Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Sci Total Environ ; 806(Pt 2): 150622, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597553

RESUMO

The danger posed by cadmium (Cd) pollution to rice production is continuously increasing. Co-utilizing milk vetch (Astragalus sinicus L.) and rice straw is a good practice for rice yield and soil fertility in south China. However, its effects on Cd availability in soil-rice systems remain unclear. A micro-plot trial of two typical paddy soils (alluvial sandy soil and reddish clayey soil) in south China was conducted to investigate the effects of milk vetch, rice straw, lime, and their combined application on Cd availability and the related mechanisms. Soil chemical properties, CaCl2-extractable Cd (CaCl2-Cd), total content of Cd (Total-Cd), Cd fractionation (BCR sequential-extraction method), and Cd accumulation in rice were measured. Results showed that the co-utilization of milk vetch, rice straw, and lime (GRFL) decreased the Cd content in rice grain by 91.43% and 15.63% in early rice of two soils, respectively. Cd was not detected in late rice grains. CaCl2-Cd decreased by 0.025 mg kg-1 in late rice of alluvial sandy soil, 0.057 and 0.044 mg kg-1 decreased in early and late rice of reddish clayey soil, and Total-Cd decreased by 19.4% and 9.1% for early rice of two soils, respectively. Co-utilizing milk vetch, rice straw, and lime changed the distribution of different chemical forms of Cd, decreased the content of bioavailable Cd in soil by reducing the Aci-Cd and RedCd, and benefited the formation of more stable residual fraction (ResCd). Redundancy analysis showed that the improvement in soil pH, dissolved organic matter (DOM), and other soil properties was the main cause of the transformation of Cd form. Among the soil properties, pH and DOM had the greatest impacts on Cd availability. In conclusion, co-utilizing milk vetch and rice straw can alleviate the danger of soil Cd in rice production, and this effect could be strengthened by applying lime.

2.
Theranostics ; 11(19): 9397-9414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646377

RESUMO

Rationale: Most current cardiac regeneration approaches result in very limited cell division and little new cardiomyocyte (CM) mass. Positive feedback loops are vital for cell division, but their role in CM regeneration remains unclear. We aimed to determine whether the lncRNA small nucleolar RNA host gene 1 Snhg1 (Snhg1) could form a positive feedback loop with c-Myc to induce cardiac regeneration. Methods: Quantitative PCR and in situ hybridization experiments were performed to determine the Snhg1 expression patterns in fetal and myocardial infarction (MI) hearts. Gain- and Loss-of-function assays were conducted to explore the effect of Snhg1 on cardiomyocyte (CM) proliferation and cardiac repair following MI. We further constructed CM-specific Snhg1 knockout mice to confirm the proliferative effect exerted by Snhg1 using CRISPR/Cas9 technology. RNA sequencing and RNA pulldown were performed to explore how Snhg1 mediated cardiac regeneration. Chromatin immunoprecipitation and luciferase reporter assays were used to demonstrate the positive feedback loop between Snhg1 and c-Myc. Results: Snhg1 expression was increased in human and mouse fetal and myocardial infarction (MI) hearts, particularly in CMs. Overexpression of Snhg1 promoted CM proliferation, angiogenesis, and inhibited CM apoptosis after myocardial infarction, which further improved post-MI cardiac function. Antagonism of Snhg1 in early postnatal mice inhibited CM proliferation and impaired cardiac repair after MI. Mechanistically, Snhg1 directly bound to phosphatase and tensin homolog (PTEN) and induced PTEN degradation, activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway to promote CM proliferation. The c-Myc protein, one of downstream targets of PI3K/AKT signaling, functioned as a transcription factor by binding to the promoter regions of Snhg1. Perturbation of the positive feedback between Snhg1 and c-Myc by mutation of the binding sequence significantly affected Snhg1-induced CM proliferation. Conclusions: Snhg1 effectively elicited CM proliferation and improved cardiac function post-MI by forming a positive feedback loop with c-Myc to sustain PI3K/Akt signaling activation, and thus may be a promising cardiac regeneration strategy in treating heart failure post-MI.

4.
J Transl Med ; 19(1): 381, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496872

RESUMO

BACKGROUND: Tumor-derived exosomes (TEXs) are involved in tumor progression and the immune modulation process and mediate intercellular communication in the tumor microenvironment. Although exosomes are considered promising liquid biomarkers for disease diagnosis, it is difficult to discriminate TEXs and to develop TEX-based predictive biomarkers. METHODS: In this study, the gene expression profiles and clinical information were collected from The Cancer Genome Atlas (TCGA) database, IMvigor210 cohorts, and six independent Gene Expression Omnibus datasets. A TEXs-associated signature named TEXscore was established to predict overall survival in multiple cancer types and in patients undergoing immune checkpoint blockade therapies. RESULTS: Based on exosome-associated genes, we first constructed a tumor-derived exosome signature named TEXscore using a principal component analysis algorithm. In single-cell RNA-sequencing data analysis, ascending TEXscore was associated with disease progression and poor clinical outcomes. In the TCGA Pan-Cancer cohort, TEXscore was elevated in tumor samples rather than in normal tissues, thereby serving as a reliable biomarker to distinguish cancer from non-cancer sources. Moreover, high TEXscore was associated with shorter overall survival across 12 cancer types. TEXscore showed great potential in predicting immunotherapy response in melanoma, urothelial cancer, and renal cancer. The immunosuppressive microenvironment characterized by macrophages, cancer-associated fibroblasts, and myeloid-derived suppressor cells was associated with high TEXscore in the TCGA and immunotherapy cohorts. Besides, TEXscore-associated miRNAs and gene mutations were also identified. Further experimental research will facilitate the extending of TEXscore in tumor-associated exosomes. CONCLUSIONS: TEXscore capturing tumor-derived exosome features might be a robust biomarker for prognosis and treatment responses in independent cohorts.


Assuntos
Exossomos , Melanoma , Biomarcadores Tumorais/genética , Humanos , Imunoterapia , Melanoma/genética , Melanoma/terapia , Prognóstico , Análise de Célula Única , Microambiente Tumoral
5.
Mol Ther ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34547461

RESUMO

Macrophage polarization plays a crucial role in regulating abdominal aortic aneurysm (AAA) formation. Circular RNAs (circRNAs) are important regulators of macrophage polarization during the development of cardiovascular diseases. How-ever, the roles of circRNAs in regulating AAA formation through modulation of macrophage polarization remain unknown. In the present study, we compared circRNA microarray data under two distinct polarizing conditions (M1 and M2 macrophages) and identified an M1-enriched circRNA, circCdyl. Loss- and gain-of-function assay results demonstrated that circCdyl overexpression accelerated angiotensin II (Ang II)- and calcium chloride (CaCl2)-induced AAA formation by promoting M1 polarization and M1-type inflammation, while circCdyl deficiency showed the opposite effects. RNA pulldown, mass spectrometry analysis, and RNA immunoprecipitation (RIP) assays were conducted to elucidate the underlying mechanisms by which circCdyl regulates AAA formation and showed that circCdyl promotes vascular inflammation and M1 polarization by inhibiting interferon regulatory factor 4 (IRF4) entry into the nucleus, significantly inducing AAA formation. In addition, circCdyl was shown to act as a let-7c sponge, promoting C/EBP-δ expression in macrophages to induce M1 polarization. Our results indicate an important role for circCdyl-mediated macrophage polarization in AAA formation and provide a potent therapeutic target for AAA treatment.

