrated molecular simulation and data analysis program. Its old molecular dynamics engine only supports simulations in vacuum or implicit solvent. In this work, we implement the well-known smooth particle mesh Ewald method for simulations in explicit solvent. The new developed engine is runnable on both CPU and GPU. All the existed analysis modules in the program are compatible with the new engine. Moreover, we also build a complete deep learning module in FSATOOL. Based on the module, we further implement two useful trajectory analysis methods: state-free reversible VAMPnets and time-lagged autoencoder. They are good at searching the collective variables related to the conformational transitions of biomolecules. In FSATOOL, these collective variables can be further used to construct a bias potential for the enhanced sampling purpose. We introduce the implementation details of the methods and present their actual performances in FSATOOL by a few enhanced sampling simulations.
RESUMO
Surface plasmons have robust and strong confinement to the light field which is beneficial for the light-matter interaction. Surface plasmon amplification by stimulated emission of radiation (SPACER) has the potential to be integrated on the semiconductor chip as a compact coherent light source, which can play an important role in further extension of Moore's law. In this study, we demonstrate the localized surface plasmon lasing at room temperature in the communication band using metallic nanoholes as the plasmonic nanocavity and InP nanowires as the gain medium. Optimizing laser performance has been demonstrated by coupling between two metallic nanoholes which adds another degree of freedom for manipulating the lasing properties. Our plasmonic nanolasers exhibit lower power consumption, smaller mode volumes, and higher spontaneous emission coupling factors due to enhanced light-matter interactions, which are very promising in the applications of high-density sensing and photonic integrated circuits.
RESUMO
Above-optimal growth temperatures, usually referred to as heat stress (HS), pose a challenge to organisms' survival as they interfere with essential physiological functions and disrupt cellular organization. Previous studies have elucidated the complex transcriptional regulatory networks involved in plant HS responses, but the mechanisms of organellar remodelling and homeostasis during plant HS adaptations remain elusive. Here we report a non-canonical function of ATG8 in regulating the restoration of plant Golgi damaged by HS. Short-term acute HS causes vacuolation of the Golgi apparatus and translocation of ATG8 to the dilated Golgi membrane. The inactivation of the ATG conjugation system, but not of the upstream autophagic initiators, abolishes the targeting of ATG8 to the swollen Golgi, causing a delay in Golgi recovery after HS. Using TurboID-based proximity labelling, we identified CLATHRIN LIGHT CHAIN 2 (CLC2) as an interacting partner of ATG8 via the AIM-LDS interface. CLC2 is recruited to the cisternal membrane by ATG8 to facilitate Golgi reassembly. Collectively, our study reveals a hitherto unanticipated process of Golgi stack recovery from HS in plant cells and uncovers a previously unknown mechanism of organelle resilience involving ATG8.
Assuntos
Complexo de Golgi , Plantas , Autofagia/fisiologia , Organelas , Resposta ao Choque TérmicoRESUMO
A novel dopamine-supported Mg(Ca)Al layered double hydroxide composite was synthesized by co-precipitation method. The existence of Ca2+ and dopamine could promote the capture of uranium on the layered double hydroxides. In batch experiments, the composite exhibited good uranium removal performance, including high adsorption capacity (687.3 mg/g), strong anti-interference and good reusability (the removal percentage was still higher than 90 % after five cycles). At low initial uranium concentration, the uranium removal percentage on the composite exceeded 99.7 % and the residual concentration of uranium in the solution was <0.03 mg/L, reaching the limited standard of the World Health Organization. The studies of adsorption kinetics and isotherm indicated that the uranium adsorption behavior on the composite conformed to the pseudo-second-order kinetic and Langmuir isotherm models, suggesting that the process was a monolayer adsorption dominated by chemical adsorption. Furthermore, the high-efficiency uranium adsorption on the Mg(Ca)Al layered double hydroxide was mainly attributed to the strong complexation between the active sites (-OH and -NH2) and uranium, the precipitation of interlayer intercalation ions (CO32- and OH-) to uranium and the ion exchange of Ca2+ to uranium. Due to these advantages, the dopamine-supported Mg(Ca)Al layered double hydroxide composite is expected to be used as fine adsorbent to remove uranium from wastewater.
RESUMO
Autofocusing is widely used in applications where sharp image acquisition or projection is needed. Here we report an active autofocusing method for sharp image projection. The method works with wide-field structured illumination and single-pixel detection. To find the focus position, the method illuminates the target object with a set of 3-step phase-shifting Fourier basis patterns repeatedly and collects the backscattered light by using a single-pixel detector through a grating. Dual modulation-dynamic modulation by the time-varying structured illumination and static modulation by the grating-embeds the depth information for the target object in the resulting single-pixel measurements. As such, the focus position can be determined by recovering the Fourier coefficients from the single-pixel measurements and searching for the coefficient with the maximum magnitude. High-speed spatial light modulation not only enables rapid autofocusing but also makes the method work even when the lens system is in continuous motion or the focal length of the lens is continuously adjusted. We experimentally validate the reported method in a self-built digital projector and demonstrate the application of the method in Fourier single-pixel imaging.
RESUMO
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
RESUMO
BACKGROUND: The pattern of changes in the cervical spine and the spinal cord and their dynamic characteristics in patients with cervical spinal cord injury without fracture and dislocation remain unclear. This study aimed to evaluate the dynamic changes in the cervical spine and spinal cord from C2/3 to C7/T1 in different positions by using kinematic magnetic resonance imaging in patients with cervical spinal cord injury without fracture and dislocation. This study was approved by the ethics committee of Yuebei People's Hospital. METHODS: Using median sagittal T2-weighted images for 16 patients with cervical spinal cord injury without fracture and dislocation who underwent cervical kinematic MRI, the anterior space available for the cord, spinal cord diameter, posterior space available for the cord from C2/3 to C7/T1, and Muhle's grade were determined. The spinal canal diameter was calculated by adding the anterior space available for the cord, spinal cord diameter, and posterior space available for the cord. RESULTS: The anterior space available for the cord, posterior space available for the cord, and spinal canal diameters at C2/3 and C7/T1 were significantly higher than those from C3/4 to C6/7. Muhle's grades at C2/3 and C7/T1 were significantly lower than those at the other levels. Spinal canal diameter was lower in extension than in the neutral and flexion positions. In the operated segments, significantly lesser space was available for the cord (anterior space available for the cord + posterior space available for the cord), and the spinal cord diameter/spinal canal diameter ratio was higher than those in the C2/3, C7/T1, and non-operated segments. CONCLUSION: Kinematic MRI demonstrated dynamic pathoanatomical changes, such as canal stenosis in different positions, in patients with cervical spinal cord injury without fracture and dislocation. The injured segment had a small canal diameter, high Muhle's grade, low space available for the cord, and high spinal cord diameter/spinal canal diameter ratio.
Assuntos
Medula Cervical , Fraturas Ósseas , Luxações Articulares , Lesões dos Tecidos Moles , Traumatismos da Medula Espinal , Humanos , Medula Cervical/diagnóstico por imagem , Fenômenos Biomecânicos , Traumatismos da Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vértebras Cervicais/diagnóstico por imagemRESUMO
INTRODUCTION: Congenital diaphragmatic hernia (CDH) repair is an area of active research. Large defects requiring patches have a hernia recurrence rate of up to 50%. We designed a biodegradable polyurethane (PU)-based elastic patch that matches the mechanical properties of native diaphragm muscle. We compared the PU patch to a non-biodegradable Gore-Tex™ (polytetrafluoroethylene) patch. METHODS: The biodegradable polyurethane was synthesized from polycaprolactone, hexadiisocyanate and putrescine, and then processed into fibrous PU patches by electrospinning. Rats underwent 4 mm diaphragmatic hernia (DH) creation via laparotomy followed by immediate repair with Gore-Tex™ (n = 6) or PU (n = 6) patches. Six rats underwent sham laparotomy without DH creation/repair. Diaphragm function was evaluated by fluoroscopy at 1 and 4 weeks. At 4 weeks, animals underwent gross inspection for recurrence and histologic evaluation for inflammatory reaction to the patch materials. RESULTS: There were no hernia recurrences in either cohort. Gore-Tex™ had limited diaphragm rise compared to sham at 4 weeks (1.3 mm vs 2.9 mm, p = 0.003), but no difference was found between PU and sham (1.7 mm vs 2.9 mm, p = 0.09). There were no differences between PU and Gore-Tex™ at any time point. Both patches formed an inflammatory capsule, with similar thicknesses between cohorts on the abdominal (Gore-Tex™ 0.07 mm vs. PU 0.13 mm, p = 0.39) and thoracic (Gore-Tex™ 0.3 mm vs. PU 0.6 mm, p = 0.09) sides. CONCLUSION: The biodegradable PU patch allowed for similar diaphragmatic excursion compared to control animals. There were similar inflammatory responses to both patches. Further work is needed to evaluate long-term functional outcomes and further optimize the properties of the novel PU patch in vitro and in vivo. LEVEL OF EVIDENCE: Level II, Prospective Comparative Study.
Assuntos
Hérnias Diafragmáticas Congênitas , Ratos , Animais , Hérnias Diafragmáticas Congênitas/cirurgia , Projetos Piloto , Poliuretanos , Estudos Prospectivos , Diafragma/cirurgia , Estudos RetrospectivosRESUMO
Coating preservation has a remarkable effect on the preservation of aquatic products. This work prepared a composite coating using konjac glucomannan (KGM) as the film-forming matrix and ε-polylysine hydrochloride (ε-PL) and ferulic acid (FA) as the preservative. Three types of treated sea bass (KGM, KGM-ε-PL, and KGM-ε-PL-FA) and untreated sea bass were stored at 4 °C for 20 days to compare freshness changes under different treatment conditions. The results showed that the surface color and texture of sea bass in refrigerated storage changed dramatically and deteriorated as storage time increased. The composite coating treatment was significantly different from the control group. Using Gas-phase ion migration spectrometry (GC-IMS) technology, 32 volatile compounds, such as aldehydes, alcohols, and ketones, were found in fillets during flavor quality analysis. The composite coating can successfully inhibit the formation of odor compounds such as 2-nonenone, isoamyl alcohol monomer, ammonia, and trimethylamine, delaying the deterioration of fish and improving freshness. Among them, KGM-ε-PL-FA composite coating has the most remarkable preservation performance, which significantly inhibits the occurrence of rotten odor, and has a potential application prospect in the field of food preservation.
RESUMO
OBJECTIVES: Accurate evaluation of residual cancer burden remains challenging because of the lack of appropriate techniques for tumor bed sampling. This study evaluated the application of a white light imaging system to help pathologists differentiate the components and location of tumor bed in specimens. METHODS: The high dynamic range dual-mode white light imaging (HDR-DWI) system was developed to capture antiglare reflection and multiexposure HDR transmission images. It was tested in 60 specimens of modified radical mastectomy after neoadjuvant therapy. We observed the differential transmittance among tumor tissue, fibrosis tissue, and adipose tissue. RESULTS: The sensitivity and specificity of HDR-DWI were compared with x-ray or visual examination to determine whether HDR-DWI was superior in identifying tumor beds. We found that tumor tissue had lower transmittance (0.12 ± 0.03) than fibers (0.15 ± 0.04) and fats (0.27 ± 0.07) (P < .01). CONCLUSIONS: HDR-DWI was more sensitive in identifying fiber and tumor tissues than cabinet x-ray and visual observation (P < .01). In addition, HDR-DWI could identify more fibrosis areas than the currently used whole slide imaging did in 12 samples (12/60). We have determined that HDR-DWI can provide more in-depth tumor bed information than x-ray and visual examination do, which will help prevent diagnostic errors in tumor bed sampling.
