Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 22(1): e13114, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31487436

RESUMO

Nuclear import of proteins relies on nuclear import receptors called importins/karyopherins (Kaps), whose functions were reported in yeasts, fungi, plants, and animal cells, including cell cycle control, morphogenesis, stress sensing/response, and also fungal pathogenecity. However, limited is known about the physiological function and regulatory mechanism of protein import in the rice-blast fungus Magnaporthe oryzae. Here, we identified an ortholog of ß-importin in M. oryzae encoded by an ortholog of KAP119 gene. Functional characterisation of this gene via reverse genetics revealed that it is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The mokap119Δ mutant was also defective in formation of appressorium-like structure from hyphal tips. By affinity assay and liquid chromatography-tandem mass spectrometry, we identified potential MoKap119-interacting proteins and further verified that MoKap119 interacts with the cyclin-dependent kinase subunit MoCks1 and mediates its nuclear import. Transcriptional profiling indicated that MoKap119 may regulate transcription of infection-related genes via MoCks1 regulation of MoSom1. Overall, our findings provide a novel insight into the regulatory mechanism of M. oryzae pathogenesis likely by MoKap119-mediated nuclear import of the cyclin-dependent kinase subunit MoCks1.

2.
mSystems ; 3(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505942

RESUMO

The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.

3.
Autophagy ; 13(8): 1318-1330, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28594263

RESUMO

Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.


Assuntos
Autofagia , Biocatálise , Proteínas Fúngicas/metabolismo , Magnaporthe/citologia , Magnaporthe/metabolismo , Processos Fototróficos , Acetilação , Autofagia/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos , Luz , Magnaporthe/genética , Magnaporthe/efeitos da radiação , Processos Fototróficos/efeitos da radiação , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos da radiação , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos da radiação , Transcrição Genética/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA