Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 7(10): 1397-1408, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34650267

RESUMO

Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid-liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants.

2.
Planta ; 254(3): 50, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34386845

RESUMO

MAIN CONCLUSION: Overexpression of the leaf color (Lc) gene in Ma bamboo substantially increased the accumulation level of anthocyanin, and improved plant tolerance to cold and drought stresses, probably due to the increased antioxidant capacity. Most bamboos, including Ma bamboo (Dendrocalamus latiflorus Munro), are naturally evergreen and sensitive to cold and drought stresses, while it's nearly impossible to make improvements through conventual breeding due to their long and irregular flowering habit. Moreover, few studies have reported bamboo germplasm innovation through genetic engineering as bamboo genetic transformation remains difficult. In this study, we have upregulated anthocyanin biosynthesis in Ma bamboo, to generate non-green Ma bamboo with increased abiotic stress tolerance. By overexpressing the maize Lc gene, a bHLH transcription activator involved in the anthocyanin biosynthesis in Ma bamboo, we generated purple bamboos with increased anthocyanin levels including cyanidin-3-O-rutinoside, peonidin 3-O-rutinoside, and an unknown cyanidin pentaglycoside derivative. The expression levels of 9 anthocyanin biosynthesis genes were up-regulated. Overexpression of the Lc gene improved the plant tolerance to cold and drought stress, probably due to increased antioxidant capacity. The levels of the cold- and drought-related phytohormone jasmonic acid in the transgenic plants were also enhanced, which may also contribute to the plant stress-tolerant phenotypes. High anthocyanin accumulation level did not affect plant growth. Transcriptomic analysis showed higher expressions of genes involved in the flavonoid pathway in Lc transgenic bamboos compared with those in wild-type ones. The anthocyanin-rich bamboos generated here provide an example of ornamental and multiple agronomic trait improvements by genetic engineering in this important grass species.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Antocianinas , Resposta ao Choque Frio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
3.
Plant J ; 107(5): 1513-1532, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34181801

RESUMO

De novo shoot organogenesis is an important biotechnological tool for fundamental studies in plant. However, it is difficult in most bamboo species, and the genetic control of this highly dynamic and complicated regeneration process remains unclear. In this study, based on an in-depth analysis at the cellular level, the shoot organogenesis from calli of Ma bamboo (Dendrocalamus latiflorus Munro) was divided into five stages. Subsequently, single-molecule long-read isoform sequencing of tissue samples pooled from all five stages was performed to generate a full-length transcript landscape. A total of 83 971 transcripts, including 73 209 high-quality full-length transcripts, were captured, which served as an annotation reference for the subsequent RNA sequencing analysis. Time-course transcriptome analysis of samples at the abovementioned five stages was conducted to investigate the global gene expression atlas showing genome-wide expression of transcripts during the course of bamboo shoot organogenesis. K-means clustering analysis and stage-specific transcript identification revealed important dynamically expressed transcription regulators that function in bamboo shoot organogenesis. The majority of abiotic stress-responsive genes altered their expression levels during this process, and further experiments demonstrated that exogenous application of moderate but not severe abiotic stress increased the shoot regeneration efficiency. In summary, our study provides an overview of the genetic flow dynamics during bamboo shoot organogenesis. Full-length cDNA sequences generated in this study can serve as a valuable resource for fundamental and applied research in bamboo in the future.