Assuntos
Neoplasias da Mama , Diagnóstico por Imagem , Patologia Clínica , Neoplasias da Mama/diagnóstico por imagem , Cor , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/normas , Patologia Clínica/instrumentação , Patologia Clínica/métodos , Sensibilidade e Especificidade , Raios X , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , IdosoRESUMO
Introduction: Chronic viral hepatitis (CH) is a stage prior to cirrhosis and primary cancer. Standard protocols for CH assessment during the long follow-up period are of great importance for precise treatment and living quality improvement. In this study, we aimed to analyze multiple serum indexes in chronic hepatitis B (CHB)-infected patients and to discuss their combined values in clinical applications. Methods: Total 503 lines of laboratory data from 2012 to 2021 were extracted from103 CHB patients who were followed-up in our hospital. They were divided into the remission group and the progression group according to their complete clinical information and laboratory data. A series of models of serum indexes were analyzed to illustrate the fluctuation trend of @ach index in a time-dependent manner. Results: The models revealed that abundant serum alpha-fetoprotein (AFP) in the remission group was characteristically associated with hepatocyte destruction markers aspartate aminotransferase (AST) and alanine aminotransferase and favored a much longer progression-free period (P 0.0001). A model-derived equation consisting of serum AFP and AST values showed a good performance (83% reliability) to distinguish the two groups. Discussion: This study clearly demonstrates the intrinsic quantitative relationship between serum AFP and liver aminotransferases involving antivirus treatment response. The model-based equation compensates for serum hepatitis B virus DNA detection during outpatient follow-up and it may serve as a useful laboratory tool for CHB progression assessment.
Assuntos
Hepatite B Crônica , Humanos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/complicações , alfa-Fetoproteínas , Seguimentos , Reprodutibilidade dos Testes , Aspartato Aminotransferases , BiomarcadoresRESUMO
Pulmonary lymphoepithelioma-like carcinoma (PLELC) is a rare and histologically distinctive subtype of nonsmall cell lung cancer (NSCLC). High expression of programmed death ligand 1 (PD-L1) and scarcity of druggable driver mutations raise the potential of immunotherapy for advanced PELEC. However, evidence on the clinical impact of immune-checkpoint inhibitors (ICIs) remained limited and unconvincing. The present study retrospectively enrolled advanced PLELC patients who received ICIs either as up-front or salvage therapy in SYSUCC between March 15, 2017 and March 15, 2022. The comparative efficacy of chemoimmunotherapy vs chemotherapy in the first-line setting and chemoimmunotherapy vs ICIs monotherapy in the ≥2 line setting was investigated. A total of 96 patients were finally enrolled; 49 PLELC patients received immunotherapy plus platinum-based chemotherapy, while 45 patients received platinum-based chemotherapy as first-line treatment. Patients with chemoimmunotherapy significantly obtain more survival benefits than those receiving chemotherapy (median progression-free survival [PFS]: 15.6 vs 8.6 months, P = .0015). Additionally, patients with chemoimmunotherapy obtained more PFS benefits than those with ICIs monotherapy in the ≥2 line of therapy (median PFS: 21.7 months vs 7.8 months, P = .094). A significant correlation was observed between prognostic nutritional index (PNI) and favorable treatment outcomes in patients receiving first-line chemoimmunotherapy (median PFS: 17.8 months vs 7.6 months, P < .0001). Likewise, patients in the monocyte-to-lymphocyte ratio (MLR)-high group had significantly shorter PFS than the MLR-low group (median PFS: 11.2 months vs not reached, P = .0009). Our study elucidated the superior efficacy of ICIs therapy, especially chemoimmunotherapy in advanced PLELC, which may provide new insight into the role of immunotherapy in advanced PLELC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , ImunoterapiaRESUMO
The design of highly dispersed active sites of hollow materials and unique contact behavior with the components to be catalyzed provide infinite possibilities for exploring the limits of catalyst capacity. In this study, the synthesis strategy of highly open 3-dimensional frame structure Prussian blue analogues (CoFe-PBA) was explored through structure self-transformation, which was jointly guided by template mediated epitaxial growth, restricted assembly and directional assembly. Additionally, good application prospect of CoFe-PBA as combustion catalyst was discussed. The results show that unexpected thermal decomposition behavior can be achieved by limiting AP(ammonium perchlorate) to the framework of CoFe-PBA. The high temperature decomposition stage of AP can be advanced to 283.6 °C and the weight loss rate can reach 390.03% min-1 . In-situ monitoring shows that CoFe-PBA can accelerate the formation of NO and NO2 . The calculation of reaction kinetics proved that catalytic process was realized by increasing the nucleation factor. On this basis, the catalytic mechanism of CoFe-PBA on the thermal decomposition of AP was discussed, and the possible interaction process between AP and CoFe-PBA during heating was proposed. At the same time, another interesting functional behavior to prevent AP from caking was discussed.