6.
Neoplasma ; 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34459207

RESUMO

Hepatocellular carcinoma (HCC) ranks third in the cause of death due to cancer. Circular RNA circSEC24 Homolog A (circSEC24A) has been uncovered to be upregulated in liver cancer. However, the function of circSEC24A in HCC is indistinct. We analyzed the microarray datasets GSE78520 and GSE94508 to search for differentially expressed circRNAs associated with HCC. Expression of circSEC24A, microRNA (miR)-455-3p, and protein phosphatase, Mg2+/Mn2+ dependent 1F (PPM1F) mRNA was detected by quantitative real-time polymerase chain reaction (RT-qPCR). Loss-of-function experiments were conducted to validate the biological function of circSEC24A in HCC cells in vitro and in vivo. Protein levels were evaluated by western blotting and immunohistochemistry (IHC). The relationship between circSEC24A or PPM1F and miR-455-3p was verified by a dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. circSEC24A was overexpressed in HCC. circSEC24A silencing decreased xenograft tumor growth in vivo and repressed proliferation, metastasis, invasion, epithelial-to-mesenchymal transition (EMT), induced cell cycle arrest, and apoptosis of HCC cells in vitro. circSEC24A acted as a molecular sponge to sequester miR-455-3p, resulting in elevating the expression of PPM1F. miR-455-3p inhibitor reversed the suppressive impact of circSEC24A silencing on malignant behaviors of HCC cells. PPM1F overexpression offsets the inhibitory effect of miR-455-3p mimic on malignant behaviors of HCC cells. circSEC24A sponged miR-455-3p to elevate the PPM1F expression, resulting in accelerating malignant behaviors of HCC cells. The study provided a potential therapeutic target for patients with HCC.

7.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34376552

RESUMO

BACKGROUND: Durable efficacy of immune checkpoint blockade (ICB) occurred in a small number of patients with metastatic gastric cancer (mGC) and the determinant biomarker of response to ICB remains unclear. METHODS: We developed an open-source TMEscore R package, to quantify the tumor microenvironment (TME) to aid in addressing this dilemma. Two advanced gastric cancer cohorts (RNAseq, N=45 and NanoString, N=48) and other advanced cancer (N=534) treated with ICB were leveraged to investigate the predictive value of TMEscore. Simultaneously, multi-omics data from The Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD) and Asian Cancer Research Group (ACRG) were interrogated for underlying mechanisms. RESULTS: The predictive capacity of TMEscore was corroborated in patient with mGC cohorts treated with pembrolizumab in a prospective phase 2 clinical trial (NCT02589496, N=45, area under the curve (AUC)=0.891). Notably, TMEscore, which has a larger AUC than programmed death-ligand 1 combined positive score, tumor mutation burden, microsatellite instability, and Epstein-Barr virus, was also validated in the multicenter advanced gastric cancer cohort using NanoString technology (N=48, AUC=0.877). Exploration of the intrinsic mechanisms of TMEscore with TCGA and ACRG multi-omics data identified TME pertinent mechanisms including mutations, metabolism pathways, and epigenetic features. CONCLUSIONS: Current study highlighted the promising predictive value of TMEscore for patients with mGC. Exploration of TME in multi-omics gastric cancer data may provide the impetus for precision immunotherapy.

8.
Oncoimmunology ; 10(1): 1951019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345533

RESUMO

Tyrosine kinase inhibitors (TKI) play a pivotal role in the treatment of non-small-cell lung cancer (NSCLC) with mutations in epidermal growth factor receptor (EGFR) and rearrangements in anaplastic lymphoma kinase (ALK). However, the influences of TKIs on the tumor immune microenvironment (TIM), especially dynamic changes of responders, have not yet been fully elucidated. Therefore, RNA sequencing and whole-exome sequencing were performed on EGFR/ALK-positive NSCLC samples before and after TKI treatment. In combination with neoantigen and mutational-load estimations, xCell and single-sample gene set enrichment analysis (ssGSEA) were used to assess tumor immune-cell infiltration and activity. Furthermore, weighted-gene correlation network analysis and the bottleneck method were used to identify the hub genes that affected treatment-related immune responses. We found that TKI treatment remodeled the TIM in treatment-responsive samples. Profound increases in the rate of anti-tumor cell infiltration and cytotoxicity was observed following TKI treatment, while antigen presentation was limited in ALK-rearranged samples. However, no significant change in anti-tumor cell infiltration or cytotoxicity was found between pre-treatment and post-progression samples. Subsequently, we found that neurofilament heavy (NEFH) mutations were enriched in samples after TKI treatment and were associated with reduced neutrophil infiltration. The cytotoxicity of EGFR-mutant NSCLCs with co-driver TP53 mutation and ALK-rearranged samples with wild-type TP53 seems to be more easily induced by TKI. Finally, the immune-associated score generated by hub genes was positively correlated with immune infiltration, immune activation, and a favorable prognosis. In conclusion, the dynamic changes in the TIM provide clues to drug selection and timing for TKI-immunotherapy combinations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral/genética
9.
Oncogene ; 40(34): 5342-5355, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34262130

RESUMO

Homologous recombination (HR) repair is an important determinant of chemosensitivity. However, the mechanisms underlying HR regulation remain largely unknown. Cysteine-rich intestinal protein 1 (CRIP1) is a member of the LIM/double-zinc finger protein family and is overexpressed and associated with prognosis in several tumor types. However, to date, the functional role of CRIP1 in cancer biology is poorly understood. Here we found that CRIP1 downregulation causes HR repair deficiency with concomitant increase in cell sensitivity to cisplatin, epirubicin, and the poly ADP-ribose polymerase (PARP) inhibitor olaparib in gastric cancer cells. Mechanistically, upon DNA damage, CRIP1 is deubiquitinated and upregulated by activated AKT signaling. CRIP1, in turn, promotes nuclear enrichment of RAD51, which is a prerequisite step for HR commencement, by stabilizing BRCA2 to counteract FBXO5-targeted RAD51 degradation and by binding to the core domain of RAD51 (RAD51184-257) in coordination with BRCA2, to facilitate nuclear export signal masking interactions between BRCA2 and RAD51. Moreover, through mass spectrometry screening, we found that KPNA4 is at least one of the carriers controlling the nucleo-cytoplasmic distribution of the CRIP1-BRCA2-RAD51 complex in response to chemotherapy. Consistent with these findings, RAD51 inhibitors block the CRIP1-mediated HR process, thereby restoring chemotherapy sensitivity of gastric cancer cells with high CRIP1 expression. Analysis of patient specimens revealed an abnormally high level of CRIP1 expression in GC tissues compared to that in the adjacent normal mucosa and a significant negative association between CRIP1 expression and survival time in patient cohorts with different types of solid tumors undergoing genotoxic treatments. In conclusion, our study suggests an essential function of CRIP1 in promoting HR repair and facilitating gastric cancer cell adaptation to genotoxic therapy.

10.
Cell Death Dis ; 12(7): 665, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215721

RESUMO

It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Biogênese de Organelas , Telomerase/metabolismo , Aminobenzoatos/farmacologia , Animais , Apoptose , Proteínas Morfogenéticas Ósseas/genética , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Fatores de Diferenciação de Crescimento/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Naftalenos/farmacologia , Ratos , Transdução de Sinais , Telomerase/antagonistas & inibidores
11.
Front Immunol ; 12: 687975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276676

RESUMO

Recent advances in next-generation sequencing (NGS) technologies have triggered the rapid accumulation of publicly available multi-omics datasets. The application of integrated omics to explore robust signatures for clinical translation is increasingly emphasized, and this is attributed to the clinical success of immune checkpoint blockades in diverse malignancies. However, effective tools for comprehensively interpreting multi-omics data are still warranted to provide increased granularity into the intrinsic mechanism of oncogenesis and immunotherapeutic sensitivity. Therefore, we developed a computational tool for effective Immuno-Oncology Biological Research (IOBR), providing a comprehensive investigation of the estimation of reported or user-built signatures, TME deconvolution, and signature construction based on multi-omics data. Notably, IOBR offers batch analyses of these signatures and their correlations with clinical phenotypes, long non-coding RNA (lncRNA) profiling, genomic characteristics, and signatures generated from single-cell RNA sequencing (scRNA-seq) data in different cancer settings. Additionally, IOBR integrates multiple existing microenvironmental deconvolution methodologies and signature construction tools for convenient comparison and selection. Collectively, IOBR is a user-friendly tool for leveraging multi-omics data to facilitate immuno-oncology exploration and to unveil tumor-immune interactions and accelerating precision immunotherapy.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Genômica , Transcriptoma , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Tomada de Decisão Clínica , Ensaios Clínicos como Assunto , Mineração de Dados , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão , RNA-Seq , Evasão Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Fluxo de Trabalho
12.
Cancer Commun (Lond) ; 41(10): 1049-1070, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288568

RESUMO

BACKGROUND: Depression is a common, easily ignored, accompanied disease of gastric cancer (GC) patients and is often observed with elevated plasma catecholamine levels. Depression frequently promotes GC progression and leads to poor clinical outcomes; however, the molecular mechanisms underlying depression-induced GC progression remain poorly understood. We aimed to study the effects of depression on GC progression and explore possible mechanisms mediating the action of depression-associated catecholamines on GC. METHODS: Depression states of GC patients were graded using the Patient Health Questionnaire-9, and plasma catecholamine levels were examined by high performance liquid chromatography coupled with tandem mass spectrometry. Migrative and invasive GC cells were examined using transwell assays, and metastatic GC niches were imaged using bioluminescence technology in a depression mouse model established with chronic unpredictable mild stress. Mouse depression-like behaviors were assessed through sucrose preference, forced swimming, and tail suspension tests. Characteristics of the neuroendocrine phenotype were observed via RT-PCR, Western blotting, flow cytometry, and transmission electron microscopy. RESULTS: Fifty-one GC patients (age: 53.61 ± 1.79 years; cancer duration: 3.71 ± 0.33 months; depression duration: 2.37 ± 0.38 months; male-to-female ratio: 1.55:1) were enrolled in the study. Depression grade was significantly higher in GC patients showing higher plasma levels of catecholamines (epinephrine: P = 0.018; noradrenaline: P = 0.009), higher oncogene metastasis-associated in colon cancer-1 (MACC1) level (P = 0.018), and metastasis (P < 0.001). Further, depression-associated catecholamine specifically bound to the beta-2 adrenergic receptor (ß2 -AR) and upregulated MACC1 expression, and thus promoting neuroendocrine phenotypic transformation through direct binding between MACC1 and synaptophysin. Eventually, the neuroendocrine phenotypic transformation accelerated GC invasion in vitro and metastasis in vivo. However, ß2 -AR antagonist ICI-118,551 or MACC1 silencing effectively blocked the catecholamine-induced neuroendocrine phenotypic transformation and eliminated depression-enhanced GC migration and invasion. Moreover, ß2 -AR blocking or MACC1 silencing prevented GC metastasis attributed to a neuroendocrine phenotype in a depression mouse model. CONCLUSIONS: Catecholamine-induced neuroendocrine phenotypes of GC cells led to depression-accelerated GC invasion and metastasis via the ß2 -AR/MACC1 axis, while ß2 -AR antagonist or MACC1 silencing could reverse it, showing promising potential therapeutic strategies for improving the outcome of GC patients with comorbid depression.


Assuntos
Neoplasias Gástricas , Animais , Catecolaminas , Linhagem Celular Tumoral , Depressão , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Neoplasias Gástricas/complicações , Transativadores , Fatores de Transcrição/genética
13.
BMC Nephrol ; 22(1): 257, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238243

RESUMO

BACKGROUND: Few studies have evaluated the clinical presentation, management, and outcomes of patients with end-stage renal disease (ESRD) presenting with acute aortic dissection (AAD) in real-world clinical practice. Thus, this study investigated the clinical characteristics, management, and outcomes of AAD patients with ESRD. METHODS: A total of 217 patients were included. We evaluated the differences in the clinical features, management, and in-hospital outcomes of patients with and without a history of ESRD presenting with AAD. RESULTS: A history of ESRD was present in 71 of 217 patients. Patients with ESRD had atypical clinical manifestations (p < 0.001) and were more likely to be managed medically compared with patients without ESRD (p = 0.002). Hypertension and type B aortic dissection were significantly more common among patients with ESRD. Moreover, patients with ESRD had lower leucocyte and platelet counts than patients without ESRD in laboratory findings (p < 0.001). However, hospitalization days and in-hospital mortality were similar between the two groups (p > 0.05). Multivariate analysis identified Type A aortic dissection as an independent predictor of in-hospital mortality among patients without ESRD (OR, 13.68; 95% CI, 1.92 to 98.90; P = 0.006). CONCLUSIONS: This study highlights differences in the clinical characteristics, management, and outcomes of AAD patients with ESRD. These patients usually have atypical symptoms and more comorbid conditions and are managed more conservatively. However, these patients have no in-hospital survival disadvantage over those without ESRD. Further studies are needed to better understand and optimize care for patients with ESRD presenting with AAD.