4.
Nat Commun ; 12(1): 2155, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846325

RESUMO

Cryptochromes (CRYs) are photoreceptors or components of the molecular clock in various evolutionary lineages, and they are commonly regulated by polyubiquitination and proteolysis. Multiple E3 ubiquitin ligases regulate CRYs in animal models, and previous genetics study also suggest existence of multiple E3 ubiquitin ligases for plant CRYs. However, only one E3 ligase, Cul4COP1/SPAs, has been reported for plant CRYs so far. Here we show that Cul3LRBs is the second E3 ligase of CRY2 in Arabidopsis. We demonstrate the blue light-specific and CRY-dependent activity of LRBs (Light-Response Bric-a-Brack/Tramtrack/Broad 1, 2 & 3) in blue-light regulation of hypocotyl elongation. LRBs physically interact with photoexcited and phosphorylated CRY2, at the CCE domain of CRY2, to facilitate polyubiquitination and degradation of CRY2 in response to blue light. We propose that Cul4COP1/SPAs and Cul3LRBs E3 ligases interact with CRY2 via different structure elements to regulate the abundance of CRY2 photoreceptor under different light conditions, facilitating optimal photoresponses of plants grown in nature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Células HEK293 , Humanos , Luz , Modelos Biológicos , Mutação/genética , Fosforilação/efeitos da radiação , Poliubiquitina/metabolismo , Ligação Proteica/efeitos da radiação , Proteólise/efeitos da radiação , Plântula/efeitos da radiação , Ubiquitinação/efeitos da radiação
5.
Plant Cell Environ ; 44(6): 1802-1815, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665849

RESUMO

Cryptochromes photoreceptors, CRY1 and CRY2 in Arabidopsis, mediate blue light responses in plants and metazoa. The signalling interactions underlying photomorphogenesis of cryptochromes action have been extensively studied in experiment, expecting a systematical analysis of the dynamic mechanisms of photosensory signalling network from a global view. In this study, we developed a signalling network model to quantitatively investigate the different response modes and cooperation modulations on photomorphogenesis for CRY1 and CRY2 under blue light. The model shows that the different modes of time-dependent and fluence-rate-dependent phosphorylations for CRY1 and CRY2 are originated from their different phosphorylation rates and degradation rates. Our study indicates that, due to the strong association between blue-light inhibitor of cryptochromes (BIC) and CRY2, BIC negatively modulates CRY2 phosphorylation, which was confirmed by our experiment. The experiment also validated the model prediction that the time-dependent BIC-CRY1 and the fluence-rate-dependent BIC-CRY2 are both bell-shaped under blue light. Importantly, the model proposes that the COP1-SPA abundance can strongly inhibit the phosphorylation response of CRY2, resulting in the positive regulation of CRY2 phosphorylation by CRY1 through COP1-SPA. The model also predicts that the CRY1-HY5 axis, rather than CRY2-HY5 pathway, plays a dominant role in blue-light-dependent photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Criptocromos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criptocromos/genética , Células HEK293 , Humanos , Luz , Morfogênese , Mutação , Fosforilação , Plantas Geneticamente Modificadas , Fatores de Tempo , Ubiquitina-Proteína Ligases/metabolismo
6.
Bioresour Technol ; 326: 124816, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33563516

RESUMO

Cane molasses is beneficial for lipid and carotenoid production in microalgae. We made a survey for the lipid and carotenoid production profile of R. toruloides M18 (MT) with various concentrations of molasses under nitrogen-deficited conditions. The production of α-linolenate and torularhodin from MT were 1.22- and 14.68-fold higher than those of the wild-type strain. We observed that molasses at concentrations of 35 g/L and 70 g/L represented a cheap and environmentally friendly strategy for producing lipids and carotenoids. Transcriptome and WGCNA analysis demonstrated that the genes relevant to the lipid and carotenoid production, including MYB, bHLH, Δ-4 desaturase, Δ-12 desaturase and FA2H, were significantly highly expressed. The results indicated that molasses could represent an inexpensive means for achieving high lipids and carotenoids production in R. toruloides.


Assuntos
Basidiomycota , Melaço , Bengala , Carotenoides , Lipídeos , Rhodotorula
8.
Annu Rev Plant Biol ; 71: 103-129, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32169020

RESUMO

Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Criptocromos/genética , Luz , Fatores de Transcrição
9.
Plant Cell Physiol ; 61(5): 882-896, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044993