RESUMO
Itch is an unpleasant sensation followed by an intense desire to scratch. Previous researches have advanced our understanding about the role of anterior cingulate cortex and prelimbic cortex in itch modulation, whereas little is known about the effects of retrosplenial cortex (RSC) during this process. Here we firstly confirmed that the neuronal activity of dysgranular RSC (RSCd) is significantly elevated during itch-scratching processing through c-Fos immunohistochemistry and fiber photometry recording. Then with designer receptors exclusively activated by designer drugs approaches, we found that pharmacogenetic inhibition of global RSCd neurons attenuated the number of scratching bouts as well as the cumulative duration of scratching bouts elicited by both 5-HT or compound 48/80 injection into rats' nape or cheek; selective inhibition of the pyramidal neurons in RSCd, or of the excitatory projections from caudal anterior cingulate cortex (cACC) to RSCd, demonstrated the similar effects of decreasing itch-related scratching induced by both 5-HT or compound 48/80. Pharmacogenetic intervention of the neuronal or circuitry activities did not affect rats' motor ability. This study presents direct evidence that pyramidal neurons in RSCd, and the excitatory projection from cACC to RSCd are critically involved in central regulation of both histaminergic and nonhistaminergic itch.
Assuntos
Giro do Cíngulo , Serotonina , Ratos , Animais , Prurido , Córtex Cerebral/fisiologia , Canais de CloretoRESUMO
BACKGROUND: Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS: In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 µg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 µg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION: Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.
Assuntos
Afídeos , Buchnera , Animais , Fosfofrutoquinases/metabolismo , Fosfofrutoquinase-1/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
BACKGROUND: We aimed to investigate the determinant factors of anti-PD-1 therapy outcome in nasopharyngeal carcinoma (NPC). METHODS: In this retrospective study, we included 64 patients with recurrent/metastatic NPC. The association of patients' characteristics, C-reactive protein (CRP), neutrophil to lymphocyte ratio (NLR), and lactate dehydrogenase (LDH) with survival benefit of anti-PD-1 therapy were analyzed using Cox regression models and Kaplan-Meier analyses. Patients were divided based on the median value of CRP, NLR or LDH into different subgroups. RESULTS: At a median follow-up time of 11.4 months (range: 1-28 months), median progression-free survival (PFS) and overall survival (OS) were 1.9 months (95% CI, .18-3.6) and 15 months (95% CI, 10.9-19.1) months, respectively. Pretreatment metastases numbers was significant predictor of PFS (HR = 1.99; 95% CI 1.10-3.63; P = .024) and OS (HR = 2.77; 95% CI 1.36-5.61; P = .005). Baseline LDH level was independent predictor of OS (HR = 7.01; 95% CI 3.09-15.88; P < .001). Patients with LDH level >435 U/L at the baseline had significantly shorter PFS and OS compared to patients with LDH level ≤435 U/L (median PFS: 1.7 vs 3.5 months, P = .040; median OS: 3.7 vs 18.5 months, P < .001). Patients with non-durable clinical benefit (NDB) had significantly higher LDH level at the baseline compared to patients who achieved durable clinical benefit (DCB) (P = .025). Post-treatment levels of CRP, LDH, and NLR were decreased compared to baseline in patients with DCB (P = .030, P = .088, and P = .066, respectively), whereas, there was a significant increase in post-treatment level of LDH compared with baseline in patients with NDB (P = .024). CONCLUSIONS: LDH level at the baseline was an independent predictor of OS and pretreatment metastases numbers was a significant predictor of PFS and OS.
