Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2658-2667, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472286

RESUMO

Lipids are important components of living organisms that participate in and regulate a variety of life activities. Lipids in plants also play important physiological functions in response to a variety of abiotic stresses (e.g. salt stress, drought stress, temperature stress). However, most research on lipids focused on animal cells and medical fields, while the functions of lipids in plants were overlooked. With the rapid development of "omics" technologies and biotechnology, the lipidomics has received much attention in recent years because it can reveal the composition and function of lipids in a deep and comprehensive way. This review summarizes the recent advances in the functions and classification of lipids, the development of lipidomics technology, and the responses of plant lipids against drought stress, salt stress and temperature stress. In addition, challenges and prospects were proposed for future lipidomics research and further exploration of the physiological functions of lipids in plant stress resistance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Lipídeos , Plantas , Estresse Fisiológico
2.
Plant Physiol Biochem ; 163: 108-118, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33826995

RESUMO

Early seedling development is one of the most crucial period of the plant's life cycle, which is highly susceptible to adverse environmental conditions, especially those impose by salt stress. Castor plant (Ricinus communis) is a famous non-edible oilseed and salt-resistant crop worldwide. However, the specific metabolic responses in the cotyledons and roots of this species during seedling establishment under salt stress are still not clearly understood. In the present study, 16 d castor seedlings were treated with 150 mM NaCl for 6 d, and the metabolite profiling of cotyledons and roots was conducted using liquid chromatography (LC) combined with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The Principal Component Analysis (PCA) results showed that the metabolites were great differed in cotyledons and roots under salt stress. There were 38 differential metabolites, mainly including fatty acid, nucleic acid and organic acids in the cotyledons, but only 19 differential metabolites, mainly including fatty acid and organic acids in the roots under such condition. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that flavone and flavonol biosynthesis, pantothenate and CoA biosynthesis, citrate cycle and carotenoid biosynthesis were the common metabolic pathways in response to salt stress in the two organs. Salt stress caused metabolite process alteration mainly on carbon and nitrogen metabolisms, and the carbon allocation from root to cotyledon was increased. Additionally, changes of amino acids and nucleic acids profiles were only found in the cotyledons, and the roots could enhance the activity of antioxidant enzyme systems to scavenge ROS under salinity. In conclusion, the present research provides an improved understanding on specific physiological changes in the cotyledons in castor early seedlings, and explores their interaction under salt stress.


Assuntos
Cotilédone , Plântula , Cromatografia Líquida , Metabolômica , Raízes de Plantas , Ricinus , Estresse Salino , Espectrometria de Massas em Tandem
3.
Plant Physiol Biochem ; 154: 1-10, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32505784

RESUMO

Arbuscular mycorrhizal fungi as an important soil microbe have been demonstrated to mitigate the harmful effects of stress on plants. However, little is known about the molecular mechanisms underlying the AM symbiotic response to low temperature. Here, differentially expressed genes (DEGs) in the maize seedlings were identified after inoculating AMF under low temperature conditions. A total of 10,400 DEGs were obtained among four treatments, including non-inoculated AMF under ambient temperature (NMA), inoculated AMF under ambient temperature (MA), non-inoculated with low temperature stress (NML), and inoculated with low temperature stress (ML). The relative expression of 858 genes increased and that of 497 genes decreased in AM plants under low temperature stress. 24 DEGs were identified related to photosynthesis and respiratory metabolism. Among these DEGs, 10 genes were upregulated, and 14 genes were downregulated. The results show that inoculating AMF might decrease the production and transmission of electrons under low temperature, and the cyclic electron flow process in chloroplasts was stimulated to protect plants against low temperature. The fungi also influenced transmission of electrons and production of phosphoric acid in mitochondria in response to low temperature. CO2 assimilation capacity was affected and the tricarboxylic acid cycle was promoted by the adjustments in the glycolysis, pentose phosphate pathway, gamma-aminobutyric acid shunt pathway, and glyoxylic acid cycle to produce more adenosine triphosphate and raw materials for other metabolic pathways under low temperature. These findings provide new insight into low temperature tolerance induced by AMF, and help identify genes for further investigation and functional analyses.