RESUMO

Spartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used Pacific Biosciences (PacBio) full-length single-molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt gradient experiments. High-quality unigenes, transcription factors, non-coding RNA and Spartina-specific transcripts were identified. Co-expression network analysis found that protein kinase-encoding genes (SaOST1, SaCIPK10 and SaLRRs) are hub genes in the salt tolerance regulatory network. High salt stress induced the expression of transcription factors but repressed the expression of long non-coding RNAs. The Spartina transcriptome is closer to rice than Arabidopsis, and a higher proportion of transporter and transcription factor-encoding transcripts have been found in Spartina. Transcriptome analysis showed that high salt stress induced the expression of carbohydrate metabolism, especially cell-wall biosynthesis-related genes in Spartina, and repressed its expression in rice. Compared with rice, high salt stress highly induced the expression of stress response, protein modification and redox-related gene expression and greatly inhibited translation in Spartina. High salt stress also induced alternative splicing in Spartina, while differentially expressed alternative splicing events associated with photosynthesis were overrepresented in Spartina but not in rice. Finally, we built the SAPacBio website for visualizing full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes and alternative splicing events in Spartina. Overall, this study suggests that the salt tolerance mechanism in Spartina is different from rice in many aspects and is far more complex than expected.


Assuntos
Poaceae/genética , Poaceae/fisiologia , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Transcriptoma/genética , Processamento Alternativo/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Oryza/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
10.
Yi Chuan ; 42(2): 194-211, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32102776

RESUMO

As a coastal halophyte, Spartina alterniflora has high salt tolerance. However, the mechanism at the molecular level has not been widely studied due to the absence of a reference genome. The proteins of NAC families are plant-specific transcription factors that regulate the growth, development and stress response in plants. To identify the NAC family and explore the relationship between NAC proteins and the growth, development and stress response of Spatina alterniflora, full-length transcriptome data of Spartina alterniflora by the third generation sequencing technology was used as reference sequences in this study to blast with the NAC protein sequences from Oryza sativa, Arabidopsis thaliana and Zea mays. Finally, 62 SaNAC proteins were found in Spartina alterniflora by deep analysis on conserved domains. Then we analyzed sequence alignment, evolution, motif prediction, homology comparison, subcellular localization, tissue and abiotic stress-induced gene differential expression profile on the NAC family members in Spartina alterniflora. As a result, all SaNAC proteins were found containing a conserved NAM domain and having certain evolutionary similarity with rice; two family proteins, SaNAC9 and SaNAC49, were expressed in the nucleus; moreover, SaNAC genes were identified to have distinct expressional profiles in different tissues and stress response of Spartina alterniflora. These results indicated the SaNAC transcription factor family not only had conserved functional domains but also played important role in the regulation of growth, development and abiotic stress response.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poaceae/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição/genética , Filogenia , Estresse Fisiológico
11.
Mol Plant ; 13(3): 398-413, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31953223

RESUMO

Plant and non-plant species possess cryptochrome (CRY) photoreceptors to mediate blue light regulation of development or the circadian clock. The blue light-dependent homooligomerization of Arabidopsis CRY2 is a known early photoreaction necessary for its functions, but the photobiochemistry and function of light-dependent homooligomerization and heterooligomerization of cryptochromes, collectively referred to as CRY photooligomerization, have not been well established. Here, we show that photooligomerization is an evolutionarily conserved photoreaction characteristic of CRY photoreceptors in plants and some non-plant species. Our analyses of the kinetics of the forward and reverse reactions of photooligomerization of Arabidopsis CRY1 and CRY2 provide a previously unrecognized mechanism underlying the different photosensitivity and photoreactivity of these two closely related photoreceptors. We found that photooligomerization is necessary but not sufficient for the functions of CRY2, implying that CRY photooligomerization is presumably accompanied by additional function-empowering conformational changes. We further demonstrated that the CRY2-CRY1 heterooligomerization plays roles in regulating functions of Arabidopsis CRYs in vivo. Taken together, these results suggest that photooligomerization is an evolutionarily conserved mechanism determining the photosensitivity and photoreactivity of plant CRYs.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Criptocromos/química , Criptocromos/metabolismo , Luz , Multimerização Proteica/efeitos da radiação , Escuridão , Células HEK293 , Humanos , Estrutura Quaternária de Proteína
12.
Mol Biol Evol ; 37(2): 327-340, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550045