Assuntos
Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Humanos , Lactato Desidrogenases , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Prognóstico , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND & OBJECTIVE: "Anti-angiogenetic drugs plus chemotherapy" (anti-angio-chemo) and "immune checkpoint inhibitors plus chemotherapy" (ICI-chemo) are superior to traditional chemotherapy in the first-line treatment of patients with advanced non-small-cell lung cancer (NSCLC). However, in the absence of a direct comparison of ICI-chemo with anti-angio-chemo, the superior one between them has not been decided, and the benefit of adding anti-angiogenetic agents to ICI-chemo remains controversial. This study aimed to investigate the role of antiangiogenic agents for advanced NSCLC in the era of immunotherapy. METHODS: Eligible randomized controlled trials (RCTs) comparing chemotherapy versus therapeutic regimens involving ICIs or anti-angiogenetic drugs were included. Outcomes included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and rate of grade 3-4 toxicity assessment. R-4.3.1 was utilized to perform the analysis. RESULTS: A total of 54 studies with a sample size of 25,046 were finally enrolled. "Atezolizumab + Bevacizumab + Chemotherapy" significantly improved the ORR compared with "Atezolizumab + Chemotherapy" (Odds ratio (OR) = 2.73, 95% confidence interval (CI): 1.27-5.87). The trend also favored "Atezolizumab + Bevacizumab + Chemotherapy" in PFS and OS (hazard ratio (HR) = 0.71, 95% CI: 0.39-1.31; HR = 0.94, 95% CI: 0.77-1.16, respectively). In addition, "Pembrolizumab + Chemotherapy" and "Camrelizumab + Chemotherapy" significantly prolonged the PFS compared to "Bevacizumab + Chemotherapy" (HR = 0.65, 95% CI: 0.46-0.92; HR = 0.63, 95% CI: 0.41-0.97; respectively). Meanwhile, "Pembrolizumab + Chemotherapy" and "Sintilimab + Chemotherapy" yielded more OS benefits than "Bevacizumab + Chemotherapy" (HR = 0.69, 95% CI: 0.56-0.83; HR = 0.64, 95%CI: 0.46-0.91; respectively). Scheme between "Atezolizumab + Bevacizumab + Chemotherapy" and "Atezolizumab + Chemotherapy" made no significant difference (OR = 1.18, 95%CI: 0.56-2.42) concerning the rate of grade 3-4 toxicity. It seemed that ICI-chemo yielded more improvement in quality-adjusted life-year (QALY) than "Bevacizumab + Chemotherapy" in cost-effectiveness analysis. CONCLUSION: Our results suggest that ICI-chemo is associated with potentially longer survival, better cost-effectiveness outcomes, and comparable safety profiles than anti-angio-chemo. Also, adding bevacizumab to ICI-chemo seemed to provide additional therapeutic benefits without adding treatment burden. Our findings would supplement the current standard of care and help the design of future clinical trials for the first-line treatment of patients with advanced NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores da Angiogênese/efeitos adversos , Bevacizumab/uso terapêutico , Imunoterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Over the past few years, new psychoactive substances (NPS) have become a global health and social problem because of their wide variety, constant structural renewal, vague legal definitions, and rapid adaptation to legal restrictions. The rapid structural modifications of NPS have posed significant challenges for the screening and identification of these new substances using traditional mass spectrometric techniques based on reference substances or a mass spectral database. Here, we propose supervised machine learning (ML) classification models such as k-nearest neighbors, support vector machine, random forest, and multigrained cascade forest for the rapid screening of NPS using mass spectrometric data. This approach utilizes ML methods to learn the statistical probability distributions of mass spectral data for NPS and non-NPS. Four classification ML models were generated and evaluated using a data set comprising 567 LC-MS and 732 GC-MS spectra. Through cross validation, we achieved an F1 score of 0.35-0.97. These algorithms were applied in conjunction with mass spectrometry techniques for the detection of six seizures including electronic cigarette oil and suspected powdered substances netted in drug trafficking cases. The models provided warning signals for synthetic cannabinoids, synthetic cathinones, and fentanyl. Thus, an early warning system was successfully established, which provided a useful method for reliable and effective identifications of unknown NPS.