14.
Aging (Albany NY) ; 13(10): 13585-13614, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891565

RESUMO

The long-term characteristics of transcriptomic alterations and cardiac remodeling in chronic heart failure (CHF) induced by myocardial infarction (MI) in mice are not well elucidated. This study aimed to reveal the dynamic changes in the transcriptome and cardiac remodeling in post-MI mice over a long time period. Monitoring C57BL/6 mice with MI for 8 months showed that approximately 44% of mice died of cardiac rupture in the first 2 weeks and others survived to 8 months with left ventricular (LV) aneurysm. The transcriptomic profiling analysis of cardiac tissues showed that the Integrin and WNT pathways were activated at 8 months after MI while the metabolism-related pathways were inversely inhibited. Subsequent differential analysis at 1 and 8 months post-MI revealed significant enrichments in biological processes, including consistent regulation of metabolism-related pathways. Moreover, echocardiographic monitoring showed a progressive increase in LV dimensions and a decrease in the LV fractional shortening during the first 4 weeks, and these parameters progressed at a lower rate till 8 months. A similar trend was found in the invasive LV hemodynamics, cardiac morphological and histological analyses. These results suggested that mouse MI model is ideal for long-term studies, and transcriptomic findings may provide new CHF therapeutic targets.


Assuntos
Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Transcriptoma/genética , Remodelação Ventricular/genética , Animais , Modelos Animais de Doenças , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Hemodinâmica , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Reprodutibilidade dos Testes , Análise de Sobrevida , Fatores de Tempo
15.
Sci Rep ; 11(1): 8629, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883629

RESUMO

Organic manure is an ideal alternative fertilizer to provide phosphorus (P) but is not fully recycled in subtropical China. In order to identify if it can replace chemical P fertilizer, a 35-year field trail in a paddy soil under double-rice cropping system was conducted to assess the effects of substituting chemical P fertilizer with pig manure (NKM) on rice yield, phosphorus use efficiency (PUE) and P balance. The N, P and K input under NKM was 1.2, 0.8 and 1.2 times of the combined chemical fertilizer treatment (NPK), respectively. The NKM treatment reached the same level of grain yield with NPK after 20 years' application, and showed significantly 4.0% decreased double-rice grain yield compared with NPK over the 35 years. The NKM treatment reduced the crop P uptake leading to decreased PUE compared with NPK. Long-term P budget showed that NKM may result in higher potential of P loss than NPK. Thus, substituting chemical P fertilizer with organic manure under this rate of nutrient input slightly sacrificed the crop yield and may increase the P loss. Considering the benefits of soil fertility, adjusting the substitution rate with a more balanced NPK input might be alternative in subtropical China.

16.
Cell Death Dis ; 12(4): 378, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828087

RESUMO

Vascular smooth muscle cell (VSMC) phenotypic switching plays a critical role in the formation of abdominal aortic aneurysms (AAAs). FoxO3a is a key suppressor of VSMC homeostasis. We found that in human and animal AAA tissues, FoxO3a was upregulated, SM22α and α-smooth muscle actin (α-SMA) proteins were downregulated and synthetic phenotypic markers were upregulated, indicating that VSMC phenotypic switching occurred in these diseased tissues. In addition, in cultured VSMCs, significant enhancement of FoxO3a expression was found during angiotensin II (Ang II)-induced VSMC phenotypic switching. In vivo, FoxO3a overexpression in C57BL/6J mice treated with Ang II increased the formation of AAAs, whereas FoxO3a knockdown exerted an inhibitory effect on AAA formation in ApoE-/- mice infused with Ang II. Mechanistically, FoxO3a overexpression significantly inhibited the expression of differentiated smooth muscle cell (SMC) markers, activated autophagy, the essential repressor of VSMC homeostasis, and promoted AAA formation. Our study revealed that FoxO3a promotes VSMC phenotypic switching to accelerate AAA formation through the P62/LC3BII autophagy signaling pathway and that therapeutic approaches that decrease FoxO3a expression may prevent AAA formation.