RESUMO

Universally conserved residues (UCRs) are invariable amino acids evolutionarily conserved among members of a protein family across diverse kingdoms of life. UCRs are considered important for stability and/or function of protein families, but it has not been experimentally examined systematically. Cryptochromes are photoreceptors in plants or light-independent components of the circadian clocks in mammals. We experimentally analyzed 51 UCRs of Arabidopsis cryptochrome 2 (CRY2) that are universally conserved in eukaryotic cryptochromes from Arabidopsis to human. Surprisingly, we found that UCRs required for stable protein expression of CRY2 in plants are not similarly required for stable protein expression of human hCRY1 in human cells. Moreover, 74% of the stably expressed CRY2 proteins mutated in UCRs retained wild-type-like activities for at least one photoresponses analyzed. Our finding suggests that the evolutionary mechanisms underlying conservation of UCRs or that distinguish UCRs from non-UCRs determining the same functions of individual cryptochromes remain to be investigated.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Criptocromos/genética , Criptocromos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Sequência Conservada , Criptocromos/química , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Estabilidade Proteica
14.
Tree Physiol ; 40(4): 538-556, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31860727

RESUMO

Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at -2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.


Assuntos
Regulação da Expressão Gênica de Plantas , Poaceae/genética , Temperatura Baixa , Perfilação da Expressão Gênica , Transcriptoma
15.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861396

RESUMO

Moso bamboo is well-known for its rapid-growth shoots and widespread rhizomes. However, the regulatory genes of these two processes are largely unexplored. GATA transcription factors regulate many developmental processes, but their roles in moso bamboo height control and rhizome development remains unexplored. Here, thirty-one bamboo GATA factors (PeGATAs) were identified, which are evolutionarily closer to rice than Arabidopsis, and their gene expression patterns were analyzed in bamboo development and phytohormone response with bioinformatics and molecular methods. Interestingly, PeGATAs could only be classified into three groups. Phytohormone responsive cis-elements were found in PeGATA promoters and the expression profiles showed that PeGATA genes might respond to gibberellin acid and abscisic acid but not to auxin at the transcriptional level. Furthermore, PeGATA genes have a tissue-specific expression pattern in bamboo rhizomes. Interestingly, most PeGATA genes were down-regulated during the rapid-growth of bamboo shoots. In addition, over-expressing one of the PeGATA genes, PeGATA26, significantly repressed the primary root length and plant height of transgenic Arabidopsis plants, which may be achieved by promoting the gibberellin acid turnover. Overall, our results provide insight into the function of GATA transcription factors in bamboo, and into genetic resources for engineering plant height.


Assuntos
Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Sasa/genética , Sasa/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , Genoma de Planta , Genômica/métodos , Filogenia , Ligação Proteica , Transporte Proteico , Sasa/classificação
16.
Sci Rep ; 9(1): 14998, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628413

RESUMO

Moso bamboo is one of the economically most important plants in China. Moso bamboo is a monocarpic perennial that exhibits poor and slow germination. Thus, the flowering often causes destruction of moso bamboo forestry. However, how control of flowering and seed germination are regulated in moso bamboo is largely unclear. In this study, we identified 5 members (PhFT1-5) of the phosphatidyl ethanolamine-binding proteins (PEBP) family from moso bamboo genome that regulate flowering, flower architecture and germination, and characterized the function of these PEBP family genes further in Arabidopsis. Phylogenetic analysis revealed that 3 (PhFT1, PhFT2 and PhFT3), 1 (PhFT4) and 1 (PhFT5) members belong to the TFL1-like clade, FT-like clade, and MFT-like clade, respectively. These PEBP family genes possess all structure necessary for PEBP gene function. The ectopic overexpression of PhFT4 and PhFT5 promotes flowering time in Arabidopsis, and that of PhFT1, PhFT2 and PhFT3 suppresses it. In addition, the overexpression of PhFT5 promotes seed germination rate. Interestingly, the overexpression of PhFT1 suppressed seed germination rate in Arabidopsis. The expression of PhFT1 and PhFT5 is significantly higher in seed than in tissues including leaf and shoot apical meristem, implying their function in seed germination. Taken together, our results suggested that the PEBP family genes play important roles as regulators of flowering and seed germination in moso bamboo and thereby are necessary for the sustainability of moso bamboo forest.


