Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Metabolism ; 101: 153998, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31666193


BACKGROUND: The incidence of growth hormone deficiency (GHD) in adamantinomatous craniopharyngioma (aCP) is significantly higher than in other sellar region tumors, but the possible mechanism is still elusive. A high level of inflammatory responses is another feature of aCP. We investigated the internal connection between interleukin-1α (IL-1α) and GHD, while focusing on its biological activities in pituitary fibrosis. MATERIALS AND METHODS: To diagnosis of GHD, the Body Mass Index (BMI), Insulin Like Growth Factor-1(IGF-1) and peak growth hormone (GH) values after insulin stimulation test of 15 aCP patients were recorded. Histological staining was performed on the aCP samples. Levels of 9 proinflammatory cytokines in tumor tissue and cell supernatant were detected using Millipore bead arrays. The effect of IL-1α on GH secretion was evaluated in vivo and in vitro. Western blot, qRT-PCR and cell functional assays were used to explore the potential mechanism through which IL-1α acts on GH secretion. The stereotactic ALZET osmotic pump technique was used to simulate aCP secretion of proinflammatory cytokines in rats. Recombinant IL-1α (rrIL-1α) and conditioned media (CM) prepared from the supernatant of aCP cells was infused directly into the intra-sellar at a rate of 1 µl/h over 28 days, and then the effects of IL-1α treatment on pathological changes of pituitary gland and GH secretion were measured. To further confirm whether IL-1α affects GH secretion through IL-1R1, an IL-1R1 blocker (IL-1R1a, 10 mg/kg body weight, once daily) was administered subcutaneously from the first day until day 28. RESULTS: There was a significant positive correlation between pituitary fibrosis and GHD (rS = 0.756, P = 0.001). A number of cytokines, in particular IL-1α, interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), were elevated in tumor tissue and cell supernatant. Only IL-1α showed a significant difference between the GHD group and the No-GHD group (P < 0.001, F = 6.251 in tumor tissue; P = 0.003, F = 1.529 in cell supernatant). IL-1α significantly reduced GH secretion in coculture of GH3 and pericytes. The activation of pericytes induced by IL-1α was mediated by the IL-1R1 signaling pathway. In vivo, IL-1α induces pituitary fibrosis, further leading to a decreased level of GH. This pathological change was antagonized by IL-1R1a. CONCLUSION: This study found that the cross talk between aCP cells and stroma cells in the pituitary, i.e. pericytes, is an essential factor in the formation of GHD, and we propose that neutralization of IL-1α signaling might be a potential therapy for GHD in aCP.

Tissue Cell ; 58: 93-98, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31133252


This study aimed to propose a simple and practical method for culturing primary rat somatotropic cells in vitro free of pericytes contamination. Rat adenohypophyses were randomly divided into two groups. An improved method was used in group A (digesting adenohypophysis with 0.25% trypsin-EDTA, followed by removing pericytes by double filtration and using serum-free medium for culturing somatotropic cells). The traditional method was used in group B (digesting adenohypophysis with 0.35% collagenase, using serum medium for culturing somatotropic cells, and removing pericytes by changing the culture dish). The numbers and viability of somatotropic cells were higher in group A than in group B after 6 days. GH secretion of somatotropic cells was also higher in group A than in group B. Besides, the pericytes grew rapidly only in group B after 3 days. α-SMA, type I collagen, and type III collagen had weaker expression in group A. Also, the viability of pericytes decreased in group A. The improved method could solve the problem of pericytes contamination, and the culture of primary rat somatotropic cells in vitro was successful. This method can be used for other primary cultures with pericytes contamination.

Técnicas de Cultura de Células/métodos , Separação Celular , Somatotrofos/citologia , Animais , Sobrevivência Celular , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Somatotrofos/metabolismo