Assuntos
Temperatura Baixa , Micorrizas , Fotossíntese , Zea mays/microbiologia , Zea mays/fisiologia , Plântula , Microbiologia do Solo , Estresse Fisiológico
4.
Artigo em Inglês | MEDLINE | ID: mdl-32466495

RESUMO

Exogenous hormones play an important role in plant growth regulation and stress tolerance. However, little is known about the effect of exogenous abscisic acid (ABA) on wheat seedlings under salt and alkali stresses. Here, a pot experiment of saline and alkaline stresses (0 and 100 mmol/L) in which ABA water solution (0, 50 and 100 µmol/L) was sprayed on wheat seedlings was conducted to study the alleviative effectiveness of ABA on salt and alkali stresses. After spraying ABA (50 µmol·L-1), shoot biomass increased 19.0% and 26.7%, respectively. The Na+ content in shoots reduced from 15-fold and 61.5-fold to 10-fold and 37.3-fold in salt and alkali stresses, compared to controls. In addition, proline and organic acid synthesis in shoots also reduced significantly, but the soluble sugar content increased under alkali stress. A high concentration of ABA (100 µmol·L-1) had no significant effects on biomass and ion content in wheat seedlings under both stresses. In conclusion, foliar application of ABA with moderate concentration could effectively accelerate shoot growth of salt-induced wheat seedlings by adjusting the levels of ions and organic solutes.


Assuntos
Ácido Abscísico , Álcalis , Plântula , Triticum , Ácido Abscísico/farmacologia , Álcalis/toxicidade , Cloreto de Sódio , Estresse Fisiológico , Triticum/fisiologia
5.
Microorganisms ; 8(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110985

RESUMO

Soil alkalization is a major environmental threat that affects plant distribution and yield in northeastern China. Puccinellia tenuiflora is an alkali-tolerant grass species that is used for salt-alkali grassland restoration. However, little is known about the molecular mechanisms by which arbuscular mycorrhizal fungi (AMF) enhance P. tenuiflora responses to alkali stress. Here, metabolite profiling in P. tenuiflora seedlings with or without arbuscular mycorrhizal fungi (AMF) under alkali stress was conducted using liquid chromatography combined with time-of-flight mass spectrometry (LC/TOF-MS). The results showed that AMF colonization increased seedling biomass under alkali stress. In addition, principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) demonstrated that non-AM and AM seedlings showed different responses under alkali stress. A heat map analysis showed that the levels of 88 metabolites were significantly changed in non-AM seedlings, but those of only 31 metabolites were significantly changed in AM seedlings. Moreover, the levels of a total of 62 metabolites were significantly changed in P. tenuiflora seedlings after AMF inoculation. The results suggested that AMF inoculation significantly increased amino acid, organic acid, flavonoid and sterol contents to improve osmotic adjustment and maintain cell membrane stability under alkali stress. P. tenuiflora seedlings after AMF inoculation produced more plant hormones (salicylic acid and abscisic acid) than the non-AM seedlings, probably to enhance the antioxidant system and facilitate ion balance under stress conditions. In conclusion, these findings provide new insights into the metabolic mechanisms of P. tenuiflora seedlings with arbuscular mycorrhizal fungi under alkali conditions and clarify the role of AM in the molecular regulation of this species under alkali stress.