Assuntos
Aneurisma Aórtico/fisiopatologia , Proteína Forkhead Box O3/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Homeostase , Humanos , Masculino , Camundongos , Transfecção
17.
Front Oncol ; 11: 620688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833986

RESUMO

Background: Colorectal cancer, the fourth leading cause of cancer mortality, is prone to metastasis, especially to the liver. The pre-metastatic microenvironment comprising various resident stromal cells and immune cells is essential for metastasis. However, how the dynamic evolution of immune components facilitates pre-metastatic niche formation remains unclear. Methods: Utilizing RNA-seq data from our orthotopic colorectal cancer mouse model, we applied single sample gene set enrichment analysis and Cell type Identification By Estimating Relative Subsets Of RNA Transcripts to investigate the tumor microenvironment landscape of pre-metastatic liver, and define the exact role of myeloid-derived suppressor cells (MDSCs) acting in the regulation of infiltrating immune cells and gene pathways activation. Flow cytometry analysis was conducted to quantify the MDSCs levels in human and mice samples. Results: In the current work, based on the high-throughput transcriptome data, we depicted the immune cell infiltration pattern of pre-metastatic liver and highlighted MDSCs as the dominant altered cell type. Notably, flow cytometry analysis showed that high frequencies of MDSCs, was detected in the pre-metastatic liver of orthotopic colorectal cancer tumor-bearing mice, and in the peripheral blood of patients with stage I-III colorectal cancer. MDSCs accumulation in the liver drove immunosuppressive factors secretion and immune checkpoint score upregulation, consequently shaping the pre-metastatic niche with sustained immune suppression. Metabolic reprogramming such as upregulated glycolysis/gluconeogenesis and HIF-1 signaling pathways in the primary tumor was also demonstrated to correlate with MDSCs infiltration in the pre-metastatic liver. Some chemokines were identified as a potential mechanism for MDSCs recruitment. Conclusion: Collectively, our study elucidates the alterations of MDSCs during pre-metastatic niche transformation, and illuminates the latent biological mechanism by which primary tumors impact MDSC aggregation in the targeted liver.

18.
Int J Biol Sci ; 17(3): 882-896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767596

RESUMO

Background: Post-contrast acute kidney injury (PC-AKI) is a severe complication of cardiac catheterization. Emerging evidence indicated that long non-coding RNAs (lncRNAs) could serve as biomarkers for various diseases. However, the lncRNA expression profile and potential biomarkers in PC-AKI remain unclear. This study aimed to investigate novel lncRNA biomarkers for the early detection of PC-AKI. Methods: lncRNA profile in the kidney tissues of PC-AKI rats was evaluated through RNA sequencing. Potential lncRNA biomarkers were identified through human-rat homology analysis, kidney and blood filtering in rats and verified in 112 clinical samples. The expression patterns of the candidate lncRNAs were detected in HK-2 cells and rat models to evaluate their potential for early detection. Results: In total, 357 lncRNAs were found to be differentially expressed in PC-AKI. We identified lnc-HILPDA and lnc-PRND were conservative and remarkably upregulated in both kidneys and blood from rats and the blood of PC-AKI patients; these lncRNAs can precisely distinguish PC-AKI patients (area under the curve (AUC) values of 0.885 and 0.875, respectively). The combination of these two lncRNAs exhibited improved accuracy for predicting PC-AKI, with 100% sensitivity and 83.93% specificity. Time-course experiments showed that the significant difference was first noted in the blood of PC-AKI rats at 12 h for lnc-HILPDA and 24 h for lnc-PRND. Conclusion: Our study revealed that lnc-HILPDA and lnc-PRND may serve as the novel biomarkers for early detection and profoundly affect the clinical stratification and strategy guidance of PC-AKI.

