Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Opt Express ; 25(17): 20466-20476, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041727


This study presents the low cost fabrication of flexible white-light-emitting diodes (w-LEDs) with nano-honeycomb-structured phosphor films. Extending the dimensions of the nano-honeycomb structures improved the color uniformity of the flexible samples, and the 950-nm pattern sample demonstrated optimal color uniformity because this nano-pattern exhibited an excellent diffusion ability owing to its pitch size. In addition to color uniformity, the use of this nano-pattern improved the luminous efficiency. The 750-nm pattern exhibited the highest luminous efficiency (235.8 lm/W), which was approximately 7% higher than that exhibited by a non-patterned phosphor film sample. Thus, flexible w-LEDs with nano-honeycomb structure optimization have great potential to be used as next-generation lighting sources.

PLoS One ; 8(10): e74267, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204566


BACKGROUND: Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). MATERIALS AND METHODS: From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. RESULTS: CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47-99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. CONCLUSIONS: CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation.

Imageamento Tridimensional , Modelos Anatômicos , Desenho de Prótese/métodos , Crânio/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Desenho Assistido por Computador , Craniectomia Descompressiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Próteses e Implantes
Opt Express ; 20(11): 12457-62, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714233


We report the observation of lasing action from an optically pumped gallium nitride quasicrystal nanorod arrays. The nanorods were fabricated from a GaN substrate by patterned etching, followed by epitaxial regrowth. The nanorods were arranged in a 12-fold symmetric quasicrystal pattern. The regrowth grew hexagonal crystalline facets and core-shell multiple quantum wells (MQWs) on nanorods. Under optical pumping, multiple lasing peaks resembling random lasing were observed. The lasing was identified to be from the emission of MQWs on the nanorod sidewalls. The resonant spectrum and mode field of the 12-fold symmetric photonic quasicrystal nanorod arrays is discussed.

Gálio/química , Lasers , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
J Opt Soc Am A Opt Image Sci Vis ; 19(10): 2005-17, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12365620


The scattering of waves by multilayered periodic structures is formulated in three-dimensional space by using Fourier expansions for both the basic lattice and its associated reciprocal lattice. The fields in each layer are then expressed in terms of characteristic modes, and the complete solution is found rigorously by using a transmission-line representation to address the pertinent boundary-value problems. Such an approach can treat periodic arbitrary lattices containing arbitrarily shaped dielectric components, which may generally be absorbing and have biaxial properties along directions that are parallel or perpendicular to the layers. We illustrate the present approach by comparing our numerical results with data reported in the past for simple structures. In addition, we provide new results for more complex configurations, which include multiple periodic regions that contain absorbing uniaxial components with several possible canonic shapes and high dielectric constants.