6.
Ecotoxicol Environ Saf ; 171: 12-25, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30593996

RESUMO

Soil salinity is a major abiotic stress affecting crop growth and productivity. Ricinus communis has good salt tolerance and is also an important oilseed crop throughout the world. Early seedling stage (such as cotyledon expansion stage) is the most vulnerable period for plant under stresses. However, little information exist concerning the physiological and molecular mechanisms of Ricinus communis seedlings and the role play by cotyledons and true leaf under salt stress. In the present study, biomass, photosynthesis, chlorophyll fluorescence, inorganic ions and organic solutes contents were measured, and two dimensional gel electrophoresis-based proteomic technology was employed to identify the differentially abundant proteins in the salt-treated Ricinus communis cotyledons and true leaves. The results showed that salt stress reduced growth and photosynthesis in the seedlings. With increasing salinity, the Na+ content increased and K+ content decreased in both cotyledons and leaves, but the true leaves had lower Na+ and higher K+ contents. Soluble sugars and proline are the primary organic solutes to cope with osmotic stress. In addition, proteomic analysis revealed 30 and 42 differentially accumulated protein spots in castor cotyledon and true leaf under salt stress, respectively. Most of the identified proteins were involved in carbohydrate and energy metabolism, photosynthesis, genetic information process, reactive oxygen species metabolism, amino acid metabolism and cell structure. The physiological and proteomic results highlighted that cotyledons accumulated a large number of Na+ and provided more energy to help true leaves cope with salt stress. The true leaves saved carbon structures to synthesize osmotic substances, and the enhancement of chlorophyll synthesis and electron transfer in true leaves could also maintain photosynthesis under salt stress. These findings provide new insights into different physiological mechanisms in cotyledon and true leaf of Ricinus communis response to salt stress during early seedling stage.


Assuntos
Cotilédone/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ricinus , Salinidade , Tolerância ao Sal , Plântula/metabolismo , Biomassa , Metabolismo Energético , Pressão Osmótica/fisiologia , Fotossíntese , Potássio/metabolismo , Prolina/metabolismo , Proteômica , Plântula/crescimento & desenvolvimento , Sódio/metabolismo , Cloreto de Sódio/análise
7.
Front Plant Sci ; 9: 1458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356802

RESUMO

Ryegrass is considered a useful grass species for forage production and turf purposes. Annual ryegrass (Lolium multiflorum Lam.) and perennial ryegrass (Lolium perenne L.)are two species of ryegrass with similar genomes. So far, little information exists concerning their physiological response to salt-alkali stress during germination stage, especially under different temperature regimes. Seeds of ryegrass were germinated at four alternating temperatures (10-20, 15-25, 20-30, and 25-35°C) with salinity (NaCl) and alkalinity (Na2CO3, high pH) stresses. Results showed that optimal germination for both species under stress conditions occurred at higher temperatures (20-30°C for annual ryegrass; 20-30°C and 25-35°C for perennial ryegrass). Germination percentage and germination rate were both inhibited by increasing salinity or alkalinity, particularly higher alkalinities under any temperature. The inhibitory effects of the high salinity on germination were greater at 10-20°C for both species. However, seeds were subjected to more stress at 25-35°C under alkali stress even though the concentration was very low. In addition, both high and low temperatures lead to a markedly decrease in seed germination under alkali stress for perennial ryegrass. Recovery percentage of both species were highest at 400 mM salinity and 25 mM alkalinity under any temperature, especially 10-20°C, and 25-35°C also resulted in lower recovery percentages under both stresses for ryegrass. Moreover, annual ryegrass had a much higher recovery percentage than perennial ryegrass under such stress conditions. These results suggest that salinity stress and alkalinity stress are greatly different, and the salt-alkaline tolerance of ryegrass seeds is greatly affected by the interactions of temperature and salinity-alkalinity.