19.
Clin Sci (Lond) ; 135(6): 811-828, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33687053

RESUMO

Post-translational modification (PTM) by small ubiquitin-like modifier (SUMO) is a key regulator of cell proliferation and can be readily reversed by a family of SUMO-specific proteases (SENPs), making SUMOylation an ideal regulatory mechanism for developing novel therapeutic strategies for promoting a cardiac regenerative response. However, the role of SUMOylation in cardiac regeneration remains unknown. In the present study, we assessed whether targeting protein kinase B (Akt) SUMOylation can promote cardiac regeneration. Quantitative PCR and Western blotting results showed that small ubiquitin-like modifier-specific protease 2 (SENP2) is up-regulated during postnatal heart development. SENP2 deficiency promoted P7 and adult cardiomyocyte (CM) dedifferentiation and proliferation both in vitro and in vivo. Mice with SENP2 deficiency exhibited improved cardiac function after MI due to CM proliferation and angiogenesis. Mechanistically, the loss of SENP2 up-regulated Akt SUMOylation levels and increased Akt kinase activity, leading to a decrease in GSK3ß levels and subsequently promoting CM proliferation and angiogenesis. In summary, inhibition of SENP2-mediated Akt deSUMOylation promotes CM differentiation and proliferation by activating the Akt pathway. Our results provide new insights into the role of SUMOylation in cardiac regeneration.


Assuntos
Cisteína Endopeptidases/metabolismo , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Sumoilação , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Miócitos Cardíacos/citologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/fisiologia
20.
Autophagy ; : 1-19, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764843

RESUMO

Chemotherapy is currently the main treatment for unresectable or advanced postoperative gastric cancers. However, its efficacy is negatively affected by the occurrence of chemoresistance, which severely affects patient prognosis. Recently, dysregulation in autophagy has been suggested as a potential mechanism for chemoresistence, and long noncoding RNA (lncRNA) also shows its regulatory role in cancer drug resistance. Using RNA sequencing, we found that lncRNA EIF3J-DT was highly expressed in drug-resistant gastric cancer cells. In-vitro and in-vivo experiments showed that EIF3J-DT activated autophagy and induced drug resistance in gastric cancer cells by targeting ATG14. Bioinformatics and experimental results showed that EIF3J-DT regulated the expression of ATG14 through direct binding to enhance stabilization of ATG14 mRNA and via blocking the degradation of ATG14 mRNA through competitively binding with microRNA (miRNA) MIR188-3p. Therefore, EIF3J-DT increased the expression of ATG14, contributing to activation of autophagy and chemoresistance. Furthermore, it was confirmed that EIF3J-DT and ATG14 were highly expressed in gastric cancer patients resistant to chemotherapy, and this was closely associated with patient prognosis. In conclusion, EIF3J-DT is involved in the regulation of autophagy and chemoresistance in gastric cancer cells by targeting ATG14. It may be a suitable new target for enhancing chemosensitivity and improving prognosis.Abbreviations: 3-MA: 3-methyladenine; 5-Fu: 5-fluorouracil; ATG: autophagy related; C-CASP3: cleaved caspase 3; C-CASP7: cleaved caspase 7; C-PARP: cleaved PARP; CQ: chloroquine; CR: complete response; DIG: digoxigenin; ESR1: estrogen receptor 1; FBS: fetal bovine serum; FISH: fluorescence in situ hybridization; IHC: immunohistochemistry; ISH: in situ hybridization; lncRNA: long noncoding RNA; miRNA: microRNA; MUT: mutant; NC: negative control; OXA: oxaliplatin; PBS: phosphate-buffered saline; PD: progressive disease; PFA: paraformaldehyde; PR: partial response; qPCR: quantitative polymerase chain reaction; RAPA: rapamycin; SD: stable disease; TEM: transmission electron microscopy; WT: wild type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...