Assuntos
Arabidopsis/genética , Genes de Plantas , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Poaceae/genética , Sequência de Aminoácidos , China , Flores/genética , Regulação da Expressão Gênica de Plantas , Germinação , Meristema/genética , Filogenia , Melhoramento Vegetal , Folhas de Planta/genética , Sementes/crescimento & desenvolvimento
17.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623377

RESUMO

Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Microtúbulos/genética , Microtúbulos/metabolismo , Morfogênese , Organogênese Vegetal , Arabidopsis/ultraestrutura , Fenótipo , Epiderme Vegetal/fisiologia , Epiderme Vegetal/ultraestrutura
18.
EMBO J ; 38(18): e102962, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31432520

RESUMO

How structurally distinct photoreceptors regulate evolutionarily diverse transcription factors to modulate common photoresponses is an intriguing question in plant biology. In this issue of The EMBO Journal, Lau et al demonstrate that COP1, the substrate receptor of E3 ubiquitin ligase CUL4COP 1- SPA s , interacts with the diverse VP motif-containing transcription factors and photoreceptors via its highly plastic WD40 domain. Light-activated photoreceptors increase their affinity to COP1 to outcompete the COP1-interacting transcription factors, allowing their accumulation and inducing photomorphogenic development of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo I de Proteína do Envoltório , Peptídeos , Fotorreceptores de Plantas , Ubiquitina-Proteína Ligases
19.
Cells ; 8(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330982

RESUMO

Moso bamboo is an important forest species with a variety of ecological, economic, and cultural values. However, the gene annotation information of moso bamboo is only based on the transcriptome sequencing, lacking the evidence of proteome. The lignification and fiber in moso bamboo leads to a difficulty in the extraction of protein using conventional methods, which seriously hinders research on the proteomics of moso bamboo. The purpose of this study is to establish efficient methods for extracting the total proteins from moso bamboo for following mass spectrometry-based quantitative proteome identification. Here, we have successfully established a set of efficient methods for extracting total proteins of moso bamboo followed by mass spectrometry-based label-free quantitative proteome identification, which further improved the protein annotation of moso bamboo genes. In this study, 10,376 predicted coding genes were confirmed by quantitative proteomics, accounting for 35.8% of all annotated protein-coding genes. Proteome analysis also revealed the protein-coding potential of 1015 predicted long noncoding RNA (lncRNA), accounting for 51.03% of annotated lncRNAs. Thus, mass spectrometry-based proteomics provides a reliable method for gene annotation. Especially, quantitative proteomics revealed the translation patterns of proteins in moso bamboo. In addition, the 3284 transcript isoforms from 2663 genes identified by Pacific BioSciences (PacBio) single-molecule real-time long-read isoform sequencing (Iso-Seq) was confirmed on the protein level by mass spectrometry. Furthermore, domain analysis of mass spectrometry-identified proteins encoded in the same genomic locus revealed variations in domain composition pointing towards a functional diversification of protein isoform. Finally, we found that part transcripts targeted by nonsense-mediated mRNA decay (NMD) could also be translated into proteins. In summary, proteomic analysis in this study improves the proteomics-assisted genome annotation of moso bamboo and is valuable to the large-scale research of functional genomics in moso bamboo. In summary, this study provided a theoretical basis and technical support for directional gene function analysis at the proteomics level in moso bamboo.


Assuntos
Genoma de Planta , Proteínas de Plantas , Poaceae/genética , Estabilidade de RNA , Processamento Alternativo , Anotação de Sequência Molecular , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Isoformas de Proteínas/genética , Proteogenômica , RNA Longo não Codificante
20.
Methods Mol Biol ; 2026: 193-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317414

RESUMO

Timing of flowering, which is adapted to the ambient environment, is one of the key traits to ensure the reproductive success of plants. Our current understanding of the complex genetic control network of this trait is mostly derived from the studies in the model plant species Arabidopsis thaliana. Arabidopsis thaliana is an annual facultative long-day plant, whose flowering time is controlled by numerous environmental and endogenous factors. Here we briefly summarize the genetic pathways that promote flowering of Arabidopsis and describe standard protocols to characterize the flowering time phenotype of Arabidopsis mutants under laboratory conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...