Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nano Lett ; 20(3): 2107-2112, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053385

RESUMO

We report a chemical route to synthesize centimeter-scale stoichiometric "graphenol (C6OH1)", a 2D crystalline alcohol, via vapor phase hydroxylation of epitaxial graphene on Cu(111). Atomic resolution scanning tunneling microscopy revealed this highly-ordered configuration of graphenol and low energy electron diffraction studies on a large-area single crystal graphene film demonstrated the feasibility of the same superstructure being achieved at the centimeter length scale. Periodic density functional theory (DFT) calculations about the formation of C6(OH)1 and its electronic structure are also reported.

2.
Chemphyschem ; 20(14): 1885-1889, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31099461

RESUMO

A supra-quantum dot (SQD) is a three-dimensionally assembled QD structure composed of several hundreds to thousands of QDs connected through oriented attachments. Owing to their three-dimensional interconnected structures and relatively large volumes, impurity atoms are thermodynamically more stable in SQDs than in conventional QDs. Herein, we report the facile in-situ synthesis of colloidal Ag-doped CdSe SQDs. Ag dopants were efficiently incorporated into CdSe SQDs through the three-dimensional interconnection of Ag-doped primary CdSe QDs, as confirmed by elemental analysis combined with chemical etching. Photoelectron spectroscopic studies revealed that the Ag-doped CdSe SQDs exhibit n-type doping behavior, since the valence electrons from the interstitial Ag atoms are directly donated to the lattice.

3.
Langmuir ; 34(30): 8731-8738, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29983074

RESUMO

An atomically thin two-dimensional (2D) covalent organic framework (COF) was successfully synthesized via the photon-assisted imine condensation reaction within 1 h from the highly uniform and homogeneous precursor solution layer floating on the water surface. The polarity optimization of the precursor solution was the key step for the successful formation of the high-quality 2D COF because only the precursor solution consisting of polarity-controlled solvents allows ideal floating on the water surface. The polarity-controlled solution not only prohibits the agglomeration of the organic precursors on the water surface but also facilitates the wafer scale and layer number-controllable synthesis of the 2D COF. The resulting 2D COF has a uniform porous structure and highly oriented layered structure along the out-of-plane direction as observed by microscopy analysis and X-ray diffraction, respectively. In addition, we successfully fabricated field effect transistor type polyimine-based COF (pi-COF) electronic devices to demonstrate the prompt electrical responses to photo-exposure and water vapor exposure, suggesting the potential applications of the pi-COF in electrical photodetector or moisture-detector devices.

4.
ACS Nano ; 12(6): 6117-6127, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29790339

RESUMO

Fast-growth of single crystal monolayer graphene by CVD using methane and hydrogen has been achieved on "homemade" single crystal Cu/Ni(111) alloy foils over large area. Full coverage was achieved in 5 min or less for a particular range of composition (1.3 at.% to 8.6 at.% Ni), as compared to 60 min for a pure Cu(111) foil under identical growth conditions. These are the bulk atomic percentages of Ni, as a superstructure at the surface of these foils with stoichiometry Cu6Ni1 (for 1.3 to 7.8 bulk at.% Ni in the Cu/Ni(111) foil) was discovered by low energy electron diffraction (LEED). Complete large area monolayer graphene films are either single crystal or close to single crystal, and include folded regions that are essentially parallel and that were likely wrinkles that "fell over" to bind to the surface; these folds are separated by large, wrinkle-free regions. The folds occur due to the buildup of interfacial compressive stress (and its release) during cooling of the foils from 1075 °C to room temperature. The fold heights measured by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) prove them to all be 3 layers thick, and scanning electron microscopy (SEM) imaging shows them to be around 10 to 300 nm wide and separated by roughly 20 µm. These folds are always essentially perpendicular to the steps in this Cu/Ni(111) substrate. Joining of well-aligned graphene islands (in growths that were terminated prior to full film coverage) was investigated with high magnification SEM and aberration-corrected high-resolution transmission electron microscopy (TEM) as well as AFM, STM, and optical microscopy. These methods show that many of the "join regions" have folds, and these arise from interfacial adhesion mechanics (they are due to the buildup of compressive stress during cool-down, but these folds are different than for the continuous graphene films-they occur due to "weak links" in terms of the interface mechanics). Such Cu/Ni(111) alloy foils are promising substrates for the large-scale synthesis of single-crystal graphene film.

6.
Sci Rep ; 7(1): 2582, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566708

RESUMO

Synthesis of morphologically well-defined crystals of metalloporphyrin by direct crystallization based on conventional anti-solvent crystallization method without using any additives has been rarely reported. Herein, we demonstrate an unconventional and additive-free synthetic method named reverse anti-solvent crystallization method to achieve well-defined zinc-porphyrin cube crystals by reversing the order of the addition of solvents. The extended first solvation shell effect mechanism is therefore suggested to support the synthetic process by providing a novel kinetic route for reaching the local supersaturation environment depending on the order of addition of solvents, which turned out to be critical to achieve clean cube morphology of the crystal. We believe that our work not only extends fundamental knowledge about the kinetic process in binary solvent systems, but also enables great opportunities for shape-directing crystallization of various organic and organometallic compounds.