8.
R Soc Open Sci ; 5(8): 180676, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225063

RESUMO

Aralia elata buds contain many nutrients and have a pleasant taste with a unique flavour. Previous studies mainly focused on triterpene saponins in the root bark of this species, but little information existed concerning other chemical components, especially in the buds. To better understand the nutritional value of A. elata, we compared total flavonoids, total saponins, phenolic compounds and mineral element contents in the buds of A. elata collected from eight different geographical regions (S1: Benxi; S2: Linjiang; S3: Pingwu; S4: Enshi; S5: Changbaishan; S6: Shangzhi; S7: Xiaoxinganling and S8: Harbin) in China. The results showed that the basic composition in the buds presented a wide variation, with ash (8.76-10.35%), crude fibre (5.38-11.07%), polysaccharides (33.85-46.79 mg g-1), total flavonoid content (TFC, 4.06-48.63 mg g-1) and total saponins (13.62-27.85 mg g-1). UPLC combined with the LC-MS/MS method was used for the phenolic compounds analysis, and 11 phenolic compounds were identified and quantified in the eight samples. The total phenolic content in Enshi (S4) was significantly higher than others, and quercetin was the predominant phenolic compound in this sample. We used ICP-OES to identify and quantify nine mineral elements in the buds. The Fe and Cu contents in S5 were much higher than that of others. We obtained maximum Mg, Mn, Co and Ni contents in S4, and found rich Zn content in S7. Moreover, the maximum estimated quantities of Ca and Sr were found in S8. This study indicated that the chemical composition in the buds of A. elata was obviously affected by geographical origin. Our results provided an essential theoretical basis of quality evaluation of A. elata buds in the food production field.

9.
Front Plant Sci ; 9: 1939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687346

RESUMO

Ricinus communis is an important energy crop and is considered as one of the most potential plants for salt-alkali soil improvement in Northeast China. Early seedling stage (such as the cotyledon expansion stage) is always a vulnerable stage but plays a vital role in plant establishment, especially under stress conditions. However, little information exists concerning the function of cotyledon and the relationship between cotyledon and true leaf in the adaptation to salt stress and alkali stress of this species. Here, Ricinus communis seedlings were treated with varying (40, 80 and 120 mM) salinity (NaCl) and alkalinity (NaHCO3), growth, photosynthesis, and chlorophyll fluorescence of cotyledons and true leaves were measured. The results showed that the biomass, photosynthetic parameters, and the qp value of both cotyledons and true leaves decreased with increasing salt-alkali stress, and the decrease in biomass, g s and Tr, of true leaves were much greater than that of cotyledons. Salt-alkali stress only reduced photosynthetic pigments and ΦPSII in cotyledons, but did not affect those in true leaves. Additionally, the Fv/Fm and NPQ between cotyledons and true leaves showed different trends in salinity and alkalinity. The results suggested that alkali stress could cause much more damage to the castor bean seedlings, and different physiological responses and adaptive strategies are found in cotyledons and true leaves under salt-alkali stress. This study will help us develop a better understanding of the adaptation mechanisms of cotyledon and true leaf during early seedling stage of castor bean plant, and also provide new insights into the function of cotyledon in Ricinus communis under salt-alkali stress conditions.

10.
Sci Total Environ ; 576: 234-241, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27788438

RESUMO

Leymus chinensis is the most promising grass species for salt-alkaline grassland restoration in northern China. However, little information exists concerning the role of arbuscular mycorrhizal (AM) symbiosis in the adaptation of seedlings to salt-alkali stress, particularly under increased nitrogen deposition, which has become a major environmental problem throughout the world. In this study, Leymus chinensis seedlings were cultivated in soil with 0, 100 and 200mM NaCl/NaHCO3 under two forms of nitrogen (10mM NH4NO3 or NH4Cl: NH4NO3=3:1), and the root colonization, growth and photosynthetic characteristics of the seedlings were measured. The results showed that the colonization rate and intensity decreased with increasing salt-alkali stress and were much lower under alkali stress. The nitrogen treatments also decreased the colonization, particularly under the NH4+-N treatment. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally presented higher plant biomass, photosynthetic parameters and contents of photosynthetic pigments under stresses, and the inhibitive effects of alkali stress were substantially stronger. In addition, both nitrogen forms decreased the physiological indexes compared with those of the AM seedlings. Our results suggest that salt stress and alkali stress are significantly different and that the salt-alkali tolerance of Leymus chinensis seedlings could be enhanced by associations with arbuscular mycorrhizal fungi, in which would yield better plant growth and photosynthesis. Excessive nitrogen in the soil affects mycorrhizal colonization and thereby inhibits the growth and photosynthetic ability of the seedlings.


Assuntos
Micorrizas , Fotossíntese , Poaceae/crescimento & desenvolvimento , Estresse Fisiológico , Álcalis , China , Nitrogênio , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Sais , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
11.
Biol Open ; 5(6): 720-5, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170257

RESUMO

Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest.

12.
PeerJ ; 4: e1485, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26855854

RESUMO

Leymus chinensis is a dominant grass in the Songnen grassland of Northern China. The lower germination caused by the presence of lemmas has proved to be an obstacle for the use of the seeds of this plant by humans. However, it is still unknown if the lemmas have other ecological roles such as resisting drought and saline conditions. Three experiments were designed to investigate the ecological roles of the lemmas in Leymus chinensis seeds. The results showed that lemmas significantly improved the amount of water uptake and slowed down the dehydration rate of the seeds under dry conditions. Likewise, the lemmas induced seed dormancy, and removal of the lemmas improved the germination at all temperatures. Although germination percentage of the seeds without lemmas were higher than that of seeds with lemmas under salinity stress, the recovery and total percentage were significantly lower than the seeds with lemmas, especially at 400 mM stress. These results suggest that the lemmas play a vital function in water uptake, dehydration and salt tolerance during the germination stage of the seeds as a response to adverse environmental conditions. Although lemmas showed a dormancy effect, if we want to plant this species in salinity soil in Northeast China, the approach of removing the lemmas by artificial means and improving the seed germination percentage is not feasible.

13.
PLoS One ; 9(8): e103633, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093814

RESUMO

Leymus chinensis is a dominant, rhizomatous perennial C3 species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO2 and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO2 levels (380 ± 20 µmol mol(-1),760 ± 20 µmol mol(-1)) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO2 and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO2 enrichment. Water use efficiency and the ratio of root: total biomass increased significantly when precipitation was low, but decreased when it was high under CO2 enrichment. Moreover, high precipitation at the elevated level of CO2 increased the ratio between stem biomass and total biomass. The effect of elevated CO2 on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO2 levels, the net photosynthetic rate and biomass of L. chinensis increase with precipitation, but those measures are not further affected by additional precipitation when CO2 is elevated. Furthermore, CO2 may partly compensate for the negative effect of low precipitation on the growth and development of L. chinensis.


Assuntos
Biomassa , Dióxido de Carbono/farmacologia , Fotossíntese , Poaceae , Chuva , Plântula/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Ambiente Controlado , Germinação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Rizoma/efeitos dos fármacos , Rizoma/crescimento & desenvolvimento , Estações do Ano , Plântula/efeitos dos fármacos , Água/farmacologia
14.
ScientificWorldJournal ; 2014: 213401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121110

RESUMO

Leymus chinensis has extensive ecological adaptability and can grow well in saline-alkaline soils. The knowledge about tolerance mechanisms of L. chinensis could be base for utilization of saline-alkaline soils and grassland restoration and rebuilding. Two neutral salts (NaCl : Na2SO4 = 9 : 1) and two alkaline salts (NaHCO3 : Na2CO3 = 9 : 1) with concentration of 0, 100, and 200 mmol/L were used to treat potted 35-day-old seedlings with rhizome growth, respectively. After 10 days, the biomass and number of daughter shoots all decreased, with more reduction in alkali than in salt stress. The rhizome biomass reduced more than other organs. The number of daughter shoots from rhizome was more than from tillers. Under both stresses, Na(+) contents increased more in rhizome than in other organs; the reduction of K(+) content was more in underground than aerial tissue. Anion ions or organic acids were absorbed to neutralize cations. Na(+) content in stem and leaf increased markedly in high alkalinity (200 mmol/L), with accumulation of soluble sugar and organic acids sharply. Rhizomes help L. chinensis to adapt to saline and low alkaline stresses by transferring Na(+). However, rhizomes lost the ability to prevent Na(+) transport to aerial organs under high alkalinity, which led to severe growth inhibition of L. chinensis.


Assuntos
Adaptação Biológica/fisiologia , Álcalis , Poaceae/fisiologia , Rizoma/fisiologia , Sais , Estresse Fisiológico/fisiologia , Análise de Variância , Carbonatos/metabolismo , China , Bicarbonato de Sódio/metabolismo , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...