Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 25: 237-250, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458008

RESUMO

Gene editing via homology-directed repair (HDR) currently comprises the best strategy to obtain perfect corrections for pathogenic mutations of monogenic diseases, such as the severe recessive dystrophic form of the blistering skin disease epidermolysis bullosa (RDEB). Limitations of this strategy, in particular low efficiencies and off-target effects, hinder progress toward clinical applications. However, the severity of RDEB necessitates the development of efficient and safe gene-editing therapies based on perfect repair. To this end, we sought to assess the corrective efficiencies following optimal Cas9 nuclease and nickase-based COL7A1-targeting strategies in combination with single- or double-stranded donor templates for HDR at the COL7A1 mutation site. We achieved HDR-mediated correction efficiencies of up to 21% and 10% in primary RDEB keratinocytes and fibroblasts, respectively, as analyzed by next-generation sequencing, leading to full-length type VII collagen restoration and accurate deposition within engineered three-dimensional (3D) skin equivalents (SEs). Extensive on- and off-target analyses confirmed that the combined treatment of paired nicking and single-stranded oligonucleotides constituted a highly efficient COL7A1-editing strategy, associated with a significantly improved safety profile. Our findings, therefore, represent a further advancement in the field of traceless genome editing for genodermatoses.

2.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805154

RESUMO

Intermediate junctional epidermolysis bullosa caused by mutations in the COL17A1 gene is characterized by the frequent development of blisters and erosions on the skin and mucous membranes. The rarity of the disease and the heterogeneity of the underlying mutations renders therapy developments challenging. However, the high number of short in-frame exons facilitates the use of antisense oligonucleotides (AON) to restore collagen 17 (C17) expression by inducing exon skipping. In a personalized approach, we designed and tested three AONs in combination with a cationic liposomal carrier for their ability to induce skipping of COL17A1 exon 7 in 2D culture and in 3D skin equivalents. We show that AON-induced exon skipping excludes the targeted exon from pre-mRNA processing, which restores the reading frame, leading to the expression of a slightly truncated protein. Furthermore, the expression and correct deposition of C17 at the dermal-epidermal junction indicates its functionality. Thus, we assume AON-mediated exon skipping to be a promising tool for the treatment of junctional epidermolysis bullosa, particularly applicable in a personalized manner for rare genotypes.


Assuntos
Autoantígenos/metabolismo , Epidermólise Bolhosa Juncional/genética , Colágenos não Fibrilares/metabolismo , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Processamento Alternativo , Biópsia , Linhagem Celular , Sobrevivência Celular , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/terapia , Éxons , Genótipo , Homozigoto , Humanos , Queratinócitos/citologia , Lipossomos/química , Mutação , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo
3.
J Invest Dermatol ; 140(10): 1985-1993.e5, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32142798

RESUMO

End-joining‒based gene editing is frequently used for efficient reframing and knockout of target genes. However, the associated random, unpredictable, and often heterogeneous repair outcomes limit its applicability for therapeutic approaches. This study revealed more precise and predictable outcomes simply on the basis of the sequence context at the CRISPR/Cas9 target site. The severe dystrophic form of the blistering skin disease epidermolysis bullosa (DEB) represents a suitable model platform to test these recent developments for the disruption and reframing of dominant and recessive alleles, respectively, both frequently seen in DEB. We delivered a CRISPR/Cas9 nuclease as ribonucleoprotein into primary wild-type and recessive DEB keratinocytes to introduce a precise predictable single adenine sense-strand insertion at the target site. We achieved type VII collagen knockout in more than 40% of ribonucleoprotein-treated primary wild-type keratinocytes and type VII collagen restoration in more than 70% of ribonucleoprotein-treated recessive DEB keratinocytes. Next-generation sequencing of the on-target site revealed the presence of the precise adenine insertion upstream of the pathogenic mutation in at least 17% of all analyzed COL7A1 alleles. This demonstrates that COL7A1 editing based on precise end-joining‒mediated DNA repair is an efficient strategy to revert the disease-associated nature of DEB regardless of the mutational inheritance.


Assuntos
Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Edição de Genes , Células Cultivadas , Reparo do DNA por Junção de Extremidades , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Queratinócitos/metabolismo , Mutação , Ribonucleoproteínas/farmacologia
4.
Matrix Biol Plus ; 4: 100017, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33543014

RESUMO

High conservation of extracellular matrix proteins often makes the generation of potent species-specific antibodies challenging. For collagen VII there is a particular preclinical interest in the ability to discriminate between human and murine collagen VII. Deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB) - a genetic skin blistering disease, which in its most severe forms is highly debilitating. Advances in gene and cell therapy approaches have made curative therapies for genetic diseases a realistic possibility. DEB is one disorder for which substantial progress has been made toward curative therapies and improved management of the disease. However, to increase their efficacy further preclinical studies are needed. The early neonatal lethality of complete collagen VII deficient mice, have led researches to resort to using models maintaining residual collagen VII expression or grafting of DEB model skin on wild-type mice for preclinical therapy studies. These approaches are challenged by collagen VII expression by the murine host. Thus, the ability to selectively visualize human and murine collagen VII would be a substantial advantage. Here, we describe a novel resource toward this end. By immunization with homologous peptides we generated rabbit polyclonal antibodies that recognize either human or murine collagen VII. Testing on additional species, including rat, sheep, dog, and pig, combined sequence alignment and peptide competition binding assays enabled identification of the major antisera recognizing epitopes. The species-specificity was maintained after denaturation and the antibodies allowed us to simultaneously, specifically visualize human and murine collagen VII in situ.

5.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518954

RESUMO

In recent years, RNA trans-splicing has emerged as a suitable RNA editing tool for the specific replacement of mutated gene regions at the pre-mRNA level. Although the technology has been successfully applied for the restoration of protein function in various genetic diseases, a higher trans-splicing efficiency is still desired to facilitate its clinical application. Here, we describe a modified, easily applicable, fluorescence-based screening system for the generation and analysis of antisense molecules specifically capable of improving the RNA reprogramming efficiency of a selected KRT14-specific RNA trans-splicing molecule. Using this screening procedure, we identified several antisense RNAs and short rationally designed oligonucleotides, which are able to increase the trans-splicing efficiency. Thus, we assume that besides the RNA trans-splicing molecule, short antisense molecules can act as splicing modulators, thereby increasing the trans-splicing efficiency to a level that may be sufficient to overcome the effects of certain genetic predispositions, particularly those associated with dominantly inherited diseases.


Assuntos
Regulação da Expressão Gênica , Oligonucleotídeos Antissenso , Interferência de RNA , Splicing de RNA , Trans-Splicing , Linhagem Celular , Edição de Genes , Genes Reporter , Humanos , Sítios de Splice de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...