7.
ACS Nano ; 11(4): 4041-4050, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28363013

RESUMO

Interlayer excitons were observed at the heterojunctions in van der Waals heterostructures (vdW HSs). However, it is not known how the excitonic phenomena are affected by the stacking order. Here, we report twist-angle-dependent interlayer excitons in MoSe2/WSe2 vdW HSs based on photoluminescence (PL) and vdW-corrected density functional theory calculations. The PL intensity of the interlayer excitons depends primarily on the twist angle: It is enhanced at coherently stacked angles of 0° and 60° (owing to strong interlayer coupling) but disappears at incoherent intermediate angles. The calculations confirm twist-angle-dependent interlayer coupling: The states at the edges of the valence band exhibit a long tail that stretches over the other layer for coherently stacked angles; however, the states are largely confined in the respective layers for intermediate angles. This interlayer hybridization of the band edge states also correlates with the interlayer separation between MoSe2 and WSe2 layers. Furthermore, the interlayer coupling becomes insignificant, irrespective of twist angles, by the incorporation of a hexagonal boron nitride monolayer between MoSe2 and WSe2.

8.
Nano Lett ; 17(3): 1467-1473, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28218542

RESUMO

Folded graphene in which two layers are stacked with a twist angle between them has been predicted to exhibit unique electronic, thermal, and magnetic properties. We report the folding of a single crystal monolayer graphene film grown on a Cu(111) substrate by using a tailored substrate having a hydrophobic region and a hydrophilic region. Controlled film delamination from the hydrophilic region was used to prepare macroscopic folded graphene with good uniformity on the millimeter scale. This process was used to create many folded sheets each with a defined twist angle between the two sheets. By identifying the original lattice orientation of the monolayer graphene on Cu foil, or establishing the relation between the fold angle and twist angle, this folding technique allows for the preparation of twisted bilayer graphene films with defined stacking orientations and may also be extended to create folded structures of other two-dimensional nanomaterials.

9.
ACS Nano ; 10(12): 11156-11162, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024355

RESUMO

We report on an insulating two-dimensional material, hexagonal boron nitride (h-BN), which can be used as an effective wrapping layer for surface-enhanced Raman spectroscopy (SERS) substrates. This material exhibits outstanding characteristics such as its crystallinity, impermeability, and thermal conductance. Improved SERS sensitivity is confirmed for Au substrates wrapped with h-BN, the mechanism of which is investigated via h-BN thickness-dependent experiments combined with theoretical simulations. The investigations reveal that a stronger electromagnetic field can be generated at the narrowed gap of the h-BN surface, which results in higher Raman sensitivity. Moreover, the h-BN-wrapped Au substrate shows extraordinary stability against photothermal and oxidative damages. We also describe its capability to detect specific chemicals that are difficult to analyze using conventional SERS substrates. We believe that this concept of using an h-BN insulating layer to protect metallic or plasmonic materials will be widely used not only in the field of SERS but also in the broader study of plasmonic and optoelectronic devices.

10.
ACS Nano ; 10(9): 8973-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27563804

RESUMO

Transition metal dichalcogenides (TMDs) have recently received increasing attention because of their potential applications in semiconducting and optoelectronic devices exhibiting large optical absorptions in the visible range. However, some studies have reported that the grain boundaries of TMDs can be easily degraded by the presence of oxygen in water and by UV irradiation, ozone, and heating under ambient conditions. We herein demonstrate the photodegradation of WSe2 and MoSe2 by laser exposure (532 nm) and the subsequent prevention of this photodegradation by encapsulation with hexagonal boron nitride (h-BN) layers. The photodegradation was monitored by variation in peak intensities in the Raman and photoluminescence spectra. The rapid photodegradation of WSe2 under air occurred at a laser power of ≥0.5 mW and was not observed to any extent at ≤0.1 mW. However, in the presence of a water droplet, the photodegradation of WSe2 was accelerated and took place even at 0.1 mW. We examined the encapsulation of WSe2 with h-BN and found that this prevented photodegradation. However, a single layer of h-BN was not sufficient to fully prevent this photodegradation, and so a triple layer of h-BN was employed. We also demonstrated that the photodegradation of MoSe2 was prevented by encapsulation with h-BN layers. On the basis of X-ray photoelectron spectroscopy and scanning photoemission microscopy data, we determined that this degradation was caused by the photoinduced oxidation of TMDs. These results can be used to develop a general strategy for improving the stability of 2D materials in practical applications.

11.
Nano Lett ; 16(5): 3360-6, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27120101

RESUMO

Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

12.
Phys Rev Lett ; 116(5): 056101, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894720

RESUMO

A novel type of action spectrum representing multiple overtone excitations of the v(M-C) mode was observed for lateral hopping of a CO molecule on Ag(110) induced by inelastically tunneled electrons from the tip of a scanning tunneling microscope. The yield of CO hopping shows sharp increases at 261±4 mV, corresponding to the C-O internal stretching mode, and at 61±2, 90±2, and 148±7 mV, even in the absence of corresponding fundamental vibrational modes. The mechanism of lateral CO hopping on Ag(110) was explained by the multistep excitation of overtone modes of v(M-C) based on the numerical fitting of the action spectra, the nonlinear dependence of the hopping rate on the tunneling current, and the hopping barrier obtained from thermal diffusion experiments.

13.
Nano Converg ; 3(1): 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28191415

RESUMO

We synthesized single-phase CoS2 on a large scale by adding graphene oxide of sufficient quantity via the hydrothermal method using cobalt acetate and thioacetamide as precursors; this produced the hybrid of CoS2 with reduced graphene oxide which exhibited high electrocatalytic activity in the hydrogen evolution reaction.

14.
Nat Commun ; 6: 8601, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494181

RESUMO

Graphene-based carbon materials such as fullerenes, carbon nanotubes, and graphenes have distinct and unique electronic properties that depend on their dimensionality and geometric structures. Graphene wrinkles with pseudo one-dimensional structures have been observed in a graphene sheet. However, their one-dimensional electronic properties have never been observed because of their large widths. Here we report the unique electronic structure of graphene nanowrinkles in a graphene sheet grown on Ni(111), the width of which was small enough to cause one-dimensional electron confinement. Use of spatially resolved, scanning tunnelling spectroscopy revealed bandgap opening and a one-dimensional van Hove singularity in the graphene nanowrinkles, as well as the chemical potential distribution across the graphene nanowrinkles. This observation allows us to realize a metallic-semiconducting-metallic junction in a single graphene sheet. Our demonstration of one-dimensional electron confinement in graphene provides the novel possibility of controlling its electronic properties not by chemical modification but by 'mechanical structuring'.

15.
J Chem Phys ; 143(1): 014704, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26156489

RESUMO

Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed clean surface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, derived using a limited cluster expansion based on density functional theory energetics. Models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.

16.
Nano Lett ; 15(7): 4769-75, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26083832

RESUMO

Heterostructures of hexagonal boron nitride (h-BN) and graphene have attracted a great deal of attention for potential applications in 2D materials. Although several methods have been developed to produce this material through the partial substitution reaction of graphene, the reverse reaction has not been reported. Though the endothermic nature of this reaction might account for the difficulty and previous absence of such a process, we report herein a new chemical route in which the Pt substrate plays a catalytic role. We propose that this reaction proceeds through h-BN hydrogenation; subsequent graphene growth quickly replaces the initially etched region. Importantly, this conversion reaction enables the controlled formation of patterned in-plane graphene/h-BN heterostructures, without needing the commonly employed protecting mask, simply by using a patterned Pt substrate.

17.
J Chem Phys ; 142(19): 194711, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26001477

RESUMO

A rich menagerie of structures is identified at 5 K following adsorption of low coverages (≤0.05 monolayers) of S on Cu(111) at room temperature. This paper emphasizes the reconstructions at the steps. The A-type close-packed step has 1 row of S atoms along its lower edge, where S atoms occupy alternating pseudo-fourfold-hollow (p4fh) sites. Additionally, there are 2 rows of S atoms of equal density on the upper edge, bridging a row of extra Cu atoms, together creating an extended chain. The B-type close-packed step exhibits an even more complex reconstruction, in which triangle-shaped groups of Cu atoms shift out of their original sites and form a base for S adsorption at (mostly) 4fh sites. We propose a mechanism by which these triangles could generate Cu-S complexes and short chains like those observed on the terraces.

18.
J Am Chem Soc ; 136(24): 8528-31, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24885459

RESUMO

Graphene functionalization is of great importance in applying graphene as a component in functional devices or in activating it for use as a catalyst. Here we reveal that atomic oxidation of epitaxial graphene grown on a metal substrate results in the formation of enolate, i.e., adsorption of atomic oxygen at the on-top position, on the basal plane of a graphene, using periodic density functional theory calculations. This is striking because the enolate corresponds to the transition state between the epoxides on free-standing graphene and on graphite. Improved interfacial interaction between graphene and the metal substrate during atomic oxidation makes the graphene enolate a local minimum and further highly stabilizes it over the graphene epoxide. Our results provide not only a novel perspective for a chemical route to functionalizing graphene but also a new opportunity to utilize graphene enolate for graphene-based applications.

19.
Nanoscale ; 4(10): 3050-4, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22526246

RESUMO

Metal catalyst-free growth of large scale single layer graphene film on a sapphire substrate by a chemical vapor deposition (CVD) process at 950 °C is demonstrated. A top-gated graphene field effect transistor (FET) device is successfully fabricated without any transfer process. The detailed growth process is investigated by the atomic force microscopy (AFM) studies.


Assuntos
Óxido de Alumínio/química , Grafite/química , Transistores Eletrônicos , Catálise , Grafite/síntese química , Metais/química , Microscopia de Força Atômica , Propriedades de Superfície
20.
J Phys Chem Lett ; 3(21): 3210-5, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26296031

RESUMO

Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA